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Abstract
We consider the computational complexity of com-
puting welfare maximizing partitions for fractional
hedonic games—a natural class of coalition forma-
tion games that can be succinctly represented by a
graph. For such games, welfare maximizing par-
titions constitute desirable ways to cluster the ver-
tices of the graph. We present both intractability
results and approximation algorithms for comput-
ing welfare maximizing partitions.

1 Introduction
Social network analysis is one of the pressing problems in
various disciplines including sociology, economics, physics,
and computer science [Brandes and Erlebach, 2005]. One of
the most prominent issues within the area is that of network
clustering: given a network, can it be partitioned into cohe-
sive groups [Newman, 2004; Schaeffer, 2007]? The problem
is also referred to as community detection [Olsen, 2012].

In network clustering, the predominant approaches to find
useful clusters is to maximize intra-cluster density measures
and to minimize inter-cluster density measures. Various clus-
tering measures that constitute tradeoffs between the two cri-
teria have been introduced. An important research issue is
to identify the most desirable clustering measure among the
plethora of clustering measures and rules. Most measures do
not have a game-theoretic justification that may have some
merit when modeling network clustering in distributed envi-
ronments.

In recent work, there has been a push to use game-theoretic
concepts to model network clustering [Papadimitriou, 2001].
Hedonic games is an example of such models. A hedonic
game comprises a set of agents who express preferences over
coalitions they are present in and outcomes are partitions of
the agents into disjoint coalitions [Bogomolnaia and Jack-
son, 2002; Aziz and Savani, 2015]. It provides a natural
framework to study coalition formation. A particularly rel-
evant class of hedonic games that helps model network clus-
tering is that of fractional hedonic games (FHGs), which
further satisfy desirable properties [Aziz et al., 2014]. In
FHGs, each vertex of the network can be considered as an
agent. An agent i’s valuation vi(j) of an agent j can be rep-
resented by the weight of the directed edge (i, j). Agent i’s

valuation of a coalition S of agents is then the mean valu-
ation

∑
j∈S vi(j)/|S| of the members of S. Based on the

FHG, outcomes that satisfy some notion of stability or wel-
fare are considered desirable clusterings. FHGs have a nice
correspondence with clustering: each agent corresponds to
a vertex; each coalition corresponds to a cluster; and a par-
tition corresponds to a clustering. We refer to Section 6 in
[Aziz et al., 2014] for detailed motivation behind studying
welfare maximizing partitions for network clustering. Wel-
fare maximizing partitions of fractional hedonic games sat-
isfy some axioms (scale invariance, richness, and consis-
tency) that many classic network clustering methods do not
satisfy simultaneously. Other than providing a novel perspec-
tive on network clusterings, FHGs also capture natural so-
cial, economic, and political settings in which agents ‘seek to
maximize the average agreement with the members of their
coalition’ [Brandl et al., 2015].

Fractional hedonic games have recently received inter-
est in various papers with the focus primarily being on
stability concepts [Brandl et al., 2015; Bilò et al., 2014;
2015]. In this paper, we focus on maximizing various wel-
fare objectives including utilitarian (sum of utilities), egali-
tarian (utility of worst off agent) and Nash welfare (product
of utilities).

Contributions We present several results on FHGs, and in
particular for simple symmetric FHGs. An FHG is symmetric
if every two agents have the same valuation for each other,
and it is simple if all valuations are 0 or 1. Our results are
summarized as follows. We present (i) simple examples
that show that utilitarian, egalitarian, and Nash welfare maxi-
mizing outcomes need not coincide, even in simple symmet-
ric FHGs; (ii) a reduction that shows that maximizing util-
itarian welfare, egalitarian welfare, or Nash welfare is NP-
hard, even for simple symmetric FHGs; (iii) a polynomial-
time 2-approximation algorithm for maximizing the utilitar-
ian welfare of simple symmetric FHGs; (iv) a polynomial-
time 4-approximation algorithm for maximizing the utilitar-
ian welfare of symmetric FHGs; and (v) a polynomial-time 3-
approximation algorithm for maximizing the egalitarian wel-
fare of simple symmetric FHGs. The computational results
are summarized in Table 1.
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Objective Restriction Complexity Reference
utilitarian simple symmetric NP-hard Th. 3
utilitarian simple symmetric 2-approx Th. 6
utilitarian symmetric 4-approx Th. 7

egalitarian simple symmetric NP-hard Th. 3
egalitarian simple symmetric 3-approx Th. 8

Nash simple symmetric NP-hard Th. 4

Table 1: Our results for welfare maximization for FHGs.

