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Abstract
Multi-task learning and deep convolutional neural
network (CNN) have been successfully used in var-
ious fields. This paper considers the integration of
CNN and multi-task learning in a novel way to fur-
ther improve the performance of multiple related
tasks. Existing multi-task CNN models usually em-
pirically combine different tasks into a group which
is then trained jointly with a strong assumption of
model commonality. Furthermore, traditional ap-
proaches usually only consider small number of
tasks with rigid structure, which is not suitable for
large-scale applications. In light of this, we propose
a dynamic multi-task CNN model to handle these
problems. The proposed model directly learns the
task relations from data instead of subjective task
grouping. Due to its flexible structure, it supports
task-wise incremental training, which is useful for
efficient training of massive tasks. Specifically, we
add a new task transfer connection (TTC) between
the layers of each task. The learned TTC is able to
reflect the correlation among different tasks guid-
ing the model dynamically adjusting the multiplex-
ing of the information among different tasks. With
the help of TTC, multiple related tasks can further
boost the whole performance for each other. Ex-
periments demonstrate that the proposed dynamic
multi-task CNN model outperforms traditional ap-
proaches.

1 Introduction
Traditional computer vision is based on low-level and hand-
craft features such as HOG, LBP and Haar, which do not
take use of the task-specific supervision information. Higher-
level features are usually more specific and more efficient to
semantic-level tasks. The design of high-level feature extrac-
tion algorithm requires problem-specific knowledge. How-
ever, every problem has its own characteristic. Analyzing
them with different features is strenuous work. In worse con-
dition, relevant prior knowledge may not be adequate to han-
dle the problem. In that condition, the advantage of repre-
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sentation learning [Bengio et al., 2013] is evident. It is able
to automatically learn expressive features, which are more
likely to capture the key information of a problem. In recent
years, as a widely used efficient representation learning algo-
rithm, deep CNN [LeCun et al., 1989], has been successfully
applied in various fields, such as object detection [Girshick
et al., 2014; Ren et al., 2015; Redmon et al., 2016], image
classification [Krizhevsky et al., 2012; Szegedy et al., 2015;
He et al., 2016] and face related problems [Sun et al., 2014;
Taigman et al., 2014; Schroff et al., 2015; Yang et al., 2015].
With the enormous amount of parameters in each layer, the
cascade structure helps CNN model to extract more abstract
features, which are usually more effective for semantic-level
tasks.

Multi-Task Learning (MTL) [Caruana, 1998] is a general
approach to learning related tasks using shared representa-
tion, with the aim of improving the performance. It is quite
useful for multiple tasks, which have inherent relations to
each other. The superior performance of MTL has been
demonstrated in many fields, such as natural language process
[He et al., 2009] and computer vision [Quattoni et al., 2008].
Therefore, it is natural to combine CNN and multi-task learn-
ing together for proper tasks to get a superior model.

Some previous work has shown that multi-task CNN model
is helpful to improve the performance of the main task. The
experiments in [Zhang et al., 2014] showed that robust land-
mark detection can be achieved better through joint learn-
ing with heterogeneous but subtly correlated tasks. [De-
vries et al., 2014] demonstrated that learning representations
to predict the position and shape of facial landmarks could
improve expression recognition. The work in [Zhang and
Zhang, 2014] uses multi-task CNN to build a post filter im-
proving the accuracy of multi-view face detection. The multi-
task CNN models mentioned above have similar structures,
namely, some layers are artificially set to be shared for all the
tasks. In [Misra et al., 2016], cross-stich unit is proposed,
which is a principled approach to learning shared representa-
tions for multi-task CNN. However, the amount of tasks in-
volved in existing models is very small (around two or three).
Even worse, some models differentiate between main task
and assistant tasks, which means only main task can bene-
fit from multi-task learning. Current multi-task CNN models
empirically select tasks into a group, assuming the tasks are
trained in harmony with each other. However, in real applica-
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Figure 1: Illustration of dynamic multi-task CNN model. The lines
linking different tasks represent task transfer connections.

tions, the relations among tasks are complicated. Rigid infor-
mation sharing scheme may force tasks to transfer the learned
between each other, despite whether it is helpful for the tasks.

