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Abstract

Non-linear continuous change is common in real-
world problems, especially those that model physi-
cal systems. We present an algorithm which builds
upon existent temporal planning techniques based
on linear programming to approximate non-linear
continuous monotonic functions. These are inte-
grated through a semantic attachment mechanism,
allowing external libraries or functions that are dif-
ficult to model in native PDDL to be evaluated dur-
ing the planning process. A new planning system
implementing this algorithm was developed and
evaluated. Results show that the addition of this
algorithm to the planning process can enable it to
solve a broader set of planning problems.

1 Introduction
Real-world temporal planning problems often involve non-
linear continuous change to numeric variables. This is espe-
cially the case for scenarios that model the physical world.
Examples of such instances include problems that involve
fluid dynamics or systems dealing with power management.
It is also difficult to model these problems in conventional
PDDL since the constructs provided by the language to ex-
press continuous change [Fox and Long, 2003] are limited to
arithmetic operators.

On the other hand, current state-of-the-art temporal plan-
ners are becoming more effective at solving planning prob-
lems that involve linear continuous change. One of the rea-
sons for this is their ability to leverage the efficiency and flex-
ibility of linear programming to model the temporal and nu-
meric aspects of the problem. Examples of such planners in-
clude TM-LPSAT [Shin and Davis, 2005] and COLIN [Coles
et al., 2009; 2012], together with its successors POPF [Coles
et al., 2010] and OPTIC [Benton et al., 2012].

In this work we present an approach that extends these
techniques to solve problems that also involve non-linear con-
tinuous change to numeric variables. In order to allow more
complex expressions to be incorporated in continuous effects,
while retaining the same structure of PDDL, we propose to in-
tegrate such continuous functions in planning domains using
semantic attachment [Dornhege et al., 2009].

We present an algorithm that approximates non-linear
change by converging iteratively to a solution. Each semanti-
cally attached function can have a dedicated margin of error,
within which each non-linear continuous effect is required to
be estimated. The system also enables the user to optionally
specify this as a parameter within the problem definition.

A PDDL 2.1 temporal planner, uNICOrn, was developed in
order to evaluate this algorithm, and we show that it can han-
dle durative actions of a variable duration (with duration in-
equalities) that have linear and non-linear continuous effects.
Concurrent durative actions affecting the same numeric fluent
are also supported. This planner was evaluated using two do-
mains with non-linear continuous effects. Results show the
effectiveness of this algorithm in solving this class of prob-
lems and the impact of decreasing the error tolerance on its
overall performance.

2 Background
Continuous change has an important role when modelling
real-world problems. This was recognised in PDDL 2.1 [Fox
and Long, 2003], where durative actions and continuous ef-
fects were introduced to enable the capability to model tem-
poral planning problems [Cushing et al., 2007] and time-
dependent numeric updates. Continuous effects are defined
in terms of a rate of change of a numeric variable with respect
to time. Listing 1 shows an example of a durative action mod-
elling an airplane flight. The fuel-level of the airplane
decreases at its fuel-consumption-rate with respect to
time, denoted by the special operand #t.

(:durative-action fly
:parameters (?p - airplane ?a ?b - airport)
:duration (= ?duration (flight-time ?a ?b))
:condition (and

(at start (at ?p ?a))
(over all (inflight ?p))
(over all (>= (fuel-level ?p) 0)))

:effect (and
(at start (not (at ?p ?a)))
(at start (inflight ?p))
(at end (not (inflight ?p)))
(at end (at ?p ?b))
(decrease (fuel-level ?p)

(* #t (fuel-consumption-rate ?p)))))

Listing 1: A durative action in PDDL [Fox and Long, 2003].
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However, real-world problems commonly also involve
non-linear continuous behaviour. This is especially the case
when the problem being modelled involves physical pro-
cesses. One such example, used as a benchmark in this work,
is Torricelli’s Law. This states that the velocity, v, with which
liquid drains from a tank in relation to the height, h, of the
surface of the liquid in the tank is v =

√
2gh (where g is

gravity). Consequently, v will decrease as h decreases.
While current temporal planners are quite effective in deal-

ing with linear continuous change, most of them struggle
when non-linear processes are introduced. While it is in
fact possible to model some non-linear functions in PDDL,
through a continuous effect on the rate of change used in an-
other continuous effect, most planners are still not capable of
handling such kind of models.

