
Data Sparseness in Linear SVM

Xiang Li∗†, Huaimin Wang†, Bin Gu∗‡, Charles X. Ling∗1

∗Computer Science Department, University of Western Ontario, Canada
†School of Computer, National University of Defense Technology, China
‡Nanjing University of Information Science and Technology, China

lxiang2@uwo.ca, hmwang@nudt.edu.cn, jsgubin@nuist.edu.cn, cling@csd.uwo.ca

Abstract

Large sparse datasets are common in many real-
world applications. Linear SVM has been shown
to be very efficient for classifying such datasets.
However, it is still unknown how data sparseness
would affect its convergence behavior. To study
this problem in a systematic manner, we propose
a novel approach to generate large and sparse data
from real-world datasets, using statistical inference
and the data sampling process in the PAC frame-
work. We first study the convergence behavior of
linear SVM experimentally, and make several ob-
servations, useful for real-world applications. We
then offer theoretical proofs for our observations by
studying the Bayes risk and PAC bound. Our exper-
iment and theoretic results are valuable for learning
large sparse datasets with linear SVM.

1 Introduction
Large sparse datasets are common in many real-world ap-
plications. They contain millions of data instances and at-
tributes, but most of the attribute values are missing or un-
observed. A good example is the user-item data of various
popular on-line services. Netflix has published part of its
movie rating dataset [Bennett and Lanning, 2007] for algo-
rithm competition. This data consists of 100,480,507 ratings
given by 480,189 users to 17,770 movies, which amounts to a
sparseness of 98.822%. Data sparseness becomes even higher
in other domains. For example, the Flickr dataset collected
by [Cha et al., 2009] contains the ‘favorite’ marks given by
497,470 users on 11,195,144 photos, its sparseness reaches
99.9994%. Such high sparseness is understandable: com-
pared to the massive amount of available items, each user
could only have consumed or interacted with a tiny portion of
them. In many situations, we need to classify these datasets
to make predictions. For example, in personalized recom-
mender systems and targeted advertising, we would like to
predict various useful features of a user (gender, income level,
location and so on) based on items she/he has visited.

1Charles X. Ling (cling@csd.uwo.ca) is the corresponding au-
thor.

Linear SVM such as Pegasos [Shalev-Shwartz et al., 2011]
and LibLinear [Fan et al., 2008] are popular choices to clas-
sify large sparse datasets efficiently, because they scale lin-
early with the number of non-missing values. Nowadays, it is
possible to train linear SVM on very large datasets. Theoret-
ically, it is known that larger training data will lead to lower
generalization error, and asymptotically it will converge to the
lowest error that can be achieved [Vapnik, 1999]. However, it
is still hard to answer the following important questions about
linear SVM and data sparseness:

(1). If we put in effort to reduce data sparseness, would it
decrease the asymptotic generalization error of linear SVM?

(2). Would data sparseness affect the amount of training
data needed to approach the asymptotic generalization error
of linear SVM?

These questions essentially concern the convergence be-
havior of learning, which has been addressed in previous
works. In Statistical Learning Theory [Vapnik, 1999], PAC
bound gives high-probability guarantee on the convergence
between training and generalization error. Once the VC-
dimension of the problem is known, PAC bound could pre-
dict the amount of training instances needed to approach
the asymptotic error. Other works [Bartlett and Shawe-
Taylor, 1999] have shown that the VC-dimension of linear
SVM is closely related to the hyperplane margin over the
data space. As an initial step of understanding the impact
of data sparseness on the margin of hyperplanes, a recent
work [Long and Servedio, 2013] has given bounds for in-
teger weights of separating hyperplanes over the k-sparse
Hamming Ball space x ∈ {0, 1}m≤k (at most k of the m at-
tributes are non-zero). There also exist several SVM variants
that could deal with missing data [Pelckmans et al., 2005;
Chechik et al., 2008]. However, still no previous work could
explicitly predict the convergence behavior of linear SVM
when data is highly sparse.

