
Revenue Maximization Envy-Free Pricing for Homogeneous Resources

Gianpiero Monaco
University of L’Aquila, Italy
gianpiero.monaco@univaq.it

Piotr Sankowski
University of Warsaw, Poland

sank@mimuw.edu.pl

Qiang Zhang
University of Warsaw, Poland

qzhang@mimuw.edu.pl

Abstract
Pricing-based mechanisms have been widely stud-
ied and developed for resource allocation in multi-
agent systems. One of the main goals in such
studies is to avoid envy between the agents, i.e.,
guarantee fair allocation. However, even the sim-
plest combinatorial cases of this problem is not
well understood. Here, we try to fill these gaps
and design polynomial revenue maximizing pric-
ing mechanisms to allocate homogeneous resources
among buyers in envy-free manner. In particu-
lar, we consider envy-free outcomes in which all
buyers’ utilities are maximized. We also consider
pair envy-free outcomes in which all buyers prefer
their allocations to the allocations obtained by other
agents. For both notions of envy-freeness, we con-
sider item and bundle pricing schemes. Our results
clearly demonstrate the limitations and advantages
in terms of revenue between these two different no-
tions of envy-freeness.

1 Introduction
Pricing-based mechanisms become a key approach to allo-
cate resources in multi-agent systems. For example, in spon-
sored search ad-slots are sold in online auctions [Nisan et
al., 2009]. Main objectives in designing such mechanisms
could include social welfare maximization, revenue maxi-
mization, strategy-proofness and/or fairness. In this paper,
we consider the problem of assigning m homogeneous items
or resources among n buyers without budgets, where agents
valuations depend only on the number of items they get.
This multi-unit settings allows us to highlight and concen-
trate on the simplest case where allocating different num-
ber of items to different agents plays a crucial role, i.e., it
is arguably the most basic variant of combinatorial auctions.
Somewhat astonishingly, this very simple settings generates a
rich set of problems to study. Still, this limited setting seems
to be of practical importance as these items could be ho-
mogeneous server grids or supercomputers in computer net-
works, power supply in manufacture systems, cargo space in
transportation industry and etc. Our goal is to design poly-
nomial pricing mechanisms that maximize the seller’s rev-
enue and assign items to buyers in a fair manner. One of

the common notions used to model fair division is envy-
freeness, where each agent believes that he is treated the best.
Envy-freeness dates back to twenty century [Foley, 1967;
Varian, 1974] and is still an intense research topic in math-
ematics, computer science and economics. Different notions
of envy-freeness have been proposed and studied in the liter-
ature. For example, envy-freeness was defined to denote the
outcomes where all buyers receive the allocations they pre-
fer the most at given prices [Bilò et al., 2014; Briest, 2008;
Chen and Deng, 2010; Guruswami et al., 2005; Hartline and
Koltun, 2005]. As the prices for unsold items are not nec-
essarily zero, this is a relatively weaker notion than Wal-
rasian equilibrium (WE) [Walras, 1954]. On the other hand,
following suggestions from classical papers [Foley, 1967;
Varian, 1974], envy-freeness has also been defined in out-
comes where buyers prefer their allocations to the alloca-
tions received by other agents [Colini-Baldeschi et al., 2014;
Feldman et al., 2012; Fiat and Wingarten, 2009]. Throughout
this paper, we will call the latter notion pair envy-freeness. It
is easy to see that WE ⊂ envy-freeness ⊂ pair envy-freeness.

With respect to pricing mechanisms, Guruswami et
al. [2005] showed that the Vickrey-Clarke-Groves (VCG)
mechanism could return envy-free outcomes in polynomial
time when buyers can buy only single items, i.e., unit-demand
valuations. However, VCG not only fails to deliver envy-
free outcomes in our setting, but also could result in poor
revenues. Hence, we need to propose different mechanisms
for the case studied here. First of all, we observe that for
both our notions of envy-freeness we can restrict our atten-
tion to bundle pricing schemes, where the seller sets up a
price for each bundle size and the payment of buyer i is
the price of the bundle assigned. If a price for a given
bundle size is infinite it can be seen as not selling items at
this quantity at all, e.g., in many cases we are offered to
buy a single item, or a fixed multi-pack of items at a dis-
counted price. In other words, envy-freeness implies that
we have to avoid price discrimination [Carlton and Perloff,
1990], i.e., sell the same bundles to different agents at dif-
ferent prices. In some cases we might want to be even less
discriminatory and apply item pricing [Feldman et al., 2012;
Colini-Baldeschi et al., 2014], where the seller sets up an uni-
form price p ∈ R for each item and the payment of buyer i is
proportional to the number of items he receives.