One of the few planners that does handle non-linear change
is UPMurphi [Penna et al., 2009]. It uses an approach which
involves time discretisation. A plan is found when the re-
quired conditions are satisfied for all discrete time points and
the plan is then validated using a separate plan validator, VAL
[Howey et al., 2004]. The main disadvantage with this ap-
proach is that it does not scale up very well, with long plans
necessitating an increase in the discretisation value to obtain
a solution within a reasonable time. Another more recent ap-
proach [Bryce et al., 2015] involves combining DPLL-style
SAT solving together with a differential equation solver, ca-
pable of integrating continuous effects formulated as Ordi-
nary Differential Equations (ODE), and an Interval Constraint
Propagation (ICP) solver. In this case, the user specifies the
error precision within which the non-linear effects can be
evaluated. Even in this case, the main issue is scalability as
the problem size increases.

In this work we try to address the issue of scalability by
handling a subset of non-linear continuous effects. More
specifically, we consider those that manifest a monotonic in-
crease or decrease between two discrete time-points in the
plan. Our approach is based on establishing a linear approx-
imation of the function between the specific time-points. It
does not require any time discretisation, but makes use of an
iterative method to converge to the required error tolerance.
Furthermore, it is not restricted to ODEs, but virtually any
continuous monotonic function can be attached through a se-
mantic attachment mechanism.

3 Non-linear Temporal Planning Tasks
The language used by uNICOrn is PDDL 2.1 [Fox and Long,
2003], augmented with a set M of semantically attached
functions provided by external modules. We restrict attention
to continuous monotonic functions. These kinds of functions
are very common when modelling physical systems and were
thus the primary focus of this work.

Let such a planning task with semantic attachments be de-
fined as Π = 〈ρ, ϑ,M,Oinst, Odur, s0, G〉, where:

• ρ is the set of atomic propositional facts.

• ϑ is the set of numeric fluents.

• M is the set of continuous monotonic functions available
through semantically attached modules, taking the form

m : S×R≥0 → R, where S is the set of possible states.
m(s, t) maps the duration, t, spent in a state s ∈ S to
the value of the function at that time.

• Oinst is the set of instantaneous actions.

• Odur is the set of durative actions.

• s0 is the initial state of the problem, consisting of a sub-
set of ρ and a mapping of ϑ to numeric values.

• G is a set of goal conditions that must be satisfied.

An instantaneous action, ainst ∈ Oinst is an action that can
occur at a specific time point in a plan. It can be applied to a
state s ∈ S if its precondition expression, pre(ainst), is satis-
fied by that state. Preconditions can be propositional facts of
the form f ∈ ρ, or numeric conditions of the form 〈exp,⊗, c〉,
where exp is an arithmetic expression whose variables corre-
spond to numeric fluents in ϑ, the operator ⊗ ∈ {=, <,≤},
and c is a numeric constant. An action’s precondition expres-
sion, pre(ainst), combines a set of propositional and numeric
conditions into a logical expression using conjunction, dis-
junction and negation. An action, ainst, is applicable to a
state, s, if such precondition expression is satisfied by s, for-
mally s |= pre(ainst).

Each instantaneous action also has a set of instant effects,
eff (ainst). When an action is applied to a state s, a new state,
s′, is obtained from applying its effects; s′ = eff (ainst)(s)
[Hoffmann, 2003]. These effects could add or remove propo-
sitional facts, and also change the value of a numeric variable
v ∈ ϑ based on the evaluation of an arithmetic expression.
Numeric effects can either increase or decrease the value of
v, or assign it to a completely new value.

A durative action, adur ∈ Odur, follows similar rules, but
spans over a period of time in a plan. Conditions and ef-
fects can occur at the start, at the end, or during the execu-
tion of a durative action. Each durative action adur ∈ Odur
has a start condition expression, startCond(adur), that has
to be satisfied by the state preceding the start of the ac-
tion, an end condition expression, endCond(adur) that needs
to be satisfied by the state preceding the end of the action,
an invariant condition expression, inv(adur), that must hold
throughout its execution, and a set of temporal constraints,
durCond(adur), on its duration. A durative action also has
start effects, startEff (adur), that are applied when the action
commences, end effects, endEff (adur), applied when the ac-
tion stops executing, and continuous effects contEff (adur),
representing continuous change to a numeric fluent occurring
throughout the execution of the action. These continuous ef-
fects can be linear changes of the form vs′ = vs+δv ·t, where
vs and vs′ correspond to the value of variable v in states s
and s′ respectively, δv is the rate of change of v, and t cor-
responds to the duration spent in state s. Continuous effects
can also be non-linear functions encapsulated through seman-
tic attachment, of the form vs′ = m(s, t), where m ∈M .