To this end, we propose dynamic multi-task CNN (DMT
CNN) model, which is more suitable for multi-task prob-
lems. The model is presented in Figure 1. In the enhanced
multi-task CNN model, each task holds a subnet. Informa-
tion sharing within a task group is through task transfer con-
nections (TTC) in corresponding layers. With the dynamic
adjustment of TTC, the model is able to make better use of
relations among tasks. Single task CNN model only copes
with one task; traditional multi-task CNN models focus on
whether the information among tasks are shared. Compared
with them, our model handles the comprehensive informa-
tion more elasticly. In training progress of our model, tasks
form into weak groups spontaneously. The information shar-
ing among tasks is no longer measure as binary form, but with
the degree of relevance. Tasks make use of the information
from other tasks in a moderate way. When the information
from other tasks is ignored, each subnet can work completely
independently as single task CNN models; for any task, if the
information from others is equally adopted, the model will be
equivalent to the traditional multi-task CNN model.

Current multi-task CNN models usually consider only a
small number of tasks. In that situation, it is possible to
design the model structure manually for better performance.
However, when task amount is huge, the task relations will
be intricacy. Therefore it is hard to build a model adaptive
for all the tasks. Our model consists of simple subnets, and
automatically establishes TTC among them to construct a fa-
vorable multi-task structure. This structure is adaptable to

different amount of tasks. In the model, all task branches are
parallel. Every task branch maintains its completeness and
independence. Besides unlimited task amount, the structure
is capable of adding new task dynamically in an incremental
way. The experimental results show that our model has bet-
ter performance with different amount of tasks. And with the
help of transfer connections, the task-wise incremental train-
ing strategy is more efficient than training from scratch.

2 Motivation
In multi-task learning, diverse task groups lead to different
results. Multi-task model performs well when related tasks
are learned jointly. However, it is an open question that what
related tasks are. There is no adequate definition of task re-
latedness or the guidance of selecting related tasks. In pre-
liminary experiments, we find that the multi-task CNN model
performs better, when tasks are grouped according to CNN
response maps for binary classification problem.

To verify the effect of feature response grouping method,
we take the experiment on celebA [Liu et al., 2015]. CelebA
is a data set with massive face attribute recognition tasks. We
compare the mean feature maps of positive samples and nega-
tive samples of various face attributes. A response region with
high contrast between positive and negative indicates that the
region maintains key signals for recognition since the positive
and negative samples have different response there. We form
the tasks that have similar key response regions into a group.
The response contrast maps of several attributes are shown as
examples in Figure 2.

(b) HeavyMakeup(a) Goatee (c) Smiling

Figure 2: Examples of response contrast map.

In order to measure the correlation of two attributes, we
compute the L1 distance between the corresponding response
contrast maps. Attributes with shorter distance mean they
have more overlapped interest spots, which are more likely
to benefit from learning jointly. We select multiple attributes
which have the shortest distances with each other within a
group. Then they are trained in multi-task CNN model. Such
as Sideburns, Goatee, and NoBeard. The performances of
different task combinations are shown in Table 1. Multi-task
models (MT CNN) show more superior results than single
task models (ST CNN). [Liu et al., 2015] proposes a face
attribute grouping method by co-occurrence. We select the
attributes with high frequency of co-occurrence. The perfor-
mance is shown in Table 2. The results show that task group-
ing is important for multi-task model and the response map
grouping method is able to find out related attributes that are
more likely to benefit from multi-task learning.
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Attributes ST CNN MT CNN

Sideburns 91.8% 92.5%
Goatee 91.7% 92.6%
NoBeard 92.0% 92.0%

H.Makeup 89.1% 89.4%
Wear.Lipstick 92.5% 92.6%

Smiling 91.8% 91.9%
H.Cheekbones 86.0% 86.2%

Table 1: Performance of multi-task cnn grouped by response maps.

Attributes ST CNN MT CNN

NoBeard 92.0% 91.6%

Smiling 91.8% 91.9%

NoBeard 92.0% 92.2%
Wear.Lipstick 92.5% 92.4%

NoBeard 92.0% 91.4%

Young 81.1% 81.7%

Table 2: Performance of multi-task CNN grouped by co-occurrence
frequency.

3 Dynamic Multi-Task CNN Model
As shown in Section 2, multi-task performs well when tasks
are well grouped. However, task grouping is not provided in
advance in most real applications. The feature-based group-
ing method can only measure the correlation of two tasks. It
is a more challenging probem when multiple tasks need to
be grouped. A more general method is required. Moreover,
for multi-task learning, more attention is paid to whether fea-
tures are learned jointly, instead of measuring the degree of
task sharing. Supervised learning aims to capture and rep-
resent the relevant information in the input variable with re-
spect to the output. The presentation ability of a model is
finite [Tishby and Zaslavsky, 2015]. So the model may be
stretched thin when the jointly learned tasks are quite distinc-
tive. Hence, the degree of information sharing among tasks
should be flexible, especially when the relations of grouped
tasks are not entirely clear.