Bundle pricing is more general and powerful and so al-
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single-minded
valuations

non-decreasing
valuations

general
valuations

item
pricing

Envy-free
lower
bound NP-hard polytime
upper
bound FPTAS

Pair Envy-free
lower
bound NP-hard

upper
bound O(log n)

bundle
pricing (Pair) Envy-free

lower
bound NP-hard Ω(logε n)

upper
bound FPTAS O(log n) O(log n logm)

Table 1: The table summarizes our results in different cases.

lows to extract more revenue than item pricing. However,
as we will present, envy-free or pair envy-free bundle pric-
ing is more difficult to compute. Since revenue maximizing
envy-free or pair envy-free pricing is trivial for unit-demand
valuations in multi-unit settings, we consider the following
common types of valuations: single-minded valuations with
free disposal – each buyer wants a particular number of items
and when he receives more items his valuation remains the
same; non-decreasing valuations – the valuation depends on
the number of items, but cannot decrease with increasing
number of items; general valuations – there is no restriction
on how the valuation depends on the number of items.

Our results We provide upper and lower bounds for item
and bundle pricing for the two notions of envy-freeness. The
results are summarized in Table 1. Although, the problems
studied here are rather basic, some of them are quite chal-
lenging. Our paper should be seen as opening this research
direction and naturally it leaves a few open problems for fur-
ther research as exemplified by empty cells in Table 1.

Related Work Revenue maximizing envy-free pricing has
drawn a lot of attention recently. The differences between
our study and previous work are summarized as follows.
First, most of the existing work studies the case of het-
erogeneous items (aka, multi-good settings) [Briest, 2008;
Chen and Deng, 2010; Cheung and Swamy, 2008; Gu-
ruswami et al., 2005; Hartline and Koltun, 2005], or the
case that buyers have budgets [Colini-Baldeschi et al., 2014;
Feldman et al., 2012]. There are also some studies of un-
limited supply, e.g., [Balcan and Blum, 2007; Chalermsook
et al., 2012; Fiat and Wingarten, 2009; Briest and Krysta,
2006]. This is the first paper to consider the problem in multi-
unit setting without budgets. Second, compared to existing
works that usually have assumptions on the valuations of buy-
ers such as single-minded or non-decreasing valuations, we
consider general valuations as well. Third, our study is re-
lated to combinatorial walrasian equilibrium, a generalization
of Walrasian equilibrium, as given in [Feldman et al., 2013]
where authors consider revenue maximization problems in
which buyers have non-decreasing valuations and the seller
could package the items into indivisible bundles, but in con-
trast to the classical notion of Walrasian equilibrium they al-
low unsold bundles to have nonzero prices and do not require
market clearance. This notion is very similar to the envy-free
bundle pricing in our paper. In comparison to [Feldman et

al., 2013] we give a simpler O(log n) approximation mech-
anism that is especially tailored to our case. The O(log n)
approximation mechanism could also apply to their settings.
In addition, recently Dobzinski et al. [2014] studied welfare
and revenue guarantees on competitive bundling equilibrium
that is a similar notion of combinatorial walrasian equilibrium
but requires market clearance.

2 Preliminaries
A multi-unit pricing problem A = 〈n,m,V〉 consists of
n buyers, m homogeneous items and a valuation profile
V = 〈v1, . . . ,vn〉, where vi = 〈vi(0), vi(1), . . . , vi(m)〉
and vi(j) ∈ R+ is the value buyer i has for j items. We as-
sume that for any i ∈ {1, . . . , n}, vi(0) = 0. We assume that
vi(j) is also the maximum payment buyer i is willing to pay
for j items.

In this paper, we consider single-minded valuations with
free disposal, non-decreasing valuations and general valua-
tions. We say buyers have single-minded valuations with free
disposal if each buyer i has a fixed value wi for receiving at
least ki items, and has value 0 for receiving less than ki items.
Formally, the valuations of any buyer i for different numbers
of items are represented as vi(k′) = 0 for all 0 ≤ k′ < ki
and vi(k

′) = wi for all ki ≤ k′ ≤ m. We say buyers
have non-decreasing valuations if for any i ∈ {1, . . . , n} and
j ∈ {1, . . . ,m− 1}, it holds that vi(j) ≤ vi(j + 1). Finally,
we say buyers have general valuations if there is no assump-
tion on the valuations of buyers.