In this paper, we will answer this question by systematic
experiments and then verify our findings through theoretic
study. We propose a novel approach to generate large and
sparse synthetic data from real-world datasets. First, we infer
the statistical distribution of real-world movie rating datasets
using a recent Probabilistic Matrix Factorization (PMF) in-
ference algorithm [Lobato et al., 2014]. From the inferred
distribution, we then sample a large number of data instances
following the PAC framework, so we can study the general-

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

3628

ization error with various training sizes.
In order to study the effect of data sparseness, we con-

sider a simple data missing model, which allows us to sys-
tematically vary the degree of data sparseness and compare
the learning curves of linear SVM. To follow the PAC frame-
work, we study the curves of training and testing error rates
as we keep increasing the training size. We have made sev-
eral important observations about how data sparseness would
affect the asymptotic generalization error and the rate of con-
vergence when using linear SVM; see Section 3.

We then analyze our observations with detailed theoretic
study. For asymptotic generalization error, we study the
change of Bayes risk as we vary data sparseness. With
proper assumptions, we have proved that higher sparseness
will increase the Bayes risk of the data; see Section 4.1. For
the asymptotic rate of convergence, we observe that differ-
ent sparseness would not change the amount of training data
needed to approach convergence. We study its theoretic rea-
son using the PAC bound; see Section 4.2.

Our results are very useful for using linear SVM in real-
world applications. Firstly, they indicate that sparser data
would generally increase the asymptotic error, which encour-
ages practitioners to put effort in reducing data sparseness.
Secondly, our results also imply that sparser data will not
lead to slower learning curve convergence when using lin-
ear SVM, although the asymptotic generalization error rate
would increase.

The rest of the paper is organized as follows. Section 2
gives details of our data generation approach. Section 3 de-
scribes our experiment and observations. Section 4 proves
our observations. The final section concludes the paper.

2 A Novel Approach to Generate Sparse Data
To systematically study the impact of data sparseness on lin-
ear SVM, in this section, we first propose a novel approach to
generate sparse data.

2.1 Basic Settings
To simplify the problem setting, we only consider binary at-
tribute values x ∈ {0, 1}m and binary label y ∈ {+,−}.
Our data generation approach follows the standard setting of
the PAC framework [Vapnik, 1999], which assumes that data
(x, y) are independently sampled from a fixed distribution
P (x, y) = P (y)P (x|y). In addition, our approach uses dis-
tribution inferred from real-world datasets, so the generated
data are realistic in a statistical sense. Specifically, we use
datasets of recommendation systems such as movie ratings to
infer P (x, y).

Recently, datasets of recommendation systems are widely
studied. They usually contain ordinal ratings (e.g., 0 to 5)
given by each user to each item. We consider each user as
a data instance and its rating on items corresponds to each
attribute. To make the data binary, we only consider the pres-
ence/absence of each rating. We choose the gender of each
user as its label y ∈ {+,−}.

To infer the distribution P (x, y), we use Probabilistic Ma-
trix Factorization [Mnih and Salakhutdinov, 2007] which is a
widely-used probabilistic modeling framework for user-item

ratings data. In the next subsection, we will briefly review the
PMF model for binary datasets proposed by [Lobato et al.,
2014], which will be used in our data generation process.

2.2 Review of PMF for Sparse Binary Data
Consider L users and M items, the L ×M binary matrix X
indicates whether each rating exists. In this case, X could be
modeled by the PMF given in [Lobato et al., 2014] which has
good predictive performance:

p(X|U,V, z) =
L∏
i=1

M∏
j=1

p(xi,j |ui,vj , z) (1)

where a Bernoulli likelihood is used along with the Matrix
Factorization assumption X ≈ U · V to model each binary
entry of X:

p(xi,j |ui,vj , z) = Ber(xi,j |δ(uivTj + z)) (2)

where δ(·) is the logistic function δ(x) = 1
1+exp(−x) to

squash a real number into the range of (0, 1), Ber(·) is the
pdf of a Bernoulli distribution and z is a global bias parame-
ter in order to handle data sparsity.