Related Work Network clustering and community detec-
tion are vast fields with many clustering measures and algo-
rithms introduced for the problems. We recommend [New-
man, 2004] and [Schaeffer, 2007] for surveys on the topic.

Other classes of hedonic games based on graphs have been
examined from a social welfare perspective. In particular, ad-
ditively separable hedonic games are a related class of games
that can also be represented by graphs [Aziz et al., 2013].
Aziz et al. [2014] pointed out axiomatic justification to con-
sider welfare maximizing or stable partitions of FHGs and
why stable or efficient outcomes of FHGs provide better clus-
terings than their counterparts for additively separable hedo-
nic games. Olsen [2012] examined a variant of FHGs and
considered computation of Nash stable outcomes. In the
games he considered, however, every perfect matching is a
best possible outcome even if there are large cliques present
in the graph. By contrast, in FHGs, agents have an incentive
to form large cliques.

In prior work on FHGs, most of the focus has been on sta-
ble partitions. Although stability concepts like core stabil-
ity capture incentive aspects, a disadvantage of these stabil-
ity concepts is that a stable outcome may not be guaranteed
to exist [Aziz et al., 2014; Bilò et al., 2014; Brandl et al.,
2015] or may suggest the partition consisting of the grand
coalition [Bilò et al., 2014]. In these situations the stability
concept may not always suggest a desirable clustering or par-
tition.

2 Preliminaries
Let N be a set {1, . . . , n} of agents or players. With a slight
abuse of terminology we refer to both the set N of all players
and the partition {N} as the grand coalition. A hedonic game
is a pair (N,%), where %= (%1, . . . ,%n) is a profile of com-
plete and transitive relations %i, modeling the preferences of
the players. An outcome of a hedonic game is a partition µ of
the agents inN . Each set in µ is called a coalition. The coali-
tion in which agent i participates in partition µ is denoted by
µ(i).

A value function for a player i is defined as a func-
tion vi : N → R assigning a real value to each of the players.
Unless stated otherwise we assume vi(i) = 0. A value func-
tion vi induces a value function over coalitions where for each
coalition S containing agent i, the utility agent i derives from
participating in coalition S is vi(S) =

∑
j∈S vi(j)

|S| . A hedo-
nic game (N,%) is now said to be a fractional hedonic game
(FHG) if for each player i in N there is a value function vi
such that for all coalitions S, T ⊆ N , S %i T if and only if

1 2
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Figure 1: The partition {{1, 2, 3, 4}, {5}} maximizes util-
itarian welfare. However, its egalitarian and Nash wel-
fares are 0. The maximum egalitarian/Nash welfare partition
{{1, 2, 3}, {4, 5}}.

vi(S) ≥ vi(T ). Hence a fractional hedonic games can simply
be defined by the value function v.

An FHG is said to be symmetric if vi(j) = vj(i) and simple
if vi(j) ∈ {0, 1}. A simple FHG (N,%i) can be represented
by a directed graph (N,E) in which (i, j) ∈ E if and only
if vi(j) = 1. In a much similar fashion, if (N,%i) is both
symmetric and simple, it can be represented by an undirected
graph (N,E) such that {i, j} ∈ E if and only if vi(j) =
vj(i) = 1. The complete undirected graph on n vertices is
denoted by Kn whereas an undirected cycle on n vertices is
denoted by Cn.