We consider both item pricing and bundle pricing schemes.
In item pricing scheme, a fixed price p ∈ R for each ad-
ditional item is to be determined and the payment of buyer
i is proportional to the number of items he receives, that is,
pi = xip. W.l.o.g., we write outcomes in item pricing scheme
as 〈X, p〉, where buyer i gets xi ∈ X items and the price per
item is p. An item pricing outcome 〈X, p〉 is feasible if and
only if all the following conditions hold:

1. supply constraint: it holds xi ∈ {1, . . . ,m} for every
i ∈ {1, . . . , n} and

∑n
i=1 xi ≤ m;

2. individual rationality: for every i ∈ {1, . . . , n}, it holds
vi(xi) ≥ p · xi;

3. non-negative payments: p ≥ 0.

Given an item pricing outcome 〈X, p〉, the utility ui(xi, p) of
buyer i is given by vi(xi) − xi · p. The revenue r(X, p) of
the outcome is the total payment of buyers, i.e., r(X, p) =∑n
i=1 xip. Given an item pricing outcome, we say buyer i

envies the allocation if the utility of buyer i is not maximized,
that is, xi /∈ argmaxy vi(y)− p · y. An item pricing outcome
〈X, p〉 is envy-free if no buyer envies the allocation. Given
an item pricing outcome, we also say buyer i envies buyer i′
if buyer i prefers buyer i′’s assignment, that is, ui(xi, p) <
ui(xi′ , p). An item pricing outcome 〈X, p〉 is pair envy-free
if no buyer envies other buyers.

In bundle pricing scheme, prices for different sizes of bun-
dles are to be determined and the payment of buyer i is equal
to the price of the bundle he gets. W.l.o.g., we write out-
comes in bundle pricing scheme as 〈X,P〉, where buyer i
gets xi ∈ X items and the price for the bundle of j items is
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pj ∈ P. From now on, we will use p(j) instead of pj . W.l.o.g,
we assume p(0) = 0. A bundle pricing outcome 〈X,P〉 is
feasible if and only if the following conditions hold:

1. supply constraint: it holds xi ∈ {1, . . . ,m} for every
i ∈ {1, . . . , n} and

∑n
i=1 xi ≤ m;

2. individual rationality: for every i ∈ {1, . . . , n}, it holds
vi(xi) ≥ p(xi);

3. non-negative payment: ∀j ∈ {0, 1, . . . ,m}, p(j) ≥ 0.
Given a bundle pricing outcome 〈X,P〉, the utility
ui(xi, p(xi)) of buyer i is given by vi(xi) − p(xi). The rev-
enue r(X,P) for the outcome is the total payment of buyers,
i.e., r(X,P) =

∑n
i=1 p(xi). Similar to item pricing scheme,

given a bundle pricing outcome 〈X,P〉, we say buyer i en-
vies the allocation if the utility of buyer i is not maximized,
that is, xi /∈ argmaxy vi(y) − p(y). A bundle pricing out-
come 〈X,P〉 is envy-free if no buyer envies the allocation.
Given a bundle pricing outcome, we also say buyer i en-
vies buyer i′ if buyer i prefers buyer i′’s assignment, that is,
ui(xi, p(xi)) < ui(xi′ , p(xi′)). A bundle pricing outcome
〈X,P〉 is pair envy-free if no buyer envies other buyers.

In this paper we study the following problems of rev-
enue maximizing item pricing and bundle pricing outcomes in
multi-unit settings under these two notions of envy-freeness.
Definition 1. The envy-free item pricing multi-unit (EFIP-
MUL) problem: Given 〈n,m,V〉, compute a feasible and
envy-free item pricing outcome 〈X, p〉 that maximizes the rev-
enue r(X, p).

Definition 2. The pair envy-free item pricing multi-unit
(PEFIP-MUL) problem: Given 〈n,m,V〉, compute a feasi-
ble and pair envy-free item pricing outcome 〈X, p〉 that max-
imizes the revenue r(X, p).

Definition 3. The envy-free bundle pricing multi-unit (EFBP-
MUL) problem: Given 〈n,m,V〉, compute a feasible and
envy-free bundle pricing outcome 〈X,P〉 that maximizes the
revenue r(X,P).

Definition 4. The pair envy-free bundle pricing multi-unit
(PEFBP-MUL) problem: Given 〈n,m,V〉, compute a fea-
sible and pair envy-free bundle pricing outcome 〈X,P〉 that
maximizes the revenue r(X,P).

We call the outcomes that maximize the revenue the
optimal outcomes. Optimal outcomes are denoted by
OPT = 〈XOPT, pOPT〉 in item pricing schemes and OPT =
〈XOPT,POPT〉 in bundle pricing schemes, respectively.