This PMF model further assumes that all latent variables
are independent by using fully factorized Gaussian priors:

p(U) =
L∏
i=1

D∏
d=1

N (ui,d|mu
i,d, v

u
i,d), (3)

p(V) =

M∏
j=1

D∏
d=1

N (vj,d|mv
i,d, v

v
i,d), (4)

p(z) = N (z|mz, vz) (5)

where N (·|m, v) denotes the pdf of a Gaussian distribution
with mean m and variance v. Given a binary dataset X,
the model posterior p(U,V, z|X) could be inferred using the
SIBM algorithm described in [Lobato et al., 2014]. The pos-
terior predictive distributions are used for predicting each bi-
nary value in X:

p(X̃|X) =

∫
p(X̃|U,V, z)p(U,V, z|X)dUdVdz (6)

2.3 The Distribution for Data Sampling
Based on the above PMF model, we next describe the distri-
bution for sampling synthetic data. Since the distribution is
inferred from a given real-world dataset X, we denote it as

p(x̃, y|X) = p(y)p(x̃|y,X) (7)

For p(y), we simply use a balanced class prior, p(+) =
p(−) = 0.5. This ensures equal chances of getting positive
and negative instances when sampling.

Now we describe how we get p(x̃|y,X). We first divide
the real-world dataset X into the positive labeled set X+ and
the set of negative instances, X−. We infer the model pos-
teriors p(U,V, z|X−) and p(U,V, z|X+) separately using
the SIBM algorithm.

3629

Notice that these inferred models can not be directly used
to generate infinite samples: suppose the number of users in
X+ (and X−) is L+ (and L−), the posterior predictive (6)
only gives probabilities for each of these L+ (L−) existing
users. In other words, the predictive distribution could only
be used to reconstruct or predict the original X, as did in the
original paper [Lobato et al., 2014].

In order to build a distribution for sampling an infinite
number of synthetic users, we employ the following stochas-
tic process: whenever we need to sample a new synthetic in-
stance x̃, we first randomly choose a user i from the L+ (or
L−) existing users, and we then sample the synthetic instance
using the posterior predictive of this user. Using this process,
the pdf of p(x̃|y,X) is actually

p(x̃|y,X) =

Ly∑
i=1

p(i, y)·∫
p(x̃|U,V, z, i)p(U,V, z|Xy)dUdVdz (8)

where y ∈ {+,−}, p(i, y) = 1
Ly

and

p(x̃|U,V, z, i) =
M∏
j=1

p(x̃i,j |ui,vj , z) (9)

is the likelihood for each instance (existing user) of Xy ,
which is equivalent to (1). The process of sampling data from
p(x̃, y|X) can be implemented by the following pseudo code.

Algorithm 1 Data Sampling
infer p(U,V, z|X−) and p(U,V, z|X+) using SIBM;
sample V+, z+ from p(U,V, z|X+);
sample V−, z− from p(U,V, z|X−);
for each new instance (x̃, y) do

randomly sample y from {+,−};
randomly sample i from {1, ..., Ly};
sample ui from p(U,V, z|Xy);
for j in 1...M do

sample x̃j from Ber(x̃j |δ(ui · vj,y + zy));
end for

end for

This algorithm allows us to sample infinite instances from
the fixed distribution p(x̃, y|X), to be used for generating data
of various sizes. Next, we will discuss how to systematically
vary sparseness of the sampled data.

2.4 Data Missing Model
We employ a simple data missing model to add and vary data
sparseness. Our data missing model assumes that each at-
tribute has the same probability to become 0, which follows
the Missing Completely At Random assumption [Heitjan and
Basu, 1996].

Given the probability of missing s, the data missing model
will transform an instance x̃ = (x̃1, x̃2, ..., x̃m) to x =
(x1, x2, ..., xm) following:

p(x|x̃, s) =

m∏
j=1

Ber(x̃j · (1− s)) (10)

To ease our illustration, we hereafter call this process as
dilution, and the resultant data as the diluted data. Now
if instances are originally sampled from p(x̃|y), the distri-
bution of the diluted data can be computed by p(x|y, s) =∫
p(x|x̃, s)p(x̃|y)dx̃. When we apply this dilution process

to data generated from Algorithm 1, we denote the resultant
distribution as p(x|y,X, s) =

∫
p(x|x̃, s)p(x̃|y,X)dx̃.