Similar to the approach used by other temporal planners,
such as LPGP [Long and Fox, 2003], LPG [Gerevini et al.,
2003], and COLIN [Coles et al., 2012], each durative action
adur is split into two snap actions: a`, representing the con-
ditions and effects when the durative action starts, and aa,
representing the conditions and effects when the durative ac-

1524



tion ends. Thus, snap actions have the same structure of
instantaneous actions, where pre(a`) = startCond(adur),
eff (a`) = startEff (adur), pre(aa) = endCond(adur), and
eff (aa) = endEff (adur). The set of operators of Π can thus
be defined as O = Oinst ∪ {a`, aa | adur ∈ Odur}.

A temporal state is defined as s = 〈F, V, P,Q,C〉, where:
• F is the set of atomic propositions holding in the state,

with F ⊆ ρ.
• V maps the numeric variables to their respective value,

with V : ϑ→ R
• P is the plan, a sequence of actions (a0, a1, ..., an)

where ai ∈ O, to reach the state s from s0.
• Q is a list of executing durative actions that have com-

menced, but not yet terminated, together with the step
index at which they were started in the plan P . Each
element in Q takes the form 〈a`, i〉, where i ∈ [0..n].
• C is a set of temporal constraints of the form lb ≤

(t(j)− t(i)) ≤ ub for step indices {i, j} ⊆ {0, ..., n} in
plan P , where lb is the lower-bound and ub is the upper-
bound of the temporal interval between steps i and j,
and t : N→ R≥0 determines the time at which a step is
to be executed.

Whenever an action a ∈ O is applied and appended to the
plan P to obtain a new state s′, the propositions F and nu-
meric fluents V are updated according to the effects, eff (a),
as explained above. Furthermore, if a is a start or end snap
action of a durative action adur, Q and C need to be up-
dated accordingly. If a = a`, Q is updated with an en-
try containing the snap action and the index of the step,
Q′ = Q ∪ {〈a`, |P |〉}. A constraint is also added to C to
enforce that ε ≤ t(|P |) − t(|P | − 1), where ε is a very
small non-zero amount enforcing a total ordering between
actions [Coles et al., 2012]. If a = aa, new constraints of
the form lb ≤ (t(|P |) − t(i)) ≤ ub are added to C, given
that the corresponding entry for the start snap action, 〈a`, i〉,
is in Q. These constraints reflect the duration condition,
durCond(adur), of the durative action. The entry 〈a`, i〉 is
then removed from Q of the new state s′.

The invariant conditions that must hold throughout the du-
ration of a state s consist of the invariant conditions of all the
actions for which an entry exists in Q, as defined in Equa-
tion 1, where Dom(Q) = {a`|〈a`, i〉 ∈ Q} and adur is the
durative action commenced by a`.

stateInv(s) =
⋃

a`∈Dom(Q)

inv(adur) (1)

According to PDDL 2.1 semantics, continuous effects take
place while in a state, as time progresses from one step in
the plan to the next. Variables affected by continuous change
are time-dependent, since their value does not depend solely
on which actions are chosen, but also on their duration. In
our planning framework, continuous effects on variables can
either increase or decrease the value of a numeric fluent by
a constant rate with respect to a state’s duration. It can thus
be formally defined as a tuple 〈v, δv〉, where v ∈ ϑ and δv
is the rate of linear change. In the case of semantically at-
tached non-linear effects, δv will be determined through an

iterative method that converges to a value within the required
error bound. The list of continuous effects taking place be-
tween state si and si+1, denoted stateContEff (si), consists
of all the continuous effects of durative actions executing dur-
ing that interval. This corresponds to those durative actions
whose start snap action is in Dom(Q) for state si.

4 Planning and Scheduling
In order to find a valid temporal plan for a problem with
continuous effects the computation of the values of time-
dependent numeric fluents must be performed in conjunction
with the scheduling process. The approach we use is similar
to the one used in COLIN [Coles et al., 2012], where a Linear
Program (LP) is used to find a feasible assignment to the nu-
meric variables and the timestamps of each happening [Fox
and Long, 2003], such that all the action preconditions and
temporal constraints are satisfied. However, there are some
key differences in the way numeric fluents are represented in
the LP and effects are propagated throughout the plan.