2.1 A Key Lemma
In this section, we present a key lemma that will be heavily
used when we study the revenue for pair envy-freeness. Let
us first define a weaker notion of feasibility.
Definition 5. An outcome is nearly-feasible if it satisfies only
individual rationality and non-negative payment (i.e., it does
not satisfy supply constraint).

The following key lemma transforms a nearly-feasible and
pair envy-free outcome selling at item pricing y to a feasible
and pair envy-free outcome selling at least m

2 items at item
pricing p ≥ y.

Lemma 1. Consider the PEFIP-MUL problem, given a
nearly-feasible and pair envy-free outcome 〈O, y〉, there ex-
ists a feasible and pair envy-free outcome 〈X, p〉 such that
2 · r(X, p) ≥ m · y.

Proof. Let nj be the number of buyers who receive j items
in O. We give a constructive proof where two cases are con-
sidered as follows.

First, suppose there exists a j ∈ {1, . . . ,m} such that
j · nj ≥ m

2 . In this case, the first step is to construct an
outcome where only bundles of size j are sold at price y per
item. Hence, by the property of pair envy-freeness, if any
buyer receives j items, all buyers with positive ui(j, y) would
also demand j items. In addition, buyers with ui(j, y) = 0
are indifferent between receiving j items and nothing, and
buyers with negative ui(j, y) demand nothing. Now let m′
be the number of items demanded by buyers with positive
ui(j, y). If m′ ≤ m, we sell j items to all buyers with posi-
tive ui(j, y) and as many buyers with ui(j, y) = 0 as possible
under the supply constraint. In this way, we get a feasible out-
come that extracts a revenue of at least m2 y. If m′ > m, we
increase the price from y to p which is the minimum price
that we have enough items to satisfy the demands of buyers
with positive ui(j, p). Similarly at price p, we get a feasible
outcome that extracts a revenue of at least m

2 p by selling j
items to all buyers with positive ui(j, p) and as many buyers
with ui(j, p) = 0 as possible.

Otherwise, we repeat the following process until there are
enough items to satisfy the demand of all buyers or the first
case is reached. Arbitrarily pick a bundle size j that is sold,
remove j from the bundles sold in the outcome and then re-
compute the best bundles for all buyers given the fact that
bundles of size j are not available. Since we are not in the
first case, it implies that at most half of the revenue is lost
when we remove bundle j. Considering the first time that the
total demand for the best bundles of all buyers is smaller than
m/2. In such case in the previous round there is a bundle such
that the total demand for it is more than m/2 items. We reach
a contradiction since the process would end before. It con-
cludes that by this process we will obtain a feasible outcome
that extracts a revenue of at least m2 y.

3 Envy-free Item Pricing
In this section, we consider the EFIP-MUL problem. The
envy-freeness requires that, given an uniform price per item,
each buyer gets the number of items that maximizes his util-
ity. The main result is to solve the EFIP-MUL problem op-
timally via a dynamic programming for general valuations.
The technique also applies to non-decreasing valuations since
the input size is the same. Additionally, we also consider the
EFIP-MUL problem when buyers are single-minded.

3.1 General Valuations
In this section we assume that the input size of the EFIP-MUL
problem is Θ(nm). Note that it is also essential to know all
vi(j) in order to check if an outcome is envy-free or not. First,
we introduce some notations. Given a buyer i and a price
p, let Di(p) be the set of bundles that maximize the utility
of buyer i, i.e., Di(p) = argmaxj′∈{0,1,...,m} ui(j

′, p). We
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call Di(p) the demand set of buyer i given p. Let si be the
size of the demand set of Di(p). It is clear that there are at
most O(m) elements in Di(p), i.e., si ≤ m + 1. We de-
note Di(p) = {D1

i (p), . . . , D
si
i (p)}. Let Pi include the set

of prices such that Di(p) 6= Di(p + ε) where ε is a small
quantity. An easy way to get Pi is to take any two valuations
vi(j) and vi(j′), where j 6= j′, compute the price p such that
vi(j)− p · j = vi(j

′)− p · j′ and include p in Pi if p ≥ 0. For
example, when j = 0 we have all the prices p such that there
exists a bundle j such that vi(j)− p · j = 0. Hence, the size
of Pi is polynomial in m. The following lemma gives us the
set of possible optimal prices:

Lemma 2. Consider the EFIP-MUL problem, given an opti-
mal outcome, the price pOPT is in

⋃
i∈{1,...,n} Pi.