Using the above data missing model, additional sparseness
will be introduced uniformly to each attribute and higher s
will lead to sparser data. This enables us to vary s and study
the impact of data sparseness systematically, as we will de-
scribe in the next section.

3 Experiment
In this section, we describe how we use the proposed data
generation and dilution process to study our research question
with experiments.

Data. We use two movie rating datasets: the movielens 1M
dataset1 (ml-1m) and the Yahoo Movies dataset2 (ymovie). As
mentioned earlier, we only consider absence/presence of each
rating. The preprocessed ml-1m dataset is 3, 418 (instances)
×3, 647 (attributes) with balanced classes and an original
sparseness of 0.9550. The preprocessed ymovie dataset is
9, 489 (instances) ×4, 368 (attributes) with balanced classes
and an original sparseness of 0.9977.

Training. To study the impact of data sparseness, we use
various values of s; see the legends of Figure 1 and 2. For
each s, we generate training samples of various sizes l from
p(x, y|X, s) using the proposed data generation and dilution
process. We use Lib-linear [Fan et al., 2008] with default
parameters to train the classifier and get the corresponding
training error εtrain(l, s).

Testing. It is empirically impossible to test a classifier
on the whole distribution and get the true generalization er-
ror. For this reason, we generate a large test dataset from
p(x, y|X, s) for each setting of s. For the ymovie experiment,
the size of test sets is 7.59 million instances (800 times of the
real data size). For the ml-1m experiment, the test size is 0.68
million (200 times of the real data size). We test the classifiers
on the corresponding test set and get the test error εtest(s).

For each setting of s and training size l, we repeat the data
generation (including dilution), training and testing process
for 10 times, and record the average training and testing error
rates. The most time consuming step in our experiment is
data generation: the largest training dataset (l = 220 in the
ymovie experiment) costs us one day on a modern Xeon CPU
to generate each time; Meanwhile, training on this particular
dataset only costs several minutes, thanks for the efficiency
of linear SVM. To speed up, we straight-forwardly parallelize
the data generation jobs on a cluster.

As we systematically vary s, the resultant learning curves
of averaged training and testing error rates are given in Figure
1. Figure 2 shows the difference between the two errors in
order to show the rate of convergence. We have two important
observations which are obvious in both experiments:

1http://grouplens.org/datasets/movielens/
2http://webscope.sandbox.yahoo.com/catalog.php?datatype=r

3630

Figure 1: Training (dashed) and generalization error rates for
different data missing probability s. Observation: higher
sparseness leads to larger asymptotic generalization error
rate.

Observation 1. asymptotic generalization error: Higher
sparseness leads to larger asymptotic generalization error
rate;

For example, in the ymovie experiment, the asymptotic
(training size l > 106) generalization error rates are 16.6%,
22.4%, 33.7% and 39.2% for s = 0.5, 0.7, 0.9 and 0.95, re-
spectively.

Observation 2. asymptotic rate of convergence: the
asymptotic rate of convergence is almost the same for dif-
ferent sparseness.

In other words, different sparseness would not change the
amount of training data needed to approach convergence. For
example, in the ymovie experiment, the minimum training
size l for the two error rates to be within 1% is almost the
same (l = 370K), regardless of the value of s.

In the next section, we will study the theoretic reasons be-
hind these observations.

4 Theoretic Analysis

In section 4.1, we study the theoretic reason for observation
1, and in section 4.2 we show that the theoretic reason of
observation 2 can be easily explained using PAC bound.

Figure 2: The difference between training and generalization
error rates for different data missing probability s. Observa-
tion: asymptotic rate of convergence is almost the same for
different sparseness.

