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Abstract

Minimal inconsistent subsets of knowledge bases
play an important role in classical logics, most no-
tably for repair and inconsistency measurement.
It turns out that for nonmonotonic reasoning a
stronger notion is needed. In this paper we de-
velop such a notion, called strong inconsistency.
We show that—in an arbitrary logic, monotonic
or not—minimal strongly inconsistent subsets play
the same role as minimal inconsistent subsets in
classical reasoning. In particular, we show that the
well-known classical duality between hitting sets
of minimal inconsistent subsets and maximal con-
sistent subsets generalises to arbitrary logics if the
strong notion of inconsistency is used. We inves-
tigate the complexity of various related reasoning
problems and present a generic algorithm for com-
puting minimal strongly inconsistent subsets of a
knowledge base. We also demonstrate the poten-
tial of our new notion for applications, focusing on
repair and inconsistency measurement.

1 Introduction
Various notions which are highly useful and thus have been
studied intensively in classical logic turn out to be of rather
limited value when it comes to nonmonotonic reasoning
based on formalisms like Reiter’s default logic [Reiter, 1980],
answer set programming (ASP) [Brewka et al., 2011], or ab-
stract argumentation [Dung, 1995]. An excellent example is
the notion of equivalence. In classical logic equivalence is
important as it guarantees substitutability: whenever two for-
mulas F and F ′ are equivalent, that is, possess the same mod-
els, and F is a subformula of G, then replacing F by F ′ in
G yields a formula equivalent to G. In nonmonotonic for-
malisms this is no longer the case. For instance the two logic
programs P1 = {c.} and P2 = {c ← not b.} have the same
(single) stable model {c}, but substitutability is not given.1
For example, replacing the first rule in P3 = {c← not b., b.}
with the fact “c.” changes the semantics of P3. This ob-
servation has led to a body of literature on so-called strong
equivalence, a more adequate notion of equivalence for non-

1A brief introduction to logic programs is provided in Section 2.

monotonic reasoning (see for instance [Lifschitz et al., 2001;
Eiter et al., 2005; Oikarinen and Woltran, 2011]).

In this paper we study another notion, namely the notion
of minimal inconsistent subsets. Again, this notion is highly
interesting for classical, or more generally monotonic logics,
at least for the following reasons:

• Diagnosis and repair of knowledge bases: consistency
of an inconsistent knowledge base K can be restored by
computing a minimal hitting set of the minimal incon-
sistent subsets of K and eliminating the elements of the
hitting set. The result will be a maximal consistent sub-
set of K [Reiter, 1987].

• Inconsistency measures: various prominent numerical
measures of the degree of inconsistency of a knowledge
base exist in the literature which depend on (the num-
ber of) minimal inconsistent subsets, see for instance
[Hunter and Konieczny, 2008].

Minimal inconsistent subsets cannot play the same role for
nonmonotonic formalisms. Consider the logic program P4 =
{a ← not a, not b., b.}. The program is consistent and has
the stable model {b}. However, it has an inconsistent sub-
set, namely {a ← not a, not b.} which is also a minimal
inconsistent subset. Yet, since P4 is consistent there is no in-
consistency to be resolved. Note also that one of the standard
assumptions in the literature on inconsistency measurement
is that the inconsistency value of a knowledge base K should
be 0 iff K is consistent. The example thus also shows that the
notion of minimal inconsistent subsets is of no use in defining
inconsistency measures for nonmonotonic formalisms.

The goal of this paper is to develop a stronger notion of
inconsistency. We will introduce so-called strongly inconsis-
tent subsets, which generalise the classical notion adequately
to the nonmonotonic case, and study the minimal ones among
these sets. In particular, we show that our objects of study can
indeed play the same role for nonmonotonic reasoning as reg-
ular minimal inconsistent subsets for monotonic reasoning.

The paper is organised as follows: since our main results
are independent of the actual logic used, we first present in
Section 2 an abstract notion of logics which is based on a
similar account in the area of multi-context systems [Brewka
and Eiter, 2007]. Section 3 then introduces strong inconsis-
tency, proves a generalised duality result between strongly in-
consistent and maximal consistent sets, and investigates fur-
ther properties of our new notion. Computational aspects of
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strong inconsistency, including a complexity analysis and a
generic algorithm for computing strongly inconsistent sub-
sets, are studied in Section 4. Section 5 discusses applica-
tions of our new notion in diagnosis and inconsistency mea-
surement. Section 6 concludes.