We consider the following notions of welfare of a par-
tition µ of N : (i) utilitarian welfare:

∑
i∈N vi(µ(i));

(ii) egalitarian welfare: mini∈N vi(µ(i)); (iii) Nash welfare:∏
i∈N vi(µ(i)). Before we formalize computational prob-

lems to maximize the three welfare notions, we point out that
even in the restricted domain of simple symmetric FHGs, the
three welfare notions are different. We first present exam-
ples that show that the utilitarian, egalitarian, and Nash wel-
fare objectives are not equivalent even for simple symmetric
FHGs.

Example 1 Consider a cliqueKk of size k with an additional
vertex v attached using a single edge (see Fig. 1). If k ≥ 4,
the partition {Kk, {v}} maximizes utilitarian welfare, which
is k(k−1)

k + 0
1 = k−1. But it gives zero egalitarian and Nash

welfare, while other partitions have greater egalitarian and
Nash welfare.

Example 2 For the FHG in Fig. 2, we know that a
perfect matching gives maximum egalitarian welfare 1/2

and Nash welfare (1/2)
10

= 0.0009765625. However,
{{1, 2, 3, b4, b5}, {4, 5, b1, b2, b3}} has greater Nash welfare,
namely ( 45 )

3
( 35 )

2
( 45 )

2
( 25 )

3 ≈ 0.0075497472.

We consider the following computational problems for
welfare objective W ∈ {UTILITARIAN, EGALITARIAN,
NASH}.

Name: W WELFARE
Instance: An FHG represented by a directed weighted graph
G = (N,E).
Output: A partition that maximizes theW welfare.

When considering the restriction of these problems to sym-
metric (simple) FHGs, G will be undirected (and un-
weighted).

462



1 b1

2

b2

3

b3

4

b4 5

b5

Figure 2: The maximum egalitarian welfare partition
{{1, b2}, {2, b3}, {3, b4}, {4, b5}, {5, b1}} does not maxi-
mize Nash welfare. Some edges are dotted for easier visu-
alization.

3 Hardness
In this section, we examine partitions with the maximum util-
itarian welfare (which maximize the sum of the utilities of the
players), the maximum egalitarian welfare (which maximize
the utility of the player who is worst off) and the Nash wel-
fare (which maximizes the product of utilities of the players).
First we point out an alternative way to define maximum util-
itarian partitions of simple FHGs: maxµ

∑
i∈N vi(µ(i)) =

maxµ
∑
C∈µ

2|E(C)|
|C| . Here, E(C) denotes the edges that

have both endpoints in C. We define the utility of a clus-
ter C ∈ µ to be the contribution of the vertices in C to
the objective; in other words, the utility of C is defined as
u(C) = 2|E(C)|

|C| . When the setting is weighted, we define the

utility of C as u(C) = 2w(E(C))
|C| .

Theorem 3 For simple symmetric FHGs, UTILITARIAN
WELFARE and EGALITARIAN WELFARE are both NP-hard.

Proof: Our proof is by a polynomial reduction from PARTI-
TIONINTOTRIANGLES [Garey and Johnson, 1979].

Name: PARTITIONINTOTRIANGLES
Instance: An undirected weighted graph G = (V,E) with
|V | = 3q = n for some integer q.
Output: ‘Yes’ if the vertices of G can be partitioned into q
disjoint sets V1, V2, ..., Vq , each containing exactly 3 vertices,
such that each of these Vi is the node set of a triangle in G.
‘No’ otherwise.

It is well-known that PARTITIONINTOTRIANGLES is NP-
complete even for 3-partite graphs in which each of the in-
dependent three sets is specified. We reduce PARTITIONIN-
TOTRIANGLES for 3-partite graphs to computing a partition
with the maximum utility. We denote the three vertex sets
in G as X , Y , and Z.