For each p ∈
⋃
i∈{1,...,n} Pi, the maximum revenue given

price p is computed through a dynamic programming. Let
z(i, d) be the maximum revenue that at most d copies of the
items are sold to the first i buyers. Initially z(0, d) = 0 for
all d = 1, . . . ,m. To compute z(i, d) for i = 1, . . . , n, d =
1, . . . ,m, we use the recursion as follows: 1

z(i, d) = max
k∈[si]

(z(i−1, d−Dk
i (p))+Dk

i (p) ·p)[d−Dk
i (p)]+

where [si] = {1, . . . , si}. The maximum revenue at price p is
given as z(n,m). The memory required in the dynamic pro-
graming isO(nm), and the number of operations isO(nm2).
By Lemma 2, we can compute the maximum revenue for ev-
ery candidate price and then output the optimal revenue.

Theorem 1. The envy-free item pricing multi-unit (EFIP-
MUL) problem is solvable in polynomial time.

3.2 Single-minded Valuations with Free Disposal
Let us now discuss the EFIP-MUL problem when buyers have
single-minded valuations with free disposal. It is necessary to
have a different algorithm for this case due to the fact that the
input size is much smaller than for general valuations. As
single-minded buyers could be described by two parameters,
wi and ki, the input of this problem has size Θ(n logm) only.
Hence, we are interested in revenue maximizing item pricing
schemes with the running time polynomial in n and logm,
but not in n and m as it was the case in the previous section.

One can show that the EFIP-MUL problem cannot be
solved efficiently unless P = NP by the reduction from the
Subset Sum problem. For the upper bound, we argue that
there exists an FPTAS for the EFIP-MUL problem. The idea
of the FPTAS is similar to the optimal envy-free item pricing
for general valuations. First, there still exists a polynomial
number O(n) of possible optimal prices. We need the fol-
lowing arguments to prove this. Given any price p > 0, the
demand set of buyer i contains either 0 items, or ki items
or both. By the similar arguments as Lemma 2, the set of
possible optimal price is

⋃n
i=1

wi

ki
. Second, given any possi-

ble price, if there are not enough items to satisfy the buyers
whose demand sets do not contain 0, then the price is not
feasible. Otherwise, besides satisfying the demand of such

1For a number a ∈ R, [a]+ returns 1 if a ≥ 0, and 0 otherwise.

Algorithm 1: A logarithmic approximation algorithm for
general valuations in PEFIP-MUL.

1 for p ∈ P do
2 For any j ∈ {1, . . . ,m}, let nj be the number of

buyers such that the bundle of j items is the largest
one they have non-negative utilities for at price p;

3 Sell bundles with sizes at least z where
z = argmaxj j

∑m
k=j nk;

4 Let n̄j be the number of buyers who demand j items
at price p if only bundles of at least z items are sold;

5 if
∑m
j≥z j · n̄j ≤ m then

6 Assign j ≥ z items to the buyers who demand j
items and charge each of them p · j;

7 else
8 Apply Lemma 1 to obtain a feasible outcome;

9 Output the outcome with the maximum revenue.

buyers, one could simply use the FPTAS for knapsack prob-
lem to assign the remaining items. This process would give
(1 − ε)-approximation to the optimal revenue at the given
price. Together with the fact the number of choices for the
optimal price is polynomial in n, this gives an FPTAS for the
EFIP-MUL problem in the case of single-minded buyers with
free disposal.

Theorem 2. When buyers have single-minded valuations
with free disposal, envy-free item pricing multi-unit (EFIP-
MUL) problem is NP-hard but there exists an FPTAS.

4 Pair Envy-free Item Pricing
In this section, we start our study of pair envy-freeness in
the item pricing scheme. An immediate thought is that the
optimal revenue in pair envy-free outcomes could be higher
than the optimal revenue in envy-free outcomes. One could
actually show that the gap could unbounded.2

4.1 General Valuations
Our main result in PEFIP-MUL problem is a O(log n)-
approximation algorithm. Let P contain all prices p such that
there exists a buyer i, two different sizes of bundles j and
j′ 6= j such that vi(j) − p · j = vi(j

′) − p · j′. Similar to
Lemma 2 we have the following.

Lemma 3. Consider the PEFIP-MUL problem, given an op-
timal outcome, the price pOPT is in P.

Algorithm 1 approximates the revenue for every possible
price and outputs the best one. For each price, Algorithm 1
figures out the best way to sell all bundles larger than a fixed
size. When total demand is greater than m, it uses the tech-
nique from Lemma 1.

Theorem 3. Algorithm 1 always returns a feasible and pair
envy-free item pricing outcome that O(log n)-approximates
the optimal revenue in the PEFIP-MUL problem.