Proofs of technical results can be found in an extended ver-
sion of this paper2.

2 Preliminaries
We first describe what we mean by a—potentially
nonmonotonic—logic in an abstract manner, following the
characterisation of logics in [Brewka and Eiter, 2007]. Here a
logic is specified by a set KB of knowledge bases, a set BS of
belief sets, and an acceptability function ACC : KB → 2BS.
The analysis in this paper assumes that knowledge bases are
sets of formulas. Moreover, the distinction between consis-
tent and inconsistent belief sets is crucial. For this reason we
extend Brewka and Eiter’s characterisation as follows:

Definition 2.1. A logic L is a tuple L =
(WF,BS, INC,ACC) where WF is a set of well-formed
formulas, BS is a set of belief sets, INC ⊆ BS is an upward
closed3 set of inconsistent belief sets, and ACC : 2WF → 2BS

assigns a collection of belief sets to each subset of WF. A
knowledge baseK of L is a finite subset of WF. A knowledge
base K is called inconsistent iff ACC(K) ⊆ INC.

Note that a knowledge base K can be inconsistent because
it has no belief sets, and consistent even if some (but not all)
of its belief sets are in INC. We illustrate the generality of
the above definition by giving instantiations for propositional
logic, answer set programming [Brewka et al., 2011], and
abstract argumentation frameworks [Dung, 1995].

Example 2.2. Let A be a set of propositional atoms.
A propositional logic LP can be defined as LP =
(WFP,BSP, INCP,ACCP) where WFP are the well-formed
formulas over A, BSP are the deductively closed sets of for-
mulas, INCP has WFP as its single element, and ACCP as-
signs to eachK ⊆WFP the set containing its set of theorems.

Example 2.3. Let A be a set of propositional atoms. Ex-
tended logic programs under answer set semantics over A is
the logic LASP = (WFASP,BSASP, INCASP,ACCASP) where
WFASP is the set of all rules over A, BSASP consists of the
sets of literals over A, INCASP are the belief sets containing a
complementary pair of literals, and ACCASP assigns to a logic
program P ⊆WFASP the set of all answer sets of P .

Example 2.4. Abstract argumentation frameworks under
e. g. stable semantics [Dung, 1995] can be modelled as a logic
LAAF = (WFAAF,BSAAF, INCAAF,ACCAAF) in the follow-
ing way: given some set of abstract arguments Arg, the ele-
ments of WFAAF are either elements of Arg, or pairs of such
elements, called attacks, i. e., WFAAF = Arg∪ (Arg×Arg).
The former are needed to represent arguments which do not
participate in any attack. Belief sets are arbitrary sets of argu-
ments, INCAAF is empty, and ACCAAF assigns to each knowl-
edge base AF ⊆ WFAAF the stable extensions of the argu-
mentation framework.

2http://mthimm.de/misc/btu_ijcai17_ext.pdf
3S upward closed means B ∈ S and B ⊆ B′ implies B′ ∈ S.

As the above examples show, the abstract notion is general
enough to model monotonic and nonmonotonic logics.
Definition 2.5. A logic L = (WF,BS, INC,ACC) is weakly
monotonic whenever K ⊆ K′ ⊆WF implies

1. if B′ ∈ ACC(K′) then B ⊆ B′ for some B ∈ ACC(K).
L is monotonic if K ⊆ K′ ⊆WF in addition implies

2. if B ∈ ACC(K) then B ⊆ B′ for some B′ ∈ ACC(K′),
Note that this definition generalises [Brewka and Eiter,

2007] where in addition ACC is required to be unique for
monotonic logics. The two conditions are needed to guar-
antee that both skeptical and credulous inference based on
intersection, respectively union of belief sets are monotonic.

It is easy to see that—as expected—propositional logic is
monotonic whereas logic programs under the answer set se-
mantics and abstract argumentation frameworks are not.
Lemma 2.6. Let L = (WF,BS, INC,ACC) be weakly
monotonic and K ⊆ K′. If K is inconsistent then so is K′.

We will call a knowledge base (weakly) monotonic when-
ever its associated logic is. Also, whenever there is no risk of
confusion we will leave the actual logic implicit.