The claim is that a partition into triangles is a partition with
the maximum utility. It is clear that each player gets utility
2/3. Therefore, the total utility of the partition is 2n/3. Now
assume that there exists a partition µ other than a partition
into triangles which achieves utility greater than 2n/3. Then,

µ must contain at least one coalition S which has average
utility greater than 2/3. However, we show that this is not
possible. For a coalition of size one or two, this certainly
does not hold. Let us assume that we have a coalition S with
x vertices from X , y from Y , and z vertices from Z such that
x ≥ y ≥ z ≥ 1 and x ≥ 2. In the worst case (for partition
into triangles to not maximize welfare), the graph induced by
vertices in S is a complete 3-partite graph. Then the utility of
vertices in S of type X is y+z

x+y+z , the utility of vertices in S
of type Y is x+z

x+y+z , and the utility of vertices in S of type Z
is x+y
x+y+z . Therefore, the average utility of vertices in S is

z(x+y)
x+y+z + x(y+z)

x+y+z + y(x+z)
x+y+z

x+ y + z
=

2(xy + yz + xz)

(x+ y + z)
2 .

We need to prove that this value is less than or equal 2/3.
Therefore, it is sufficient to prove that

(x+ y + z)
2 ≥ 3(xy + yz + xz)

iff x2 + y2 + z2 ≥ xy + yz + xz

iff (x− z)(x− y) + (y − z)(y − z) ≥ 0.

Since x ≥ y ≥ z, the last inequality holds so we know that
for any coalition, the average utility can be at most 2/3. The
inequality is tight, i.e., average utility is exactly 2/3 only if
x = y = z and the graph induced by the vertices in S is a
complete 3-partite graph. But in that case, S can be parti-
tioned into x triangles. Therefore, we have proved that if we
want to check whether G can be partitioned into triangles, it
is enough to compute a partition with the maximum utilitar-
ian welfare and check whether each vertex has utility exactly
2/3.

The same reduction and argument can be used to prove that
computing a partition with the maximum egalitarian utility is
also NP-hard. 2

We use a similar argument to prove the following.

Theorem 4 For simple symmetric FHGs, NASH WELFARE
is NP-hard.

Proof: Consider the reduction in the proof of Theorem 3.
The claim is that a partition into triangles is the partition with
the maximum Nash welfare. It is clear that each player gets
utility 2/3. Therefore, the Nash welfare of the partition is
(2/3)

n. Now assume that there exists a partition µ other than
a partition into triangles which achieves Nash welfare utility
greater than (2/3)

n which means that the geometric mean of
the Nash welfare utilities is greater than 2/3. Then, µ must
contain at least one coalition in which the geometric mean of
the Nash welfare utilities of the coalition is greater than 2/3.
However, we show that this is not possible. Let us assume
again that we have a coalition S of size at least three with
x vertices from X , y from Y , and z vertices from Z such
that x ≥ y ≥ z ≥ 1 and x ≥ 2. In the worst case (for
partition into triangles to not maximize welfare), the graph
induced by vertices in S is a complete 3-partite graph. There-
fore, the geometric mean of the Nash welfare of vertices in S

is x+y+z

√(
x+y
x+y+z

)z( y+z
x+y+z

)x( x+z
x+y+z

)y
. We need to prove
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that this value is less than or equal 2/3. We use the inequality
of arithmetic and geometric means:

n
√
x1x2 · · ·xn ≤

x1 + x2 + · · ·+ xn
n

∀x1, . . . , xn ≥ 0.

Therefore, for any coalition, the geometric mean of the Nash
welfare utilities of the vertices in the coalition is at most the
arithmetic mean of the utilitarian welfare valuations which we
showed can be at most 2/3. An average utilitarian welfare of
exactly 2/3 can be achieved only if x = y = z and the graph
induced by the vertices in S is complete 3-partite. But in that
case, S can be partitioned into x triangles. 2

Bilò et al. [2014] presented a more elaborate reduction to
show that computing a maximum utilitarian welfare Nash
stable partition as well as maximizing utilitarian welfare is
NP-hard. Our reduction is relatively simpler and simultane-
ously shows that three different measures of welfare are NP-
hard to achieve. In subsequent sections, we examine the ap-
proximation of maximum utilitarian welfare and egalitarian
welfare.