A plan is found by performing a forward search from the
initial state and applying actions in O that have their precon-
ditions satisfied, obtaining new states from the effects of each
of the applied actions. Just as in COLIN, at every new state
being evaluated, an LP is constructed to determine whether
the plan to reach that state is actually possible given the tem-
poral and numeric constraints. A variable is used for the time
of each happening, with the objective function set to min-
imise the value of the variable corresponding to the time of
step n. The temporal constraints in C are translated into the
corresponding linear constraints of the LP.
Definition 1. A numeric fluent evaluated at step k of a plan
is time-dependent at k if either:

i) it is modified by a continuous effect from a durative ac-
tion, adur, where a` takes place at step h < k and aa
takes place at step i > h, or

ii) at step i ≤ k the value of the numeric fluent is computed
from an expression involving the non-constant duration
of a durative action, or

iii) it is updated by a time-dependent effect expression from
an action at step i < k,

and there is no step j at which the fluent is assigned to a
non-time-dependent value, where i < j < k.
Definition 2. An expression evaluated at step k of a plan is
time-dependent at k if one of its terms is a time-dependent
numeric fluent at step k.

Let ϑ̃ ⊆ ϑ be the set of fluents for which there exists at
least one step in the plan at which they are time-dependent.
Expressions that do not depend on fluents in ϑ̃ are evaluated
prior to the scheduling stage and excluded from the LP. Apart
from potentially reducing the number of variables, this ap-
proach also helps to prune actions deemed inapplicable due
to non-time-dependent numeric preconditions, thus eliminat-
ing the need to compute their LP. This approach also allows
more complex non-time-dependent numeric expressions to be
incorporated at the endpoints of each action, which otherwise
would not be supported by the LP. One example of this would

1525



be the case where the discrete numeric effect at the start or
end of a durative action is the result of a multiplication of two
or more numeric fluents. Furthermore, for each step k, con-
ditions and effects that involve fluents in ϑ̃, but that are not
time-dependent at k, are also excluded from the LP and are
instead computed by the planner.

For each v ∈ ϑ̃, two variables vi and v′i are added to the
LP at each step i, corresponding to the value of v before and
after applying the action at step i respectively. The value of
v0 corresponds to that of the initial state, and constraints are
added to enforce that v0 = s0.V (v). Values computed by the
planner for steps in which v is non-time-dependent are also
enforced in the LP in the same way.

The time-dependent preconditions of each action in the
plan at each step i are encoded as constraints over ϑ̃i. The
time-dependent invariants for si, tdInv(si) ⊆ stateInv(si),
are also encoded in a similar fashion over ϑ̃′i and ϑ̃i+1. The
time-dependent instantaneous effects of each action in the
plan at each step i on a variable v ∈ ϑ̃ are encoded as con-
straints over the relationship between vi and v′i.

Continuous effects on a variable v ∈ ϑ̃ at step i are rep-
resented with constraints on the relationship between v′i and
vi+1. COLIN is capable of combining concurrent continuous
effects on the same variable v by sequentially accumulating
the increase or decrease of its rate of change with each start
or end action that has a continuous effect on v [Coles et al.,
2012]. However, this approach does not support cases where
an action modifies the rate of change of a continuous effect
of another action that has already started. Figure 1 illustrates
one such example, where action a performs a linear increase
on variable v at rate y, and the start snap action b` updates
y, affecting the rate of change of the rest of the continuous
effect of a.

(increase (v) (* #t (y))a a

b b
(at start (increase (y) 5)

t

v

t0 t1 t2 t3

v0 v'0 v1 v'1 v2 v'2 v3 v'3

Figure 1: Updating the rate of change of a continuous effect.

Rather than accumulating the rate of change sequentially,
we compute a fresh value for the cumulative rate of change,
∆vi, for each step i, as defined in Equation 2, where Ξvi =
{δv|〈v, δv〉 ∈ stateContEff (si)} and stateContEff (si) is
the list of active continuous effects taking place throughout
the duration of the state si. The value for the subsequent step
is then computed using ∆vi, as shown in Equation 3.