4.1 Asymptotic Generalization Error
Suppose: (1) the original data distribution is p(x|y);3 (2) af-
ter applying the data missing model described in Section 2.4,
the diluted data distribution is p(x|y, s); (3) class prior is bal-
anced, i.e., p(+) = p(−) = 0.5. From the Bayesian Decision
Theory [Duda et al., 2012], we know that the asymptotic gen-
eralization error rate of linear SVM can be lower bounded by
the Bayes risk, which is the best classification performance
that any classifier can achieve over a given data space:

R =

∫
min

y∈{−,+}
{R(y(x)|x)}p(x)dx (11)

where R(y(x)|x) is the loss for predicting the label of in-
stance x as y, which in our case is the 0-1 loss. We denote
the Bayes risk for p(x|y, s) as R(s), thus the asymptotic gen-
eralization error rate is lower bounded:

lim
l→∞

ε(s) ≥ R(s) (12)

Notice x lives in the discrete data space {0, 1}m, which
eases us to write the Bayes risk as the following form:

R(s) =
∑
x

p(x) · min
y∈{+,−}

p(y|x, s)

=
∑
x

min
y∈{+,−}

p(y,x|s) = 0.5
∑
x

min
y∈{+,−}

p(x|y, s) (13)

3Our proof does not require p(x|y) to be the specific distribution
p(x̃|y,X) introduced earlier.

3631

We will next prove that higher s leads to larger R(s) using
three steps. We first consider the case if only one of the at-
tributes is diluted. In this case, we could prove that the Bayes
risk will not decrease by any chance, and with high probabil-
ity it will increase (Lemma 4.1). We next consider the case if
we still dilute only one attribute but with different s, we prove
that higher sparseness will lead to larger Bayes risk (Lemma
4.2). Based on these results, we finally prove that higher s
leads to larger Bayes risk R(s) (Theorem 4.3).

When we only dilute one of them attributes, xj , we denote
the rest of the attributes as x−j = (x1, ...xj−1, xj+1, ..., xm).
Since the order of attributes does not matter, we denote x
as (x−j , xj). We denote the corresponding distribution as
p(j)(x|y, s) and Bayes risk as R(j)(s), we now prove:

Lemma 4.1 R(j)(s) ≥ R(0) always holds. Specifically, with
high probability, R(j)(s) > R(0).

Proof Since we have only diluted xj , we first expand the
computation of Bayes risk (13) along xj :

R(j)(s)−R(0) = 0.5
∑
x−j

[Z(j)(x−j , s)− Z(x−j)] (14)

where Z(x−j) denotes the sum of probability mass of p(x|y)
at (x−j , 0) and (x−j , 1), each minimized among classes:

Z(x−j) :=

min
y∈{+,−}

p(x−j , 0|y) + min
y∈{+,−}

p(x−j , 1|y) (15)

Z(j)(x−j , s) is also defined accordingly for p(j)(x|y, s).∑
x−j

denotes the summation over all x−j in the {0, 1}m−1

space. Now define ∆Z(s) := Z(j)(x−j , s)−Z(x−j), we will
next prove that ∆Z(s) ≥ 0 holds for all x−j ∈ {0, 1}m−1:

Since xj is diluted with s, according to (10), this means
∀x−j ∈ {0, 1}m−1, we have

p(j)(x−j , 0|y, s) = p(x−j , 0|y) + s · p(x−j , 1|y) (16)

p(j)(x−j , 1|y, s) = (1− s) · p(x−j , 1|y) (17)
We denote yh ∈ {−,+} as the label that has a higher prob-

ability mass at (x−j , 1), and we denote the other label as yl:4

p(x−j , 1|yh) ≥ p(x−j , 1|yl), (18)

min
y∈{+,−}

p(x−j , 1|y) = p(x−j , 1|yl) (19)

and (17)(18) lead to:

min
y∈{+,−}

p(j)(x−j , 1|y, s) = p(j)(x−j , 1|yl, s) (20)

In order to write out miny∈{+,−} p(x−j , 0|y) and
miny∈{+,−} p

(j)(x−j , 0|y, s), we define

g(x−j) :=
p(x−j , 0|yl)− p(x−j , 0|yh)

p(x−j , 1|yh)− p(x−j , 1|yl)
(21)

4Notice that yh and yl will change for different x−j . Strictly,
we should use the notation yh(x−j , 1) and yl(x−j , 1) if not for the
purpose of brevity.