Throughout the paper we use examples based on logic pro-
grams with two kinds of negation, classical negation ¬ and
default negation not, under answer set semantics. Such pro-
grams consist of rules of the form

l0 ← l1, . . . , lm, not lm+1, . . . , not ln. (1)

where the li are classical literals. For programs without de-
fault negation (m = n) the unique answer set is the smallest
set of literals closed under all rules, where a set is closed un-
der a rule of form (1) iff the head literal l0 is in the set when-
ever the body literals l1, . . . , lm are. For a program P with
default negation, a set M of literals is an answer set iff M is
the answer set of the reduced program PM obtained from P
by (i) deleting rules with not lj in the body for some lj ∈M ,
and (ii) deleting default negated literals from the remaining
rules. P is inconsistent iff all of its answer sets contain a
complementary pair of literals. This includes the case where
P has no answer sets at all. Readers are referred to [Brewka
et al., 2011] for more details.

3 Strong Inconsistency
Let L = (WF,BS, INC,ACC) be a logic and K ⊆ WF a
knowledge base of L. We will leave L implicit in the rest
of this section. We use I (K) to denote the collection of all
inconsistent subsets of K. A set H ∈ I (K) is called minimal
inconsistent if H ′ ( H implies H ′ is consistent. Imin(K) is
the set of all minimal inconsistent subsets of K.

A consistent subset H ofK is called maximalK-consistent
if H ( H ′ ⊆ K implies H ′ is inconsistent. We let C (K)
and Cmax (K) denote the set of all consistent and maximal
K-consistent subsets of K, respectively.

In weakly monotonic logics, whenever a knowledge baseK
is inconsistent, then so isK′ for any knowledge baseK ⊆ K′.
This follows directly from weak monotonicity and upward-
closedness of the inconsistent belief sets. In nonmonotonic
logics this property does not hold in general as additional in-
formation may resolve inconsistency.
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Another property of monotonic logics is a specific duality
between minimal inconsistent and maximal consistent sets.
For that we need the following notion:

Definition 3.1. LetM be a set of sets. We call H a hitting
set ofM ifH∩M 6= ∅ for each M ∈M. A hitting setH of
M is a minimal hitting set ofM ifH′ ( H impliesH′ is not
a hitting set ofM.

In the monotonic case, we have the following duality result
(see [Reiter, 1987] for a proof of the first-order case in the
setting of diagnosis).

Theorem 3.2 (MinHS duality). LetK be a weakly monotonic
knowledge base. Then,H is a minimal hitting set of Imin(K)
if and only if K \ H ∈ Cmax (K).

For nonmonotonic logics, this is not true anymore because
a consistent knowledge base may contain inconsistent sub-
sets. In order to generalise Theorem 3.2 to the nonmonotonic
case, we need a different, stronger notion of inconsistency.
Here is the definition of the central notion of this paper:

Definition 3.3. For H,K ⊆ WF with H ⊆ K, H is called
strongly K-inconsistent if H ⊆ H ′ ⊆ K implies H ′ is in-
consistent. The set H is called strongly inconsistent if it is
strongly WF-inconsistent.

In other words, a subset of a knowledge base K is strongly
K-inconsistent if all its supersets within the knowledge base
K are inconsistent as well. Note that this is a generalisation
of standard inconsistency: both notions coincide in the mono-
tonic case (cf. Proposition 3.5 below).

Definition 3.4. For H,K ⊆ WF with H ⊆ K, H is minimal
strongly K-inconsistent if H is strongly K-inconsistent and
H ′ ( H implies that H ′ is not strongly K-inconsistent.

Let SI (K) denote the set of all strongly K-inconsistent
subsets of K and let SImin(K) denote the set of all minimal
strongly K-inconsistent subsets of K. The following results
are immediate, respectively easy to show:

Proposition 3.5. Let K be a knowledge base.

1. If K is weakly monotonic, then I (K) = SI (K).

2. If K is weakly monotonic, then Imin(K) = SImin(K).

3. K is inconsistent iff SI (K) 6= ∅ iff K ∈ SI (K).

4. If H is strongly K-inconsistent and H ⊆ K′ ⊆ K, then
H is strongly K′-inconsistent.

We are now in a position to present one of our main results.