4 Approximating utilitarian welfare
In this section, we present approximation algorithms for
UTILITARIAN WELFARE for symmetric FHGs. We start with
simple symmetric FHGs, where we obtain better approxima-
tion ratios.

4.1 Utilitarian welfare for simple symmetric FHGs
Our first algorithm takes as input an undirected unweighted
graph G = (N,E). It computes a maximal matching M and
outputs the clustering induced by the matching; namely, for
each edge {u, v} ∈ M , we output the cluster {u, v}, and for
each unmatched vertex u ∈ N , we output the cluster {u}.

Theorem 5 For simple symmetric FHGs, UTILITARIAN
WELFARE has a linear-time 4-approximation algorithm.

Proof: We can compute a maximal matching and its induced
clustering inO(|N |+ |E|) time, so the time complexity claim
follows.

Let M be the maximal matching computed by the algo-
rithm and µ be the clustering induced by M . Let µ∗ =
{C1, . . . , Cp} be an optimal clustering of G. Let A be the
vertex set of M and B be N \A. Note that by the maximality
of M , there are no edges connecting vertices in B.

Consider a cluster Ci ∈ µ∗. It can contain vertices of A,
denoted by Ai, and vertices of B, denoted by Bi. The utility
of Ci is maximized when the number of edges between the
vertices of Ci is maximized. The number of edges within Ci
is upper bounded by the number of edges between vertices
in Ai, which is at most

(|Ai|
2

)
, plus the number over edges

connecting vertex in Ai with a vertex in Bi, which is at most
|Ai| · |Bi|. The utility of Ci is then

u(Ci) ≤
2
(|Ai|

2

)
+ 2|Ai||Bi|

|Ai|+ |Bi|

=
|Ai|(|Ai| − 1 + 2|Bi|)

|Ai|+ |Bi|
≤ 2|Ai|

Hence, the total utility of µ∗ is at most 2|A|. On the other
hand, the total utility of µ is |A|/2. Therefore, the solution
output is 4-approximate. 2

Our second algorithm is very similar but instead of com-
puting a maximal matching, it uses a maximum cardinality
matching.

Theorem 6 For simple symmetric FHGs, UTILITARIAN

WELFARE has an O(
√
|N ||E|)-time 2-approximation algo-

rithm.

Proof: Notice that the maximum cardinality matching can be
computed in O(

√
|N ||E|) time [Micali and Vazirani, 1980],

so the time complexity claim follows. Let M be the maxi-
mum matching computed by the algorithm and µ be the clus-
tering induced by M . Let µ∗ = {C1, . . . , Cp} be an opti-
mal clustering of G. Let M ′ = M ′1 ∪ . . . ∪M ′p where M ′i ,
1 ≤ i ≤ p, is a maximum matching of the subgraph of G
induced by the vertices in Ci. Finally, let µ′i be the clustering
induced by M ′i and let µ′ be the clustering induced by M ′.

Consider an arbitrary cluster Ci of µ∗ with vertex set Ni.
Let Ai be the vertex set of M ′i and let Bi = Ni \Ai.

Claim 1 For any i = 1, . . . , p and any edge {u, v} ∈M ′i we
have degBi

(u) + degBi
(v) ≤ |Bi| + 1, where degBi

(u) is
the number of neighbours of u in G that belong to Bi.

Proof: If u and v do not have a common neighbor in Bi, the
bound follows since degBi

(u) + degBi
(v) ≤ |Bi|. Suppose

then that u and v are both connected to a vertex x ∈ Bi.
If this is the case, then neither u or v can be connected to
any other vertex in Bi, since this would create an augmenting
path of length 3 (e.g., if u was adjacent to some y ∈ Bi − x
then we have the augmenting path 〈y, u, v, x〉), contradicting
the maximum cardinality of M ′i . Notice that in this case the
bound also holds since degBi

(u) + degBi
(v) = 2 ≤ |Bi| +

1. 2

We upper bound the utility of Ci as follows

u(Ci) =
1

|Ci|
∑
u∈Ci

degCi
(u)

=
1

|Ci|
∑
u∈Ai

(
degAi

(u) + 2 degBi
(u)
)

=
1

|Ci|
∑

(u,v)∈M ′
i

(
degAi

(u) + degAi
(v)

+ 2 degBi
(u) + 2 degBi

(v)
)

≤ 1

|Ai|+ |Bi|
∑

(u,v)∈M ′
i

(2(|Ai| − 1) + 2(|Bi|+ 1))

= |Ai| .