2Consider two buyers with v1(1) = 1 + ε and v2(1) = 1 + ε,
vi(j) = j for any i ∈ {1, 2} and j ∈ {2, . . . ,m}.
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Proof. Given a price p, the maximum revenue of any (uncon-
strained) allocation is at most p

∑m
j=1 nj · j. Algorithm 1

picks bundles with at least z items to sell, where z maximizes
z
∑m
j=z nj . In this case, buyers, whose largest bundles with

positive utilities at price p are at least z, will demand at least
z items. Since

∑m
j=z jn̄j ≥ z

∑m
j=z nj ,

∑m
j=z jn̄j log n-

approximates
∑m
j=1 nj · j. Hence, if there are enough items

to satisfy the demand of all buyers (lines 5-6 in Algorithm 1),
it gives a log n-approximation to the maximum revenue at
price p. Otherwise, Algorithm 1 performs the operations in
Lemma 1 and we lose at most another half of the revenue.
In this case, Algorithm 1 gives a 2 log n-approximation of
the maximum revenue at price p. Finally, by Lemma 3, the
best revenue from all possible prices in Algorithm 1 gives a
O(log n)-approximation to the optimal revenue.

4.2 Other Valuations
It is trivial to see that Algorithm 1 also works when buyers
have non-decreasing valuations. On the other hand, similarly
as for item pricing when buyers have single-minded valua-
tions it can be shown that the problem is NP-hard. Since there
are n candidates for z, with a little tweak, it can also give an
O(log n) approximation in polynomial time in n and logm
when buyers have single-minded valuations.

5 Envy-free or Pair Envy-free Bundle Pricing
In Section 4, we have seen that pair envy-freeness could ex-
tract more revenue in the item pricing scheme. However, it is
not true for the bundle pricing scheme. Indeed the two dif-
ferent notions of envy-freeness produce exactly the same op-
timal revenues. In fact there exist a transformation between
optimal allocation in the two notions of envy-freeness in the
bundle pricing scheme. On one hand, in an envy-free out-
come the utilities of buyers are maximized, which directly
implies that the outcome is also pair envy-free. On the other
hand, in a pair envy-free outcome it is possible that some sizes
of bundles are not assigned to any buyer, and the envy-free
outcome producing the same revenue could be achieved by
the following. To transform the solution we just need to price
these unassigned bundles extremely high, so that no one buys
them. Under this transformation, buyers purchase the same
bundles of items and the payments remain unchanged. This
observation is summarized by the following theorem.

Theorem 4. The envy-free bundle pricing multi-unit (EFBP-
MUL) problem is equivalent to the pair envy-free bundle pric-
ing multi-unit (PEFBP-MUL) problem.

By this result, in bundle pricing schemes, we could only
consider envy-freeness or pair envy-freeness for different val-
uations. Before we proceed, we would like to start by show-
ing some gaps between item pricing and bundle pricing. First,
it is possible to show that a (pair) envy-free bundle pricing is
able to extract nearly m times the revenue obtained in EFIP-
MUL. Second, we also observe that a (pair) envy-free bundle
pricing could extract at least Ω(log n) times of the optimal
revenue of PEFIP-MUL, where n ≈

√
m. Let us consider

the instance with n buyers and m =
∑n
j=1 j items where

the valuation of buyer i, for any i = 1, . . . , n, is vi(i) = 1
i

and vi(j) = 0 for any j 6= i. In the PEFBP-MUL the opti-
mal revenue is Hn (Hn = 1 + 1

2 + · · · + 1
n is the harmonic

number and it is well known to be about as large as the nat-
ural logarithm of n) that we can get by selling the bundle
of size j at buyer j at price 1

j , for any j = 1, . . . , n. Let
us now prove that the optimal revenue for the PEFIP-MUL
is a constant and this finishes the proof. From Lemma 3
we get that the optimal item price belongs to the set P =
{1, 14 ,

1
9 , . . . ,

1
i2 , . . . ,

1
n2 }. W.l.o.g., let us consider the price

p = 1
i2 for some i = 1, . . . , n. It is easy to see that at price p

only buyers j : j ≤ i have interest on buying (i.e., have non
negative utility) a bundle of size j. Therefore the total revenue
would be

∑i
k=1

1
i2 ·k = 1

i2 ·(1+2+ . . . , i) = O(i2)
i2 = O(1).

We first provide a hardness result for general valuations in
the EFBP-MUL and PEFBP-MUL problems, followed by a
O(log n logm) approximation algorithm. Then, we present
a FPTAS when buyers have single-minded valuations, and a
O(log n) algorithm when buyers have increasing valuations.

5.1 Hardness

Theorem 5. The EFBP-MUL or PEFBP-MUL problem can-
not be approximated within O(logε n) unless UDP-MIN can
be approximated within O(logε |C|), for some ε > 0.