Theorem 3.6 (Generalised MinHS duality). Let K be a
knowledge base. Then, H is a minimal hitting set of
SImin(K) if and only if K \ H ∈ Cmax (K).

Example 3.7. Consider again the logic program P4 = {a←
not a, not b., b.} from before. The single (and thus also
minimal) inconsistent subset is H = {a ← not a, not b.}.
Since it contains one rule only, it coincides with the minimal
hitting set. P4 \ H is consistent, but not maximal consistent
as P4 itself is consistent. Using strong inconsistency leads to
the intended result: H is inconsistent, but not strongly P4-
inconsistent. In fact, SImin(P4) is empty, and so is the min-
imal hitting set. The single maximal consistent subset is P4,
as stated in Theorem 3.6.

Theorem 3.6 suggests that strong inconsistency is indeed
an adequate notion that allows us to generalise results from
monotonic logics to arbitrary ones. Even though fixing one
part of K by removing a formula could potentially render an-
other part of K inconsistent, we can restore consistency as in
the monotonic case, using the notion of strong inconsistency.

In the literature on classical inconsistency handling the
notion of free formulas plays a special role [Hunter and
Konieczny, 2008] since such a formula has no influence what-
soever regarding consistency. We will next investigate a sim-
ilar notion for our general setting.
Definition 3.8. Let K be a monotonic knowledge base. A
formula α ∈ K is called free if

α ∈ K \
⋃

H∈Imin (K)

H =
⋂

H∈Cmax (K)

H. (2)

Due to Theorem 3.6, an equality similar to the one in (2)
also holds in nonmonotonic logics.
Corollary 3.9. Let K be a knowledge base. Then

K \
⋃

H∈SImin (K)

H =
⋂

H∈Cmax (K)

H.

Consider a monotonic knowledge base K. Since a free
formula α ∈ K is contained in any maximal consistent set
H ⊆ K, we see that for a free formula α the following impli-
cation holds.

∀H ⊆ K : H ∈ C (K)⇒ H ∪ {α} ∈ C (K) (3)
However, in a nonmonotonic framework, (3) does not neces-
sarily mean that α is irrelevant regarding consistency of K.
For example, K could be consistent while K \ {α} is not.
Hence, in order to obtain a similar notion of free formulas we
need to strengthen (3).
Definition 3.10. Let K be a knowledge base. A formula α ∈
K is called neutral if it satisfies

∀H ⊆ K : H ∈ C (K)⇔ H ∪ {α} ∈ C (K). (4)
A formula α ∈ K is called consistency restoring if it satisfies
(3), but not (4). The neutral and the consistency restoring
formulas in K are denoted Ntr(K) and Res(K), respectively.
Proposition 3.11. If K is weakly monotonic, then (3) and (4)
coincide and hence, Ntr(K) = Free(K) and Res(K) = ∅.
Proposition 3.12. Let K be a knowledge base. Then

Ntr(K) ∪ Res(K) ⊆
⋂

H∈Cmax (K)

H.

In the Introduction we mentioned equivalence as another
notion that has been strengthened for nonmonotonic logics.
We conclude this section with a connection between strong
equivalence and strong inconsistency. Strong equivalence,
mainly studied in logic programming and argumentation, can
be generalised to arbitrary logics in the following way: let
L = (WF,BS, INC,ACC) be a logic. The knowledge
bases K and K′ are strongly equivalent iff ACC(K ∪ H) =
ACC(K′ ∪H) for each H ⊆WF. We obtain the following:
Proposition 3.13. Let K, K′ and H be knowledge bases. If
K and K′ are strongly equivalent, then K is strongly K ∪H-
inconsistent iff K′ is strongly K′ ∪H-inconsistent.

The result does not hold if equivalence is used rather than
strong equivalence.
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4 Computational Complexity
Theorem 3.6 suggests that strong K-inconsistency (Defini-
tion 3.3) naturally generalizes inconsistency to nonmonotonic
frameworks. However, this notion requires consideration of
all supersets of a given set, which is apparently more involved
than considering inconsistency in monotonic logics. So, we
are interested in the computational complexity of deciding
(minimal) strongK-inconsistency and in particular the differ-
ence between monotonic and nonmonotonic logics.