To overcome the obstacles of multi-task learning problems,
we propose the dynamic multi-task CNN model. Compared
with conventional CNN model, the major change is the dy-
namic connections amount subnets of different tasks. Super-
visory signals from the higher layers are shared in the lower
layers within tasks group. Task transfer connections (TTC),
which control the impact of a supervisory signal at a certain
lower layer, are dynamically learned by Gradient Descent al-
gorithm. Via this method, tasks are automatically arranged in
weak groups during training, which means relations among
tasks are no longer measured in binary case as related or not

related, but as the degree of relevance. When the TTC factors
αij(i, j ∈ taskset) are the same, the proposed model be-
comes conventional multi-task CNN model; when the TTCs
within a same subnet αij(i = j) are 1, and those across tasks
are 0, the model degenerates into multiple single-task learn-
ing models.

Traditional CNN model can be represented as a function
f(.) of input X and weights W :

f(X,W ). (1)
The target is minimizing the discrepancy between ground
truth Y and the output F of f(X,W ):

min(C). (2)
where:

C = −[Y ln(F ) + (1− Y )ln(1− F )]. (3)

When there are n tasks, dynamic multi-task CNN model is
represented as function of X ,W , and TTC α:

F (X1, X2, ..., Xn,W1,W2, ...,Wn, α). (4)
And the target of multi-task model is minimizing the cost of
all the tasks:

min(

n∑
i=1

(Ci)). (5)

where:

Ci = −[Yiln(Fi) + (1− Yi)ln(1− Fi)], (6)
F (Xi,W1,W2, ...,Wn, α). (7)

Considering the meaning of TTC factor, α is expected in the
range of 0 to 1. Therefore, we introduce auxiliary variable β
where:

α = sigmoid(β), β ∈ (−∞,+∞). (8)
As to the training time, the major difference of weight up-

dating between our multi-task model and conventional CNN
model is that each subnet needs to take supervisor signals
from other subnets into account besides its own. The weight
updating detail of various optimization algorithms (such as
Stochastic Gradient Descent, Adaptive Gradient, and RM-
Sprop) is different. Hence, we only show the general forms.
In conventional CNN model, weight updating can be repre-
sented as:

Wt+1 =Wt + Vt+1. (9)
In our model, to obtain weights of n tasks, W 1,W 2, ...,Wn

and all the TTC factors αij , the weight updating procedure is
carried out as algorithm 1.

In algorithm 1, W i
t+1 is the updated weights at iteration

t + 1 of task i, W i
t is weights at iteration t; αijt is the corre-

sponding TTC factor of W i
t to task j, which controls impact

of supervisory signal from task j on task i; βijt is the auxil-
iary variable; VW

ij

t+1 and V β
ij

t+1 are the update values ofW i and
βij for computing the cost of task j by a specific optimization
algorithm:

VW
ij

t+1 =
∂cj
∂W j

· ∂W
j

∂W i
, (10)
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Algorithm 1 Parameter updating

Input: Labeled data of task set T .
1: Initialize W i

0 and αij0 (i, j ∈ T ).
2: while not converged do
3: \\ Update the weights of each CNN subnet:
4: for i ∈ T do
5: W i

t+1 =W i
t +

∑n
i=1 α

ij
t V

W ij

t+1
6: end for
7: \\Update the TTC factors:
8: for i ∈ T do
9: for j ∈ T do

10: βijt+1 = βijt + V β
ij

t+1

11: αijt+1 = sigmoid(βijt+1)
12: end for
13: end for
14: end while

V β
ij

t+1 =
∂cj
∂αij

· ∂α
ij

∂βij
. (11)

Notably, to keep the dominant position of the information
from a subnet itself, the supervisory signals from other sub-
nets will be weaker. Therefore, αijt is set to 1 when i = j. To
relieve the range fluctuation of feature values, batch normal-
ization is applied.

Because our model maintains completeness for each task
branch, it is able to add new tasks by incremental approach,
which is superior to the traditional training strategy. In train-
ing progress, the subnets of the new tasks establish connec-
tions with the trained tasks and meanwhile learn the parame-
ters of their own; the already learned tasks keep the parame-
ters of corresponding subnets fixed. Figure 3 illustrates the
situation where two tasks are trained and one new task is
merged into the model.

 

..
.

..
.

Trained Tasks

..
.

New Task

Figure 3: Incremental task transfer learning, in the case of two
trained tasks and one new task.