Therefore the total utility of the optimal solution is

u(µ∗) ≤
p∑
i=1

u(Ci) ≤
p∑
i=1

|Ai| = 2 · |M ′|,
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while the utility of µ′ is

u(µ′) =

p∑
i=1

u(µi) =

p∑
i=1

|Ai|
2

= |M ′|,

Since |M | ≥ |M ′| we get

u(µ∗) ≤ 2 · u(µ′) ≤ 2 · u(µ).

Therefore the solution output is 2-approximate. 2

4.2 Utilitarian welfare for symmetric FHGs
We show how the 4-approximation for unweighted graphs
can be extended to weighted graphs. Again, the algorithm is
very similar but in this case we compute a maximum weight
matching.

Theorem 7 For symmetric FHGs, UTILITARIAN WELFARE
has a polynomial-time 4-approximation algorithm.

Proof: Notice that a maximum weight matching can be com-
puted in O(|N |(|E| + |N | log |N |)) time [Gabow, 2009], so
the time complexity claimed follows.

Let M be the maximum weight matching computed by the
algorithm and µ be the clustering induced by M . Let µ∗ =
{C1, . . . , Cp} be an optimal clustering. Let M ′ = M1 ∪
. . . ∪ Mp where Mi, 1 ≤ i ≤ p, is a greedy matching of
the subgraph induced by the vertices in Ci, where a greedy
matching is obtained by iteratively picking the heaviest edge.
Finally, let µ′i be the clustering induced by M ′i and let µ′ be
the clustering induced by M ′.

Let Ai be the set of vertices matched in Mi and Bi =
Ci \Ai. Furthermore, let {u1, v1}, . . . , {uk, vk} be the edges
of Mi in the order they were chosen, and let w1, . . . , wk
denote their weight. Since Mi is maximal, it follows that
there are no edges within Bi. Therefore, for every edge
(x, y) ∈ E[Ci] it must be the case that x = uj or y = vj
for some i; furthermore, by the greedy nature in which Mi is
computed, we havew(x, y) ≤ wj . In other words, every edge
(x, y) in Ci has an endpoint uj or vj such that w(e) ≤ wj .

Therefore, the utility of cluster Ci is at most

u(Ci) ≤
1

|Ci|

k∑
j=1

4(|Ci| − 1)wj < 4 · w(Mi).

On the other hand, the total utility of µ′i is w(M ′i). Further-
more, since w(M ′) ≤ w(M) we get

u(µ∗) ≤ 4 · u(µ′) ≤ 4 · u(µ).

Therefore the solution output is 4-approximate. 2

5 Approximating egalitarian welfare
In this section we consider the problem of maximizing egal-
itarian welfare for simple symmetric FHGs; that is, we want
to maximize the value that the worst-off agent gets.

The algorithm takes as input an undirected unweighted
graph G = (N,E). If G contains an isolated vertex, then
output the grand coalition. The next step of the algorithm
is to compute a maximum cardinality matching M in G. If

the matching is perfect, the algorithm stops and returns the
clustering induced by M . Otherwise, we construct a bipartite
graph from G by contracting every edge {u, v} ∈ M into a
super-node {u, v} and deleting edges between super-nodes.
Let H = (S,U, F ) be the resulting graph, where S is the set
of super-nodes, U is the set of unmatched vertices in G, and
F is the set of edges in the contracted graph.