We assume the reader to be familiar with the classes Σp
m

and Πp
m, m ≥ 0, of the polynomial hierarchy. We also make

use of the classes Dp
m, which are the classes of languages that

are intersections of a language in Σp
m and a language in Πp

m
[Papadimitriou, 1994].

In order to assess the computational complexity of deciding
(minimal) strong inconsistency, we compare it to the classi-
cal setting: in [Papadimitriou and Wolfe, 1988], it has been
shown that Minimal Unsatisfiability (MU) is Dp

1-complete.
MU is the following problem: “Given a propositional for-
mula φ in CNF, is it true that it is unsatisfiable, but removing
an arbitrary clause renders it satisfiable?” Our first observa-
tion in this section is a generalisation of this result to higher
levels of the polynomial hierarchy.

A quantified Boolean formula (QBF) Φ is a formula

Φ = Q1X1 . . . QmXm φ

with quantifiers Q1, . . . , Qm ∈ {∀, ∃}, pair-wise disjoint sets
of variables X1, . . . , Xm, and a propositional formula φ over
the variablesX1∪. . .∪Xm. A QBF Φ is true if φ evaluates to
true with respect to the quantifiers, e. g., ∀x1∃x2(x1∨¬x2) is
true as for every truth value of x1 one can find a truth value of
x2 such that x1∨¬x2 evaluates to true. A QBF Φ is in prenex
normal form if the quantifiers Q1, . . . , Qm alternate between
∀ and ∃. The problem of deciding whether a QBF Φ with
m alternating quantifiers starting with ∃ (resp. starting with
∀) is true is the canonical Σp

m-complete (resp. Πp
m-complete)

problem [Papadimitriou, 1994].
Let now QBF-MU(Q1, ..., Qm) be the following problem:

Given a QBF Φ = Q1X1 . . . QmXm φ in prenex
normal form with φ = C1 ∧ . . . ∧Cr and formulas
C1, . . . , Cr, is it true that Φ is false, but removing
any conjunct Ck from φ renders Φ true?

For this problem, we obtain a similar result as [Papadimitriou
and Wolfe, 1988], which, to our knowledge, has not been
stated explicitly before.

Theorem 4.1. Ifm ≥ 2, then QBF-MU(Q1, ..., Qm) is Dp
m-

complete.

Combining Theorem 4.1 and the result in [Papadimitriou
and Wolfe, 1988] (i. e., the case where m = 1 and Q1 = ∃),
one can observe that the case where Φ is of the form Φ =
∀Xφ is missing. Indeed, it turns out to be easier.

Proposition 4.2. QBF-MU(∀) is NP-complete.

Remark 4.3. We can cast the logic of quantified
Boolean formulas into our general logical framework as
well. Given quantifiers Q1, . . . , Qm and sets of vari-
ables X1, . . . , Xm, we define a corresponding logic L =
L(Q1, . . . , Qm, X1, . . . , Xm) = (WF,BS, INC,ACC) as

follows: WF = WF(X1 ∪ . . . ∪ Xm) is the set of all well-
formed Boolean formulas over the atoms in X1 ∪ . . . ∪Xm,
BS = {⊥,>}, INC = {⊥} and for a knowledge base
K = {C1, . . . , Cr} we let φ(K) = C1 ∧ . . . ∧ Cr and de-
fine ACC = ACC(Q1, . . . , Qm) via

ACC(K) =

{
{>}, if Q1X1 . . . QmXm φ(K),

{⊥}, otherwise.

Now, deciding whether Φ is a “yes” instance of
QBF-MU(Q1, ..., Qm) corresponds to checking whether K
is minimal (strongly) inconsistent.

We now turn to the general discussion on the compu-
tational complexity of problems related to strong inconsis-
tency. For that, we assume an arbitrary but fixed logic L =
(WF,BS, INC,ACC) for the remainder of this section. To
be able to assess how difficult it is to check whether a subset
H ⊆ K of a knowledge base K is (minimal) strongly K-
inconsistent, we consider checking satisfiability of K as the
basis of our investigation. More precisely, we consider the
following decision problems:
SATK Input: K ⊆WF

Output: TRUE iff K is consistent

S-INCK(H) Input: K ⊆WF, H ⊆ K
Output: TRUE iff H ∈ SI (K)

MIN-S-INCK(H) Input: K ⊆WF, H ⊆ K
Output: TRUE iff H ∈ SImin(K)