The technique is to show a reduction from uniform-budget
unit-demand min-buying pricing problem (UDP-MIN) to
EFBP-MUL or PEFBP-MUL problem. Briest [Briest, 2008]
showed that UDP-MIN is R3SAT∗(poly(n))-hard to be ap-
proximated within O(logε |C|) for some ε > 0.

5.2 General Valuations

In this section, we consider EFBP-MUL and PEFBP-MUL
problems for general valuations. The main result is the proof
that the optimal revenue in PEFBP-MUL is at mostO(logm)
times of the optimal revenue in PEFIP-MUL. Given the re-
sults in PEFIP-MUL, we could obtain an O(log n logm) ap-
proximation algorithm for EFBP-MUL and PEFBP-MUL.

Lemma 4. Given a feasible and pair envy-free bundle pric-
ing outcome, there exists a feasible and pair envy-free item
pricing outcome in which the revenue is at least O(logm)-
fraction of the revenue of the feasible and pair envy-free bun-
dle pricing outcome.

Proof. We give a constructive proof as follows. Suppose the
feasible and pair envy-free bundle pricing outcome sells the
bundles with sizes S = {s1, . . . , sl}. For each sj ∈ S, let pj
be the price of the bundle and n̄j be the number of buyers who
are assigned to the bundles of size sj . Hence, there are s1 · n̄1
items sold at price p1/s1, s2 · n̄2 items sold at price p2/s2,
and so on. W.l.o.g., we assume that p1/s1 ≥ . . . ≥ pl/sl.

Let z be the index that maximizes pj/sj
∑
k≤j n̄ksk. Now

consider the outcome that uses a price pz/sz and sells the
bundles S′ = {s1, . . . , sz}. There are two cases. The first
case is that given price p′ and bundles S′, there are enough
items to satisfy all the demand of buyers. Then we can bound
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the optimal revenue as follows.

rOPT =
∑
j∈[l]

pj
sj
sj n̄j ≤ log(

∑
j∈[l]

sj n̄j)
pz
sz

∑
k≤z

n̄ksk

≤ logm
pz
sz

∑
k≤z

n̄kkz ≤ rALG

The last inequality holds because all buyers who purchase
bundles in S′ = {s1, . . . , sz} in the feasible and pair envy-
free bundle pricing outcome would demand at least as much
when the unit price is pz/sz .

The other case is that given price p′ and bundles S′, there
are not enough items to satisfy all the demand of buyers.
But notice that if we assign all buyers their demands it is
a nearly-feasible outcome. By Lemma 1, we can obtain a
feasible and pair envy-free item pricing with no more than
half of the revenue. Therefore, there exists a feasible and
pair envy-free item pricing outcome in which the revenue is
at least O(logm)-fraction of the revenue in any feasible and
pair envy-free bundle pricing outcome.

The analysis above is almost tight since as we mentioned
the gap between EFBP-MUL (or PEFBP-MUL) and PEFIP-
MUL is at least Ω(log n).

From Lemma 4 and Theorem 3 we immediately get the
following theorem.

Theorem 6. There exists an algorithm that always returns
a feasible and (pair) envy-free bundle pricing outcome that
O(log n logm)-approximates the optimal envy-free revenue.

5.3 Single-minded Valuations with Free Disposal
Next, we consider the EFBP-MUL problem when buyers
have single-minded valuations with free disposal. As in Sec-
tion 3.2, single-minded valuations could be described by two
parameters wi and ki. We are interested in revenue maximiz-
ing bundle pricing algorithms whose running time are poly-
nomial in n and logm. We first state the NP-hardness of the
problem. Then we show a pseudo-polynomial time algorithm
and argue how to transfer it to an FPTAS.

Theorem 7. The EFBP-MUL or PEFBP-MUL problem when
buyers have single-minded valuations with free disposal is
NP-hard but there exists an FPTAS.

A Pseudo-polynomial Algorithm We assume that buyers
are sorted by their ki, that is, k1 ≤ . . . ≤ kn. Given buyer i,
we denote byLi the set of buyers before i (including i) having
greater valuations, i.e., Li = {j|j < i and wj > wi} ∪ {i}.
The pesudo-polynomial algorithm largely depends on the fol-
lowing condition for envy-freeness. Consider any two buyers
with k1 ≤ k2 and w1 > w2, in any feasible envy-free al-
location, if the demand of buyer 2 is satisfied, then the de-
mand of buyer 1 must be also satisfied. In other words, if
the seller sells at least ki items to buyer i at price p, it must
also sell at least kj items to every buyer j in Li at price at
most p. Otherwise, the envy-freeness is violated. Hence,
the pesudo-polynomial algorithm considers one buyer at each
round. Given a target revenue, it computes the minimum
number of items required in order to achieve an envy-free

allocation. If there are not enough items an infinite number is
returned.