4 Experiments and Analysis
As a typical computer vision problem, face attributes recog-
nition is very challenging. One face image usually contains

Attribute Bald Wear.Hat Mustache Goatee

Minority Proportion 0.02 0.05 0.04 0.06

Trained
On
Original
Unbalanced
Dataset

ST 56.4% 82.2% 58.6% 73.3%

MT
79.4% 89.1% 60.3% 78.7%

Learned jointly Learned jointly

DMT
80.1% 91.2% 62.0% 79.3%

Learned jointly Learned jointly

Trained
After
Resampling
Minority
Samples

ST 95.5% 95.3% 90.9% 93.7%

MT
96.2% 95.5% 91.2% 94.1%

Learned jointly Learned jointly

DMT
96.2% 96.0% 91.9% 94.1%

Learned jointly Learned jointly

Table 3: Performance of different models on two tasks.

many face attributes, and among the massive tasks there are
complex relations. Therefore, our experiments are mainly
conducted on face attributes dataset. CelebA is one of the
largest face attribute dataset, which contains two hundred
thousand images. Each image has 40 attributes labeled with
binary classes: positive or negative, meaning with or without
the corresponding attribute. The sample distributions across
the attributes are highly imbalanced.

The training set has significant impact on the performance.
Thus, to avoid the influence of extraneous variables, all the
experiments only take use of the original training set with-
out data augmentation or pre-training. Before experiments,
we preprocess all the images to face aligned and histogram
equalized grayscale images.

4.1 Multi-task Performance on Two Tasks
To test the performance of our model, we take experiments
on celebA and choose four attributes with the most imbal-
anced sample distributions. The tasks are arranged into two
groups. Single task CNN model (ST CNN), traditional multi-
task CNN model (MT CNN) and dynamic multi-task CNN
(DMT CNN) is compared under the same conditions. Each
task uses the same model structure, which has five convolu-
tional layers and two fully connected layers. The parameters
of 5 convolutional layers are (40, 5x5) (kernel amount, height
x width), (60, 5x5), (80, 3x3), (100, 3x3), (140, 2x2). The
first fully connected layer has 360 neurons and the second one
is the output layer. Between each two convolutional layers,
there are non-overlapped max-pooling layers. The activation
function is ReLU.

Sample imbalance might hinder the model performance
[Japkowicz and Stephen, 2002]. Even worse, sample im-
balance plus multi-label tasks can make the learning harder
to perform [Boutell et al., 2004; Fang et al., 2014]. Since
each sample may be positive samples of some attributes and
negative samples of the other attributes, simply resampling to
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Attribute Goatee HeavyMakeup H.Cheekbones NoBeard Sideburns Smiling Wear.Lipstick

[Liu et al.,2015] LNets+ANet(w/o) 92.0% 85.0% 84.0% 92.0% 91.0% 88.0% 90.0%

MT 93.9% 89.7% 86.0% 91.9% 93.1% 91.8% 92.7%

DMT 94.9% 89.8% 86.5% 92.6% 93.9% 92.1% 93.2%

DMT(tasks removal) 93.1% 89.1% 85.8% 91.2% / 91.7% /

Table 4: Performance of different models with more tasks.

weaken the influence of imbalance for one attribute, may lead
to more severe imbalance problem for others. To handle the
multi-label imbalance problem, we resample the data of mi-
nor class for each task respectively, and the tasks take in turns
to train the model with its own resampled data pool. The
recognition results of four attributes with most imbalanced
sample distribution are given in Table 3. The minority pro-
portion of each attribute on the training set is also listed. The
model trained on an imbalanced set tends to identify all the
test samples to the major class, which severely decrease the
robustness and effectiveness of the model. In consideration of
sample distribution, we test the positive sample and negative
sample respectively and get the corresponding accuracy accp
and accn. The final accuracy shown in tables are the mean of
accp and accn. The first part of Table 3 is the test results on
the balanced training set. The second part of Table 3 shows
the performances of three models on the original imbalanced
training set. The results show that DMT CNN performs better
than MT CNN and ST CNN.

4.2 Tasks Capacity
The former experiments show the performances when multi-
task model with two tasks. To verify the task capacity of our
model, we take the experiment with more tasks. On CelebA,
we select seven face attributes from Table 1. The training sets
of all the tasks are resampled to make sure each batch con-
tains equal amount of negative and positive samples. We take
the single task CNN performance without pretraining from
[Liu et al., 2015] as a baseline. For multi-task CNN model,
all of these attribute recognition tasks are learned jointly. As
presented in Table 4, traditional multi-task CNN (MT CNN)
and the proposed dynamic multi-task CNN (DMT CNN) both
perform better than single task CNN. And DMT CNN is the
most superior.