In other words, SATK is the generalisation of the satis-
fiability problem in our general logic L, S-INCK(H) is
about deciding whether H is strongly K-inconsistent, and
MIN-S-INCK(H) is about deciding whether H is a minimal
strongly K-inconsistent set. If L is monotonic and SATK ∈ C
for some class C, then S-INCK(H) is in co-C. However, in
a nonmonotonic framework, checking whether a given sub-
set H ⊆ K is strongly K-inconsistent involves considering
all sets H ′ with H ⊆ H ′ ⊆ K and corresponding consis-
tency checks. This may increase computational complexity
in some cases, but, interestingly, not always as the following
result shows.
Theorem 4.4. Let K be a knowledge base. Let m ≥ 1. If the
decision problem SATK is in
(a) Σp

m, then S-INCK(H) is in Πp
m,

(b) Πp
m, then S-INCK(H) is in Πp

m+1,

(c) Πp
m and K is weakly monotonic, then S-INCK(H) is in

Σp
m.

Theorem 4.1 already showed how difficult
MIN-S-INCK(H) is compared to the decision problem
SATK in the generic framework of QBFs (cf. Remark 4.3).
As stated in Theorem 4.4, checking strong inconsistency is
in general more difficult in nonmonotonic frameworks and
we obtain a similar result in the case of MIN-S-INCK(H).
However, the increase of the computational complexity
stems from checking the “strong“ part in “strong minimal
inconsistency” rather than the “minimal” part. For that
reason and as the following result shows, moving from the
problem S-INCK(H) to the problem MIN-S-INCK(H)—
i. e., additionally asking for minimality—does not involve
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going up an additional level in the polynomial hierarchy but
only moving to the corresponding Dp

m class.

Theorem 4.5. Let K be a knowledge base. Let m ≥ 1. If the
decision problem SATK is in

(a) Σp
m, then MIN-S-INCK(H) is in Dp

m,

(b) Πp
m, then MIN-S-INCK(H) is in Dp

m+1,

(c) Πp
m andK is weakly monotonic, then MIN-S-INCK(H)

is in Dp
m.

In Theorems 4.4 and 4.5 only membership statements are
given. Thus, they leave open whether S-INCK(H) and
MIN-S-INCK(H) can be strictly less difficult than Πp

m+1

and Dp
m+1, respectively, if K is nonmonotonic and SATK in

Πp
m. However, we obtain completeness for a specific (artifi-

cial) nonmonotonic logic, showing that the bounds from both
cases (b) from Theorems 4.4 and 4.5 are tight in general.

Theorem 4.6. There is a logic L = (WF,BS, INC,ACC)
such that SATK is in coNP = Πp

1 and

(a) S-INCK(H) is Πp
2-complete and

(b) MIN-S-INCK(H) is Dp
2-complete.

We give two more hardness results for case (a) of Theo-
rem 4.5 for the framework of logic programming. Be re-
minded that deciding whether a given logic program P is con-
sistent is NP-complete [Eiter and Gottlob, 1995].

Theorem 4.7. The problem MIN-S-INCP (H) is Dp
1-

complete for logic programs.

As a second example, we consider disjunctive logic pro-
grams, i. e., logic programs with rules such as (1) but that
may have disjunctions in the head rather than a single literal.
Due to [Eiter and Gottlob, 1995], deciding whether a given
disjunctive program is consistent is Σp

2-complete.

Theorem 4.8. The problem MIN-S-INCP (H) is Dp
2-

complete for disjunctive logic programs.

To conclude this discussion on computational complexity, we
present a generic algorithm for computing SI (K). Algo-
rithm 1 computes stronglyK-inconsistent subsets in the order
of decreasing cardinality, starting with K. It is based on the
observation that a proper subset S of K can only be strongly
K-inconsistent if all subsets of K which contain one addi-
tional element are also strongly K-inconsistent (this prop-
erty is checked during the computation of New). This ad-
ditional check presumably reduces the search space in many
cases, but a detailed evaluation of this algorithm is left for
future work. The algorithm is somewhat reminiscent of the
Apriori algorithm for computing frequent sets in data mining
[Agrawal and Srikant, 1994], but rather than working bot-
tom up from smaller to bigger sets, it works in the opposite
direction. The algorithm can easily be turned into one for
SImin(K) by deleting non-minimal elements whenever New
is added to H ′.