Denote by S(i, t) the minimum number of items sold to
the first i buyers such that the revenue is exactly t. Initially
we set S(0, t) = 0 for t = 0, and S(0, t) = +∞ for all
t = 1, . . . ,maxi wi · n. To compute S(i, t) for i = 1, . . . , n
and t = 1, . . . ,maxi wi · n, we use the recursion:

S(i, t) = min


S(i− 1, t);

min
j<i

( ∑
j′∈Li\j

kj′ + S
(
j, t− wi|Li\j |+

max(wj − wi, 0)|Li∩j |
))

;

where Li\j = Li \ Lj and Li∩j = Li ∩ Lj .
The first formula in the recursion describes the case when

the buyer i receives nothing. The second formula is more
involved. First, when the seller decides to satisfy the demand
of a buyer i, by the envy-freeness, it must also satisfy the
demands of all buyers in Li. Let j be the last buyer before
buyer i such that the seller decides to sell. To ensure envy-
freeness, the seller must have at least

∑
j′∈Li\j

kj′ items to
fulfill the demand of these extra buyers. Now let us turn to
the revenue. Each buyers in Li\j gives the seller a revenue of
wi. In addition, for buyers in Li∩j , it is possible that the seller
gets less revenue from these buyers when wi is smaller than
wj . Therefore, in order to extract target revenue t, the sell
must receive a revenue of at least t − wi|Li\j | + max(wj −
wi, 0)|Li∩j | from the first j buyers. The optimal revenue r is
given as the maximum t such that S(n, t) ≤ m.

FPTAS The algorithm given above is polynomial inW . We
show that applying the standard technique allows us to com-
pute a nearly optimal revenue in time that is polynomial in
nand1/ε, where ε is the error bound. Let K = εW/n. Set
w′i = bwi/Kc, and call the obtained problem with w′i the
scaled problem. Now using the dynamic programming from
the previous section, we can compute the optimal revenue for
the scaled problem. The running time of the dynamic pro-
gramming is O(n3 · bW/Kc) = O(n4/ε). Let X and P
be the optimal allocation and payment in the original prob-
lem, and X′ and P′ the optimal allocation and payment in the
scaled problem. For each buyer, because the rounding down,
we can charge buyer i priceK ·p′(x′i) in the original problem.
Since buyers are single-minded with free disposal, the envy-
freeness in the scaled problem implies the envy-freeness in
the original problem. The revenue is bounded by:
r(X′,P′)≥r(X,P)−nK=r(X,P)−εW ≥(1−ε)r(X,P).

5.4 Non-decreasing Valuations
Finally, we consider a variant of the EFBP-MUL problem in
which buyers have non-decreasing valuations. In this section,
we present a simple and intuitive algorithm that extracts at
least Ω( 1

logn ) fraction of the optimal revenue. Essentially, Al-
gorithm 2 only sells the bundles of a particular size by setting
high prices for other bundles. Denote n̄(i, j) be the number
of buyers who have value at least vi(j) for j items. Given i
and j, let r = vi(j) · n̄(i, j). Under the supply constraint, Al-
gorithm 2 finds the optimal î and ĵ that maximize r and sells ĵ
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Algorithm 2: A O(log n) approximation algorithm for
non-decreasing valuations.

1 Compute î and ĵ such that r is maximized and
ĵ · n̄(̂i, ĵ) ≤ m;

2 For any j ∈ {1, . . . ,m}, set p(j) = +∞ except
p(ĵ) = vî(ĵ);

3 For any i ∈ {1, . . . , n}, if vi(j) ≥ vî(ĵ), set xi = ĵ.
Otherwise, set xi = 0.

items to buyers having at least vi(ĵ) for ĵ items at price vî(ĵ).

Theorem 8. Algorithm 2 always returns a feasible and
(pair) envy-free bundle pricing outcome that O(log n)-
approximates the optimal envy-free revenue.

6 Conclusion and Future Work
To the best of our knowledge this is the first paper that investi-
gates revenue maximizing envy-free pricing without budgets
in multi-unit settings. We were able to demonstrate the rev-
enue difference on two different notions of envy-freeness, and
shed some light on the capabilities and limitations of both no-
tions of envy-freeness for general, non-decreasing and single-
minded valuations. Our paper should be seen as opening this
research direction and it leaves a few open problems for fur-
ther research, i.e., to close the lower and upper bounds of
revenue maximizing envy-free (resp. pair envy-free) item or
bundle pricing in different settings.
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