Next, we compute in H an assignment of U into S whose
first objective is to minimize the maximum number ` of ver-
tices of U any super-node in S receives, and whose secondary
objective is to minimize the number of super-nodes in S that
receive ` vertices from U . This can be done using a mini-
mum cost network flow algorithm. For a given value of `,
start from H with all edges having capacity 1 and cost 0, add
a source node pushing one unit of flow to each vertex from
U at no cost, and add a sink node that is connected to each
vertex from M with one edge with capacity ` − 1 and cost 0
and another edge with capacity 1 and cost 1.

Finally, for each super-node {x, y} ∈ S we look at the ver-
tices in U that were assigned to it, say u1, . . . , uk, and put all
the vertices into a single cluster, namely, {x, y, u1, . . . , uk}.

Theorem 8 For simple symmetric FHGs, EGALITARIAN
WELFARE has a polynomial-time 3-approximation algo-
rithm.

Proof: The running time of the described algorithm is clearly
polynomial. We will show that it computes a partition whose
egalitarian welfare is at least 1/3 the maximum egalitarian
welfare. If G contains an isolated vertex v, then every par-
tition maximizes egalitarian welfare, which is 0, since v has
utility 0 in every partition.

Let us now consider the case where G contains no isolated
vertex. First observe that for any coalition T and any agent
i ∈ T we have vi(T ) < 1. Secondly, note that if the matching
M found by the algorithm is perfect, then for the clustering
µ induced by M we get vi(µ(i)) = 1

2 . Therefore, if M is
perfect the solution output is at least 2-approximate.

Let us then focus on the case where M is not perfect and
there is a set of vertices U that are left unmatched. The set U
is an independent set inG, sinceM is a maximum cardinality
matching. The vertices in U are then assigned to super-nodes
in S using the graphH . (Recall that each super-node in S cor-
responds to an edge in M .) We note that such an assignment
always exists since every vertex u ∈ U must be adjacent in
H to at least one super-node because U is independent and G
contains no isolated vertices. Let ` be the maximum number
of vertices that any super-node receives.

Claim 2 The egalitarian welfare of µ is at least 1
`+2 .

Proof: Every cluster C we output is connected, so every ver-
tex i ∈ C has at least one neighbor in C. Hence,

vi(C) =
degC(i)

|C|
≥ 1

|C|
≥ 1

`+ 2
.

2
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Therefore, if ` = 1 the solution is 3-approximate. Let us
assume from now on that ` ≥ 2. We will useNH(v) to denote
the set of vertices adjacent to vertex v in H .

Let S′ ⊆ S denote the super-nodes that receive exactly
` vertices from U in the assignment. Iteratively add to S′

any super-node s ∈ S \ S′ such that s is assigned exactly
`− 1 vertices from U and there exists s′ ∈ S′ that is assigned
a vertex u ∈ NH(s), until no such s exists anymore. Let
U ′ ⊆ U denote the vertices from U that are assigned to S′.

We will upper bound the maximum egalitarian welfare of
any partition in terms of the parameter `. To that end, we ana-
lyze the coalitions containing vertices from U ′. First, observe
that |U ′| > (`−1) · |S′|. We will now prove two claims about
the neighbors of the vertices in U ′.

Claim 3 Let u ∈ U ′ and s = {x, y} ∈ S′. Then u cannot be
adjacent inG to both x and y; namely, |NG(u)∩{x, y}| ≤ 1.

Proof: For the sake of contradiction, assume that u is adja-
cent in G to both x and y.

First, we will show that either x or y has a neighbor u′ in
U ′ \ {u}. If a vertex from U ′ \ {u} has been assigned to
s, then we can take u′ to be such a vertex. Otherwise, since
` ≥ 2 and every vertex in S′ has been assigned at least `− 1
vertices, we have that u is the unique vertex that has been
assigned to s and ` = 2. By the construction of S′, we know
that s was added to S′ in an iteration where some super-node
s′ was already in S′ and s′ was assigned a vertex u′ ∈ NH(s).
This is the vertex we were looking for.

Without loss of generality, assume that u′ ∈ NG(x).
Recall that the super-node s = {x, y} corresponds to an
edge {x, y} ∈ M . Now, we obtain an augmenting path
(u, y, x, u′), which implies that M is not maximum since
(M \ {{x, y}}) ∪ {{u, y}, {x, u′}} is a larger matching in
G—a contradiction. 2

Claim 4 Let s = {x, y} be a super-node in S′. Then either
x or y has neighbors in U ′ in the graph G, but not both.