∆vi =
∑

δvi∈Ξv
i

δvi (2)

vi+1 = v′i + ∆vi(t(ii+1)− t(i)) (3)

This approach allows for discrete updates to the rate of
change of a linear continuous effect to take place, effectively
supporting piecewise linear continuous effects, with a differ-
ent value for δv in each segment.

5 Non-Linear Iterative Convergence
With the planning framework for linear continuous effects de-
fined, we now propose a mechanism with which non-linear
monotonic continuous effects, semantically attached to the
planning task, can be included. Each function, m(s, t), avail-
able through a semantically attached module, provides the
value of that function, at a state s, for time t ≥ 0. This is
essentially the interface between the temporal planner and the
external module. The fact that the functions are restricted to
be monotonic makes it easier to verify any invariant condi-
tions that need to hold throughout the continuous effect (al-
though this is limited to cases where the sum of the effects on
a variable v within a step i, ∆vi, is also monotonic, and the
invariant condition is constant throughout its duration).

Theorem 1. For a continuous function m : S × R≥0 → R,
conditioned by a state s ∈ S, there exists a linear function
m̃ : R≥0 → R for each t ≥ 0, where m(s, 0) = m̃(0) and
m(s, t) = m̃(t).

Proof. Let v0 = m(s, 0) and vt = m(s, t). There exists a
linear function of the form m̃(t) = δv · t + v0 where δv =
(vt − v0)/t, in which case m̃(0) = v0 and m̃(t) = vt.

As shown in Theorem 1, a non-linear continuous function
can be intercepted by a linear one at the vertical axis (where
t = 0) and at any other given time-point. If the desired dura-
tion of a continuous numeric effect is known beforehand, the
linear function m̃ can effectively replace the non-linear onem
and still provide the correct updated value for a continuously
changing variable at time t. This reduction makes it com-
putable through the LP-based planning framework. However,
the main challenge is how to determine the duration, and thus
select the right linear approximation.

We propose an iterative method, that starts from comput-
ing δvi at one of the known bounds of the duration of the
state, determined from its constraints C, and then iteratively
improves its value until the error between the approximated
change on v and the real one is less than or equal to a pre-
defined error value for that function, em, as described in Al-
gorithm 1. δṼ maps the step index i, numeric fluent v, and
continuous effect m to the approximated rate of change for
that variable contributed from effect m.

Γs refers the list of non-linear effects applied to the steps
of plan P of state s, with each element consisting of 〈i, v,m〉,
where i is to the index of the happening after which the non-
linear continuous effect takes place (up to step i + 1), v ∈ ϑ̃
corresponds to the time-dependent numeric fluent updated by
the effect, and m corresponds to an instance of a continuous
effect involving a semantically attached function.

The function scheduleWithLP(s, δṼ ) sums up the rates
of change on each variable v ∈ Ṽ at each step, as defined
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Algorithm 1: Non-linear Iterative Convergence

Function NonlinSchedule(s, δṼ )
Data: A temporal state s and a set of initial

approximations δṼ of the rates of change for
each non-linear effect m, on each variable v,
at each step, i.

Result: A schedule for the plan to reach s, or Failure
converged← true

schedule← scheduleWithLP(s, δṼ )
if schedule = ∅ then

return Failure
for 〈i, v,m〉 ∈ Γs do

d← schedule(i+ 1)− schedule(i)
δv ← m(si, d)

if |(δv · d)− (δṼ (i, v,m) · d)| > em then
converged← false

if ((δv < 0) and (δṼ (i, v,m) < δv)) or
((δv > 0) and (δṼ (i, v,m) > δv)) then

δṽ ← (δṼ (i, v,m) + δv)/2
s.C ← s.C ∪ {(d ≤ t(i+ 1)− t(i))}

else
δṽ ← δv − (δṼ (i, v,m)− δv)/2
s.C ← s.C ∪ {(t(i+ 1)− t(i) ≤ d)}

δṼ (i, v,m)← δṽ

if converged then
return schedule

else
return NonlinSchedule(s, δṼ )

in Equation 2. It combines these cumulative rates of change
with the time-dependent preconditions of the actions in P and
the temporal constraintsC to build a linear program that com-
putes a schedule. This consists of a list of start times for
each step in the plan.