For each x−j there are in total three different situations to
consider:

Case 1. p(x−j , 0|yh) ≥ p(x−j , 0|yl) (22)

Case 2.
{
p(x−j , 0|yh) < p(x−j , 0|yl)

s ≥ g(x−j)
(23)

Case 3.
{
p(x−j , 0|yh) < p(x−j , 0|yl)

s < g(x−j)
(24)

We could straight-forwardly compute ∆Z(s) for each case.
Case 1:

∆Z(s) = 0 (25)
Case 2:

∆Z(s) = p(x−j , 0|yl)− p(x−j , 0|yh) > 0 (26)

Case 3:

∆Z(s) = s · [p(x−j , 1|yh)− p(x−j , 1|yl)] > 0 (27)

For space limit, detailed derivation of (25)(26)(27) is omitted.
Now that ∆Z(s) ≥ 0 always holds, R(j)(s) ≥ R(0) is

true because of (14). Moreover, R(j)(s) = R(0) is true only
if Case 1 happens for all x−j ∈ {0, 1}m−1, which has low
probability.

In the next lemma, we consider the case when we vary the
sparseness s on the one diluted attribute.

Lemma 4.2 ∀s1, s2 s.t. 1 ≥ s2 > s1 ≥ 0, we have
R(j)(s2) ≥ R(j)(s1). Specifically:

(1). only when both s1 and s2 are close enough to 1.0,
R(j)(s2) = R(j)(s1) will be true with high probability.

(2). other wise, R(j)(s2) > R(j)(s1).

Its proof could be derived by studying the value of ∆Z(s)
in different situations. It is straight-forward after we have
derived equations (25)(26)(27) in the proof of Lemma 4.1.

Proof We first prove that ∆Z(s2) ≥ ∆Z(s1) always holds.
For any given x−j ∈ {0, 1}m−1:

(1). If Case 1 is true, we will always get ∆Z(s2) =
∆Z(s1) = 0 regardless of the value of s1 and s2.

(2). If Case 1 is false and 1 ≥ s2 > s1 ≥ g(x−j), then
Case 2 holds for both s1 and s2, and we get

∆Z(s1) = ∆Z(s2) = p(x−j , 0|yl)− p(x−j , 0|yh)

(3). If Case 1 is false and s2 ≥ g(x−j) > s1, then Case 2
holds for s2 and Case 3 holds for s1. Thus

∆Z(s2) = p(x−j , 0|yl)− p(x−j , 0|yh) >

s1 · [p(x−j , 1|yh)− p(x−j , 1|yl)] = ∆Z(s1)

(4). Finally, if Case 1 is false and g(x−j) > s2 > s1 ≥ 0,
then Case 3 holds for both s1 and s2. From (27) we know that
∆Z(s2) > ∆Z(s1).

Now we have proved that ∆Z(s2) ≥ ∆Z(s1) always hold,
substitute into (14) leads to

R(j)(s2)−R(j)(s1) = [R(j)(s2)−R(0)]− [R(j)(s1)−R(0)]

=
∑
x−j

[∆Z(s2)−∆Z(s1)] ≥ 0 (28)

3632

From the above analysis, we further notice that R(j)(s2) =
R(j)(s1) only happens if for ∀x−j ∈ {0, 1}m−1 either Case
1 happens or Case 2 holds for both s1 and s2. Notice for given
p(x, y), it is very unlikely that all x−j could satisfy Case 1.
For those x−j that Case 1 is not satisfied, it thus requires Case
2 to hold for both s1 and s2, which is only likely when both
s1 and s2 are close enough to 1.0.

The next theorem will generalize to the case when sparse-
ness is introduced to all attributes, which is the goal of our
proof:
Theorem 4.3 ∀s1, s2 s.t. 1 ≥ s2 > s1 ≥ 0, we have
R(s2) ≥ R(s1). Specifically:

(1). only when both s1 and s2 are close enough to 1.0,
R(s2) = R(s1) will be true with high probability.