Proof: For the sake of contradiction, assume that x has a
neighbor u ∈ U ′ and y has a neighbor v ∈ U ′. By the pre-
vious claim, we have that u 6= v. But then, (u, x, y, v) is an
augmenting path for M in G, which implies that M is not a
maximum matching—a contradiction. 2

For a super-node s = {x, y} ∈ S′, we call the vertex that
has neighbors in U ′ the leader of s. Denote by L all the
leaders of super-nodes in S′. Let us now prove thatL contains
all the G-neighbors of the vertices in U ′.

Claim 5 NG(U
′) ⊆ L.

Proof: Suppose u ∈ U ′ has a neighbor v ∈ V \L. Since U is
an independent set, v /∈ U . By Claim 4 and since v /∈ L, we
have that v cannot be a vertex inside a super-node in S′. The
only remaining possibility is that v is a vertex in a super-node
s ∈ S \ S′. Since u is assigned to some super-node s′ ∈ S′
and s has not been added to S′, we have that s is assigned
at most ` − 2 vertices. But then, by the construction of S′,
a series of changes can be performed in the assignment that

K

...

K ′

...

Figure 3: Instance showing that the analysis of the approxi-
mation ratio in Theorem 8 is tight.

decreases the number of super-nodes that are assigned ` ver-
tices from U : assign u to s instead of s′; if ` vertices had been
assigned to s′ we are done, otherwise assign the vertex from
U ′ to s′ that caused s′ to be added to S′ in the iterative con-
struction, and continue in this way until eventually decreasing
by one the number of super-nodes that are assigned ` vertices
from U . This contradicts the fact that the assignment mini-
mizes the number of edges that are assigned ` vertices. 2

In a partition µ maximizing the egalitarian welfare, each ver-
tex u ∈ U ′ shares a coalition with some vertex from L, since
NG(u) ⊆ L and an egalitarian welfare maximizing partition
contains no singleton coalitions. Consider a coalition C ∈ µ
that contains at least one vertex from L and maximizes the
ratio |C∩U

′|
|C∩L| . Since |U ′| > (`− 1) · |S′| = (`− 1) · |L|, this

ratio is greater than `− 1. Therefore, the value function for a
vertex i ∈ C ∩ U ′ is

|C ∩NG(i)|
|C|

≤ |C ∩ L|
|C|

≤ |C ∩ L|
|C ∩ U ′|+ |C ∩ L|

≤ 1

`
.

In other words, the egalitarian welfare of µ is therefore at
most 1

` . On the other hand, the egalitarian welfare of our
solution is at least 1

`+2 . Therefore, the approximation ratio of
the algorithm is at most `+2

` ≤ 2 for ` ≥ 2. 2

Fig. 3 shows an instance where our algorithm achieves an
approximation ratio arbitrarily close to 3. To construct the
instance, start with a disjoint union of two complete graphs
K and K ′ on r vertices each; then add a perfect matching M
betweenK andK ′; finally, add a new vertex i that is adjacent
to all vertices in K. If the algorithm starts with the matching
M , it will add i to one coalition corresponding to an edge
of M , and the utility for i is 1/3. In the optimal partition
{{i} ∪ K,K ′}, every vertex has utility at least (r − 1)/r.
This gives an approximation ratio of 3− 3

r .

6 Conclusions
In this paper, we initiated an analysis of approximation al-
gorithms for welfare maximization in FHGs. Note that for
trees, straightforward dynamic programming techniques can
be used to compute a maximum welfare partition. It re-
mains to be seen whether one can obtain fixed parametrized
tractable results for parameter treewidth. For utilitarian and
egalitarian welfare, we presented approximation algorithms.
It remains open whether there are similar approximation
bounds for maximum Nash welfare and better bounds for util-
itarian and egalitarian welfare.
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