From this schedule, the actual durations of each state can
be extracted, and the deviation of each approximated non-
linear effect from its real value can be quantified. If this
exceeds the maximum error defined for that effect, em, the
flag converged is set to false, indicating that further itera-
tions are needed to converge to the acceptable error thresh-
old. A new gradient approximation for that continuous effect
is then computed, and new temporal constraints on the du-
ration of step i are added to s.C. These depend on whether
the gradient is negative or positive, and whether the approxi-
mation over-estimated or under-estimated the actual value. If
all non-linear effects were estimated within the acceptable er-
ror threshold then the schedule is returned. Otherwise, the
same procedure is called again recursively, with s carrying
the new set of temporal constraints C and δṼ updated with
new gradient approximations.

Figure 2 illustrates the intuition behind the non-linear iter-
ative convergence algorithm. Starting from the value vub at
one of the known bounds of the state’s duration, ub, the al-

gorithm interpolates a linear approximation intercepting the
non-linear function at t = 0 and t = ub. A linear program
is used to determine the duration for the state considering the
rest of the constraints, establishing it to be d0. At this point
the error ed0 is computed from the value of the real function,
and it is determined that it exceeds the maximum allowed er-
ror, em, for that function. A new gradient approximation that
halves the error at d0 is then used and the LP is computed
once again, obtaining d1. The procedure is repeated until the
error is small enough to accept the value.

t

v

ub

vub

vd0

d0 d1

vd1

ed0

v0

0 d2

vd2

Figure 2: Non-linear iterative convergence on a monotonic
continuous function.

6 Empirical Evaluation
The non-linear convergence algorithm was integrated with
the planning framework described in Sections 3 and 4. The
implemented planner, uNICOrn, performs a breadth-first
search (BFS) starting at the initial state and expanding each
temporal state, s, according to the set of applicable actions.
An action, a ∈ O, is deemed applicable if the propositional
and non-time-dependent preconditions in pre(a) are satisfied
by the temporal state, and if a schedule for the plan of the
new state, s′ = eff (a)(s), is found by the LP.

The node expansion process of the BFS was slightly modi-
fied to suit better the temporal characteristics of the planning
problem. If the temporal state being expanded has no ex-
ecuting actions (Q = ∅), a dummy goal action ag , where
pre(ag) = G and eff (ag) = ∅, is checked for applicability
and if it is, its resultant temporal state is put at the head of the
BFS open list. This handles cases where the plan of the cur-
rent temporal state can actually achieve the goal conditions
if subjected to the right schedule. On the other hand, if the
temporal state has executing actions (|Q| > 0) and the goal
conditions have been satisfied, the corresponding applicable
end snap actions are added to the BFS open list before adding
the rest of the applicable actions. This gives a preference to
evaluate snap actions that end executing durative actions be-
fore starting new ones.

The system was evaluated using two domains, the Tanks
domain (described below), and the Car domain [Fox, 2006].
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In both cases, their non-linear characteristics were encapsu-
lated in semantically attached functions, and both were mod-
elled using PDDL 2.1. Tests were performed using an Intel R©

Core
TM

i7-3770 CPU @ 3.40GHz.
The Tanks domain consists of tanks and buckets, where

each tank has a spigot at the bottom, through which the liq-
uid inside the tank is allowed to flow out by gravity. The
velocity with which the liquid flows out is not constant but
follows Torricelli’s law of fluid dynamics. This velocity de-
creases over time, in relation to the height of the liquid in the
tank, until it reaches zero. The height itself also decreases
non-linearly depending on the outflow velocity.

These two non-linear functions were semantically attached
to the planning domain through Torr.drain-rate and
Torr.height-change, where Torr is the alias of the mod-
ule providing these external functions. The module also in-
troduces a special type Tank, and numeric fluents for the
height, surface-area and hole-area, representing the
initial height of the fluid in a tank, the surface area of the fluid
in a tank, and the area of the hole in the spigot, respectively.
These are used by the module to calculate the drain rate and
change in height according to Torricelli’s law. A Bucket has
a maximum capacity and volume of liquid it contains.

(:durative-action fill
:parameters (?t - Torr.Tank

?b - Bucket)
:duration (and (>= ?duration 0))
:condition (and

(over all (>= (Torr.height ?t) 0))
(over all

(<= (volume ?b) (capacity ?b)))
(at start (not(filling ?b)))
(at start (not(filled-from ?t))))

:effect (and (at start (filling ?b))
(at start (filled-from ?t))
(increase (volume ?b)

(* #t (Torr.drain-rate ?t)))
(decrease (Torr.height ?t)

(* #t (Torr.height-change ?t)))
(at end (not(filling ?b)))))

Listing 2: The fill durative action.