(2). other wise, R(s2) > R(s1).
The basic idea of our proof is to find a hypothetic process that
varies the dilution of data from s2 to s1 one attribute at a time,
so we could leverage the result of lemma 4.2.

Proof We use F to denote the total attribute set {x1, ..., xm}.
At a certain state, we use F (s2) ⊂ F to denote the set of
attributes that have been diluted by s2; and F (s1) ⊂ F the
set of attributes that have been diluted by s1. We denote the
corresponding distribution as pF (s1),F (s2)(x|y, s1, s2) and its
Bayes Risk as RF (s1),F (s2)(s1, s2).

Now we consider the following process that iteratively
changes the elements of F (s1) and F (s2): we start from
F (s1) = ∅ ∧ F (s2) = F , and move each attribute in F (s2)
to F (s1) one after another. After m such steps we come to
F (s1) = F ∧ F (s2) = ∅.

After step i, we denote the current F (s1) as Fi(s1), F (s2)
as Fi(s2). Using this notation, the initial state is F0(s1) =
F ∧F0(s2) = ∅, and final state is Fm(s1) = ∅∧Fm(s1) = F .
It’s obvious that

RF0(s1),F0(s2)(s1, s2) = R(s1)

RFm(s1),Fm(s1)(s1, s2) = R(s2)

We next prove that for ∀i ∈ {0, ...,m− 1}:

RFi+1(s1),Fi+1(s2)(s1, s2) ≥ RFi(s1),Fi(s2)(s1, s2) (29)

Notice that in each step i, there is only one attribute (e.g., xj)
changes fromFi(s2) toFi(s1), i.e., F−[Fi(s1)∪Fi+1(s2)] =
{xj}.

Now consider the distribution pFi(s1),Fi+1(s2)(x|y, s1, s2),
which corresponds to an intermediate state between step i and
i + 1 with xj being not diluted. Now if we dilute xj by s2,
we get pFi+1(s1),Fi+1(s2)(x|y, s1, s2); Instead, if we dilute xj
by s1, we get pFi(s1),Fi(s2)(x|y, s1, s2). Using Lemma 4.2, it
now becomes obvious that (29) is true, which further leads to

R(s2) = RFm(s1),Fm(s1)(s1, s2)

≥ ... ≥ RF0(s1),F0(s2)(s1, s2) = R(s1) (30)
We further notice that R(s2) = R(s1) only holds when all
m equal signs hold simultaneously. As illustrated in Lemma
4.2, each equal sign holds with high probability only when
both s2 and s1 are close enough to 1.0.

This theorem tells us that higher sparseness leads to larger
Bayes risk, which explains our observation on the asymptotic
generalization error.

This result is important for understanding how data sparse-
ness affects the asymptotic generalization error of linear
SVM.

Since the Bayes risk of the data space is irrelevant to the
classifier in use, our theoretic result is also applicable for
other classifiers.

4.2 Asymptotic Rate of Convergence
Our observation on the asymptotic rate of convergence could
be explained by the PAC bound [Bartlett and Shawe-Taylor,
1999]. From the PAC bound, we know that the conver-
gence of generalization error rate ε and the training error rate
εtr is bounded in probability by training size l and the VC-
dimension |d|:

Pr

{
ε > εtr +

√
ln |d| − ln δ

2l

}
≤ δ (31)

For fixed δ, the rate of convergence is approximately:

∂(ε− εtr)
∂l

≈ −

√
ln |d|δ
2l3

(32)

Though different data sparseness could change |d|, for linear
SVM, |d| < m+ 1 holds true regardless of data sparseness.5
From (32) we could see that asymptotically (when 2l3 �
ln m+1

δ), the rate of convergence is mostly influenced by the
increase of training size l rather than by the change of |d|,
since |d| is always upper bounded by m+ 1. In other words,
varying sparseness will have little impact on the asymptotic
rate of convergence, which verifies our observation.

When using linear SVM in real-world applications, it is
important to know whether sparser data would lead to slower
convergence rate. If so, practitioners will have to collect more
training instances in order for linear SVM to converge on
highly sparse datasets. Our observation and analysis shows
that the rate of convergence is almost not affected by differ-
ent data sparseness for linear SVM.