Proposition 4.9. Algorithm 1 is sound, complete, and has
runtime O(2n ∗ n ∗ f(n)) where f(n) is the runtime of an
algorithm for checking consistency in the given logic.

We expect that for specific logics one can do better. For
instance, for logic programs without classical negation it is

Input: a knowledge base K
Result: SI (K)
n := |K|; H := ∅; H ′ := ∅;
if K inconsistent then H ′ := {K};
while H 6= H ′ do

n := n− 1; H := H ′; New := ∅ ;
for each S ∈ H with |S| = n+ 1 do

for each S′ ⊆ S with |S′| = n do
if S′ inconsistent and
S′ ∪ {φ} ∈ H for each φ ∈ K \ S′

then New := New ∪ {S′};
end

end
H ′ := H ′ ∪New;

end
return H .

Algorithm 1: A generic algorithm for computing SI (K)

well-known that inconsistency can only arise if there are cer-
tain negative loops in the dependency graph. The analysis of
such loops may lead to more direct algorithms. This topic is
currently under investigation.

5 Applications
We will now discuss some of the potential applications of
strong inconsistency in nonmonotonic reasoning, namely
knowledge base repair and inconsistency measurement.

5.1 Diagnosis and Repair
Theorem 3.6 already shows how consistency of a knowledge
base K can be restored by deleting a minimal subset of for-
mulas. As in the classical case, the key is to compute certain
inconsistent subsets of the knowledge base. The hitting sets
of these subsets then are the candidates for deletion. Unlike
in monotonic logics, in the general case one has to compute
hitting sets of minimal strongly inconsistent subsets. Our the-
orem shows that this guarantees minimality of the modifica-
tion performed on K.
Example 5.1. Consider the following logic program P5:

P5 : a← not b. b← not c. a← not d. e.

c← not a. d. ¬e.
Minimal inconsistent subsets of P5 are H1 = {a ←
not b., b← not c., c← not a.} andH2 = {e.,¬e.}. Whereas
H2 is also minimal strongly P5-inconsistent, H1 is not as
adding “a ← not d.” resolves inconsistency. The second
minimal strongly P5-inconsistent subset is H3 = H1 ∪ {d}.
Minimal hitting sets consist of one element of H3 and one of
H2. The program can be repaired by deleting the rules in any
of the hitting sets.

It is worth mentioning that in the nonmonotonic case, this
is not the only way of repairing a knowledge base, as adding
formulas may also lead to consistency. However, deletion-
based repair is also important for nonmonotonic knowledge
bases for various reasons. First of all, in many cases it is far
from clear how to select and justify the added formulas. Sec-
ondly, there are situations where modelling errors are more
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probable than modelling gaps, and where identifying such er-
rors simply is the better option. And finally, there are cases
where there is simply no choice as some inconsistencies can-
not be repaired by additions alone.

The results of this paper are not only relevant for knowl-
edge base repair, but also for model-based diagnosis of tech-
nical systems along the lines of [Reiter, 1987; de Kleer et al.,
1992]. In this approach a system description SD is given in
terms of first-order logic. SD describes the correct behaviour
of a set of components Comp and uses ab predicates for this
purpose. The idea is then to identify minimal sets of compo-
nents C such that SD ∪ Obs ∪ {ab(c) | c ∈ C} is incon-
sistent. The results of this paper allow us to capture system
descriptions expressed in more general logics. All we have to
do is replace the inconsistency check with a strong inconsis-
tency check. A more detailed analysis of this generalisation
of model-based diagnosis is beyond the scope of this paper
and will be discussed elsewhere.

5.2 Measuring Inconsistency
An inconsistency measure Inc is a function that maps knowl-
edge bases to non-negative real numbers. The intuition be-
hind such functions is that larger values indicate severe in-
consistencies in the knowledge base and the value 0 indi-
cates minimal inconsistency, i. e., consistency. Different ap-
proaches to measuring inconsistency have been proposed in
the literature, mostly for classical propositional logic, see
[Thimm, 2017] for a recent survey. In this context, a sim-
ple but popular approach to measure inconsistency is to
take the number of minimal inconsistent subsets [Hunter and
Konieczny, 2008], i. e., to define IncMI(K) = |Imin(K)|
for a classical knowledge base K. This measure already
complies with some basic ideas of inconsistency measure-
ment, in particular IncMI(K) = 0 iff K is consistent. By
also taking the size and the relationships of minimal incon-
sistent subsets into account, a wide variety of different in-
consistency measures can be defined on top of that idea,
see e. g. [Hunter and Konieczny, 2008; Jabbour et al., 2016;
Jabbour and Sais, 2016].