Listing 2 shows the PDDL for the fill durative action,
which updates the volume of the Bucket ?b together with
the height of Tank ?t, in relation to the duration of the ac-
tion. Throughout the action the height of the tank must re-
main non-negative, and the volume of liquid contained in the
bucket must be less than or equal to its capacity. The goal
of the problem is to fill the bucket up to within one hundred
units of its capacity, and make use of all the tanks available.
Listing 3 shows the goal condition with three tanks.

(:goal (and
(> (volume b1) (- (capacity b1) 100))
(<= (volume b1) (capacity b1))
(filled-from tank1)
(filled-from tank2)
(filled-from tank3)))

Listing 3: Goal condition for 3-tank problem.

Listing 4 shows the output plan for the Tanks problem with
3 tanks, with error tolerance em = 0.0001 and ε = 0.001.
Changing the error tolerance value will have an impact on the
durations of the actions in the plan since they have non-linear
continuous effects.

0.0000: (fill tank1 bucket1) [11176.1667]
11176.1677: (fill tank2 bucket1) [11176.1666]
22352.3353: (fill tank3 bucket1) [8423.8748]

Listing 4: 3-tank plan with an Error Tolerance of 0.0001

Figure 3 shows the time taken to produce a plan for this
domain, for up to ten tanks. In each case the capacity of the
bucket was set such that all tanks need to be used to achieve
the goal volume. Each problem was also executed with a
range of error tolerance values to analyse the impact of the
increase in the number of iterations needed to converge.
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Figure 3: Performance of uNICOrn on the problem instances
for the Tanks domain with decreasing error tolerance.

While the time needed to solve the problem increases ex-
ponentially with the number of tanks, partly due to a higher
branching factor that needs to be explored by the breadth-first
search, decreasing the error tolerance required has a low im-
pact on the over all planning process. Table 1 compares the
performance of uNICOrn (with 0.1 error tolerance) with that
of UPMurphi (with 1.0 time discretisation) using a maximum
of 3GB memory on the same setup. Missing timings indicate
that the planner ran out of memory.

Tanks 1 2 3 4 5 6 7
uNICOrn 0.31s 0.43s 0.67s 0.94s 1.33s 2.28s 4.70s
UPMurphi 0.16s 0.64s 31.44s • • • •

Table 1: Performance of uNICOrn and UPMurphi on problem
instances of the Tanks domain.

The Car domain [Fox, 2006] includes a durative action,
drive, which increases the distance travelled with respect
to the vehicle’s velocity, and two instantaneous actions,
accelerate and decelerate, which increase and decrease
the acceleration of the vehicle by one unit respectively. With
a non-zero acceleration, the velocity increases linearly over
time, making the distance travelled with respect to time non-
linear. The drive action can only end if the car is stationary.
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The goal is to travel a distance of thirty units. Two in-
stances of the domain were tested, one without any time
bounds, and one with an upper bound of fifty on the dura-
tion of the drive action, in order to increase the constraints
on the plan. The results of these tests are shown in Table 2.

uNICOrn UPMurphi
1 0.1 0.01 0.001 0.0001 1.0 0.1

Unbounded 0.76s 0.76s 0.83s 0.88s 0.92s 4.72s •
Bounded 0.97s 1.09s 1.13s 1.16s 1.17s 4.34s •

Table 2: Performance of uNICOrn and UPMurphi on two
problem instances of the Car domain, with decreasing error
tolerance / time discretisation.

7 Conclusion
Non-linear change is present in many real-world contexts,
and the ability to support such functions within a planning
system makes it more useful in applications that stand to ben-
efit from such technology. We have presented an approach
that builds on existent LP-based techniques, that are already
quite effective at handling linear change, and enhanced them
with the capabilities to handle piecewise linear continuous
effects and also approximate monotonic non-linear change
through an iterative improvement method. The planning
framework is designed to support the inclusion of virtually
any non-linear monotonic continuous function in a planning
domain, through a semantic attachment mechanism.

The results from evaluating the new planning system on
domains with non-linear continuous change show that the im-
pact of this algorithm on the overall performance is low. De-
creasing the error tolerance did not correspond to any signif-
icant performance degradation. These findings open up new
possibilities on how non-linear continuous behaviour can be
managed within a planning system through the use of linear
interpolation and approximations.
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