5 Conclusion
Linear SVM is efficient for classifying large sparse datasets.
In order to understand how data sparseness affects the conver-
gence behavior of linear SVM, we propose a novel approach
to generate large and sparse data from real-world datasets us-
ing statistical inference and the data sampling process of the
PAC framework. From our systematic experiments, we have
observed: 1. Higher sparseness will lead to larger asymp-
totic generalization error rate; 2. Convergence rate of learn-
ing is almost unchanged for different sparseness. We have
also proved these findings theoretically. Our experiment and
theoretic results are valuable for learning large sparse datasets
with linear SVM.

5Notice that VC-dimension can be very large for some non-linear
versions of SVM, how their convergence rate will be affected by data
sparseness could be an interesting future work.

3633

Acknowledgments
This work is supported by National Natural Science Foun-
dation of China (grants 61432020, 61472430, 61202137)
and Natural Sciences and Engineering Research Council of
Canada (NSERC).

References
[Bartlett and Shawe-Taylor, 1999] Peter Bartlett and John

Shawe-Taylor. Generalization performance of support
vector machines and other pattern classifiers. Advances
in Kernel MethodsSupport Vector Learning, pages 43–54,
1999.

[Bennett and Lanning, 2007] James Bennett and Stan Lan-
ning. The netflix prize. In Proceedings of KDD cup and
workshop, volume 2007, page 35, 2007.

[Cha et al., 2009] Meeyoung Cha, Alan Mislove, and Kr-
ishna P Gummadi. A measurement-driven analysis of in-
formation propagation in the flickr social network. In Pro-
ceedings of the 18th international conference on World
wide web, pages 721–730. ACM, 2009.

[Chechik et al., 2008] Gal Chechik, Geremy Heitz, Gal Eli-
dan, Pieter Abbeel, and Daphne Koller. Max-margin clas-
sification of data with absent features. The Journal of Ma-
chine Learning Research, 9:1–21, 2008.

[Duda et al., 2012] Richard O Duda, Peter E Hart, and
David G Stork. Pattern classification. John Wiley & Sons,
2012.

[Fan et al., 2008] Rong-En Fan, Kai-Wei Chang, Cho-Jui
Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. Liblinear: A
library for large linear classification. The Journal of Ma-
chine Learning Research, 9:1871–1874, 2008.

[Heitjan and Basu, 1996] Daniel F Heitjan and Srabashi
Basu. Distinguishing missing at random and missing com-
pletely at random. The American Statistician, 50(3):207–
213, 1996.

[Lobato et al., 2014] Jóse Miguel Hernández Lobato, Neil
Houlsby, and Zoubin Ghahramani. Stochastic inference
for scalable probabilistic modeling of binary matrices. In
Proceedings of The 31st International Conference on Ma-
chine Learning, page to appear, 2014.

[Long and Servedio, 2013] Philip M Long and Rocco A
Servedio. Low-weight halfspaces for sparse boolean vec-
tors. In Proceedings of the 4th conference on Innovations
in Theoretical Computer Science, pages 21–36. ACM,
2013.

[Mnih and Salakhutdinov, 2007] Andriy Mnih and Ruslan
Salakhutdinov. Probabilistic matrix factorization. In Ad-
vances in neural information processing systems, pages
1257–1264, 2007.

[Pelckmans et al., 2005] Kristiaan Pelckmans, Jos De Bra-
banter, Johan AK Suykens, and Bart De Moor. Handling
missing values in support vector machine classifiers. Neu-
ral Networks, 18(5):684–692, 2005.

[Shalev-Shwartz et al., 2011] Shai Shalev-Shwartz, Yoram
Singer, Nathan Srebro, and Andrew Cotter. Pegasos: Pri-
mal estimated sub-gradient solver for svm. Mathematical
programming, 127(1):3–30, 2011.

[Vapnik, 1999] Vladimir N Vapnik. An overview of statisti-
cal learning theory. Neural Networks, IEEE Transactions
on, 10(5):988–999, 1999.

3634