Measuring inconsistency in nonmonotonic logics has only
recently gained some attention [Ulbricht et al., 2016] and
a thorough study is still needed. In this setting, a measure
such as IncMI is not applicable as a consistent nonmonotonic
knowledge baseK may contain minimal inconsistent subsets,
recall the logic program P4 = {a ← not a, not b., b.} from
the introduction. However, using our notion of strong incon-
sistency the wide spectrum of measures based on minimal
inconsistent subsets can be lifted to the general case. Here,
we only consider the measure IncMI.
Definition 5.2. Define IncMSI via IncMSI(K) = |SImin(K)|
for every knowledge base K.

If K is monotonic then IncMSI(K) = IncMI(K) due to
Proposition 3.5, item 2. So the measure IncMSI faithfully
generalises IncMI to all kinds of logics.
Example 5.3. For the logic program P4 = {a ←
not a, not b., b.} we obtain IncMSI(P4) = 0, despite the fact
that P4 contains a (classical) minimal inconsistent subset. For
P5 = {a.,¬a., b← not b.} we have IncMSI(P5) = 2.

The field of inconsistency measurement is driven by ratio-
nality postulates, i. e., the development of general properties

that should hold for an inconsistency measure, cf. [Thimm,
2017]. Many of them specify desirable behaviour in terms of
minimal inconsistent subsets and can thus easily be lifted to
the general case. The following result shows the compliance
of our generalised measure with some important properties.
Theorem 5.4. Let K be a (monotonic or nonmonotonic)
knowledge base.
Consistency IncMSI(K) = 0 if and only if K is consistent.
Independence If α ∈ Ntr(K) then IncMSI(K) =

IncMSI(K \ {α}).
Separability If SImin(K1 ∪K2) = SImin(K1)∪SImin(K2)

and SImin(K1) ∩ SImin(K2) = ∅ then IncMSI(K1 ∪
K2) = IncMSI(K1) + IncMSI(K2).

The measure IncMSI violates one important property
though, which is usually demanded for classical measures:
the monotonicity postulate. This postulate requires Inc(K) ≤
Inc(K′) whenever K ⊆ K′ and formalises the intuition that
inconsistency can only increase when adding new informa-
tion. However, this intuition is inadequate for nonmonotonic
logics as the addition of new information may resolve incon-
sistencies. Therefore, satisfaction of the monotonicity postu-
late is indeed not desirable in general, see [Ulbricht et al.,
2016] for a discussion on this topic.

In the same vein, other approaches that utilise minimal in-
consistent sets for inconsistency measurement [Hunter and
Konieczny, 2008; Jabbour et al., 2016; Jabbour and Sais,
2016] can also be lifted to the general case. We leave a deeper
investigation of this topic for future work.

6 Conclusions
In this paper we studied inconsistency in an abstract setting
covering arbitrary logics, including nonmonotonic ones. We
showed that in the general case the standard notion of incon-
sistency is unable to play the same role it does in monotonic
reasoning. Our main contribution is the identification of an
adequate strengthening of inconsistency. One of our main
results shows that the duality between minimal inconsistent
subsets and maximal consistent subsets of a knowledge base,
which does not hold for nonmonotonic logics, can be restored
when minimal strongly inconsistent subsets are used. We
established encouraging complexity results for problems re-
lated to strong inconsistency, presented a generic algorithm
for computing (minimal) strongly inconsistent subsets, and
demonstrated possible applications of our new notion in di-
agnosis/repair and inconsistency measurement.

Although there is a rich literature on inconsistency han-
dling (see [Bertossi et al., 2005] for an introduction and [Bi-
envenu et al., 2016] for a recent approach), we are not aware
of any work addressing the issues we studied in this paper.

In future work we will investigate algorithms for specific
nonmonotonic logics, elaborate the use of strong inconsis-
tency in model-based diagnosis and continue the study of in-
consistency measures based on strong inconsistency.
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