Besides face dataset, we also test our model on cifar-
10. We split cifar-10 into five tasks: airplane ship, automo-
bile truck, bird frog, cat dog and deer horse. Each task con-
tains two classes of objects. And our model shows competive
performance as shown in Table 5.

4.3 Task Transfer Connection Analysis
To explore the relations among tasks, we analyse the tasks in
Table 4. Figure 4 and Figure 5 shows the influence of other
tasks on a specific task. The task grouping result is consis-
tent with the former discovery in Section 2. The tasks within
a group in Table 1 are shown to have stronger connections.
For example, the face attribute NoBear shares more informa-
tion with Sideburns and Goatee, while it has slight connection

Tasks ST MT DMT

cat dog 73.8% 73.9% 73.9%

deer horse 88.8% 89.1% 89.4%

bird frog 89.2% 89.6% 90.7%

airplane ship 89.9% 90.4% 91.2%

automobile truck 88.4% 90.0% 90.0%

Table 5: Performance of different models on cifar-10.
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Figure 4: Relative magnitudes of influence of other tasks on
NoBeard task in training progress. Take layer 6 in subnet as an ex-
ample.

with other tasks. The result is in accordence with common
sense. People with heavy makeup usually wear lipsticks, and
when to smile, the cheekbones are more obvious. Similarly,
in the test result of cifar-10, tasks about animals have closer
correlation with each other; transportations do the same.

The schema of information sharing among tasks is impor-
tant. The TTC at higher layers shows obvious connections
with related tasks. This phenomenon indicates that what the
high level layers learn is closer to semantic information. And
for multi-task learning, the high level layers may still share
some useful information among tasks. Thus, completely in-
sulating tasks in high level layers in a multi-task CNN is prob-
ablely not the optimal architecture.

To verify the effectiveness of the task transfer connec-
tion (TTC), we remove some tasks from the trained dynamic
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Figure 5: Sharing degree of other tasks on NoBeard task in different
layers. The legend is the same as Figure 4.

From

To
Goatee H.Makeup H.Cheek.NoBeard Smiling

Goatee +6% +10% +4% +7% +3%

H.Makeup +11% +15% +3% +3% +8%

H.Cheek. +3% 0% +9% +1% +1%

NoBeard -2% +7% +3% +9% +3%

Smiling +1% +2% -2% 0% -2%

Table 6: Changes of TTC weights from layer 6 to layer 7.

multi-task model. Specifically, we cut off some subnets from
the trained model while frozen the others. Then we re-train
the TTC to reconnect the incomplete model. For example, we
remove Sideburns and Wear.Lipstick from the tasks in Table
4. After reconnection, the information route changes. The
changes of TTC weight from layer 6 to layer 7 are enumer-
ated in Table 6. The former TTC weights of removed tasks
are partitioned by reserved tasks. Task removal results in the
optimal structure broken, decreasing model performance. As
shown in the last row of Table 4, all the recognition accuracy
is influenced. This phenomenon implys tasks take advantage
of properly learned TTC better than casual information shar-
ing structure.

4.4 Task-wise Incremental Transfer Learning
Most models work normal when the requirements are stable.
However, when task amount is changed especially new task
need to be added to the model, traditional multi-task CNN
need to be re-trained entirely. Due to the flexibility of our
model, the learned parameters for other tasks are able to be
utilized by the new task with the help of TTC. By task-wise
incremental transfer learning, new tasks can be added to the
already trained model, meanwhile the training time is signif-
icantly reduced. For example, we train the attribute Smiling
alone, and then the error rate in training progress is compared
with that of the incremental method. The result in Figure

0.1
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0.5

0 100 200 300 400 500 600

E
r
r
o
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te
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incremental

alone

Figure 6: Error rates in training progress. Task-wise incremental
transfer learning is more efficient.

6 shows that our model with incremental transfer learning is
more efficient. It is about 4 times faster than training a single-
task CNN model to reach the error rate of 0.1.

5 Conclusion
In this paper, a novel multi-task CNN model is proposed.
Task transfer connections (TTCs) are established during
training, which automatically partition tasks into different
weak groups. The relations among tasks are reasonably mea-
sured by learned softly relevant degrees. Experimental re-
sults demonstrate that the proposed dynamic multi-task CNN
model performs better than the traditional multi-task CNN
structure. Because the structure is flexible, our model is ca-
pable of adapting to large quantity of tasks. With the help of
TTC, it is able to conduct incremental task transfer learning,
which can further boost the training efficiency.
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