
Abstract
Most time series data mining algorithms use
similarity search as a core subroutine, and thus the
time taken for similarity search is the bottleneck
for virtually all time series data mining algorithms.
The difficulty of scaling search to large datasets
largely explains why most academic work on time
series data mining has plateaued at considering a
few millions of time series objects, while much of
industry and science sits on billions of time series
objects waiting to be explored. In this work we
show that by using a combination of four novel
ideas we can search and mine truly massive time
series for the first time. We demonstrate the
following extremely unintuitive fact; in large
datasets we can exactly search under DTW much
more quickly than the current state-of-the-art
Euclidean distance search algorithms. We
demonstrate our work on the largest set of time
series experiments ever attempted. We show that
our ideas allow us to solve higher-level time series
data mining problems at scales that would
otherwise be untenable.

1 Introduction1
Most time series data mining algorithms require similarity
comparisons as a subroutine, and in spite of the considera-
tion of dozens of alternatives, there is increasing evidence
that the classic Dynamic Time Warping (DTW) measure is
the best measure in most domains [Ding et al., 2008]. It is
difficult to overstate the ubiquity of DTW. It has been used
in robotics, medicine, biometrics, music/speech processing,
climatology, aviation, gesture recognition, user interfaces,
industrial processing, geology, astronomy, space explora-
tion, wildlife monitoring, etc.
 As ubiquitous as DTW is, we believe that there are thou-
sands of research efforts that would like to use DTW, but
find it too computationally expensive. For example, consider

* The paper on which this extended abstract is based was the

recipient of the best paper award of the SIGKDD 2012
[Rakthanmanon et al., 2012].

the following: “Ideally, dynamic time warping would be
used to achieve this, but due to time constraints…” [Chad-
wick et al., 2011] and [Adams et al., 2005] notes, even “a
30 fold speed increase may not be sufficient for scaling
DTW methods to truly massive databases.” As we shall
show, our subsequence search (called the UCR suite) re-
moves all of these objections. We can reproduce all of the
experiments in all of these papers in well under a second.
 We make an additional claim for our UCR suite which is
almost certainly true, but very hard to prove, given the
variability in how search results are presented in the
literature. We believe our exact DTW sequential search is
much faster than any current approximate search or exact
indexed search. In a handful of papers the authors are
explicit enough with their experiments to see this is true.
Consider [Papapetrou et al., 2011], in which the authors
introduce a technique that can answer queries of length
1,000 under DTW with 95% accuracy, in a random walk
dataset of one million objects in 5.65 seconds. We can
exactly search this dataset in 3.8 seconds (on a very similar
machine). An influential paper on gesture recognition on
multi-touch screens laments that “DTW took 128.26 minutes
to run the 14,400 tests for a given subject’s 160 gestures”
[Wobbrock et al., 2007]. However, we can reproduce these
results in less than three seconds.

1.1 A Brief Discussion of a Trillion
In this work, we search a trillion (one million million, or
1012, or 1,000,000,000,000) objects and, to our knowledge,
such a large dataset has never been considered in a data
mining/database paper before.
 As large as a trillion is, there are thousands of research
labs and commercial enterprises that have this much data.
For example, many research hospitals have trillions of
datapoints of EEG data, NASA Ames has tens of trillions of
datapoints of telemetry of domestic flights, etc.

1.2 Explicit Statement of Our Assumptions
Our work is predicated on several assumptions that we will
now enumerate and justify.

Time Series Subsequences Must be Normalized
In order to make meaningful comparisons between two time
series, both must be normalized. This was demonstrated a

Data Mining a Trillion Time Series Subsequences Under Dynamic Time Warping*�

Thanawin Rakthanmanon1, Bilson Campana, Abdullah Mueen, Gustavo Batista2,
Brandon Westover3, Qiang Zhu, Jesin Zakaria, Eamonn Keogh

UC Riverside 1Kasetsart University 2University of São Paulo 3Brigham and Women's Hospital
{eamonn, bcampana, mueen, qzhu, jzaka}@cs.ucr.edu, thanawin.r@ku.ac.th, gbatista@icmc.usp.br

Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence

3047

decade ago in a widely cited paper [Keogh and Kasetty,
2003]. This is critical because some speedup techniques only
work on the un-normalized data; thus, the contributions of
these research efforts may be largely nullified.

Dynamic Time Warping is the Best Measure
Recent empirical evidence strongly suggests that none of
alternative measures routinely beats DTW. When put to the
test on a collection of forty datasets, the very best of these
measures are sometimes a little better than DTW and
sometimes a little worse [Ding et al., 2008]. After an
exhaustive literature search of more than 800 papers, we are
not aware of any distance measure that has been shown to
outperform DTW by a statistically significant amount on
reproducible experiments [Ding et al., 2008; Keogh and
Kasetty, 2003]. Thus, DTW is the measure to optimize.

Arbitrary Query Lengths cannot be Indexed
If we know the length of queries ahead of time we can
mitigate at least some of the intractability of search by
indexing the data [Fu et al., 2008;]. Although to our
knowledge no one has built an index for a trillion real-
valued objects (Google only indexed a trillion webpages as
recently as 2008), perhaps this could be done. However,
there are no known techniques to support similarity search
of arbitrary lengths once we have datasets in the billions.

There Exists Data Mining Problems That We Are
Willing to Wait Some Hours to Answer
This point is almost self-evident. If a team of entomologists
has spent three years gathering 0.2 trillion datapoints, or
astronomers have spent billions of dollars to launch a
satellite to collect one trillion datapoints of star-light curve
data per day [Keogh et al., 2009], or a hospital charges
$34,000 for a daylong EEG session to collect 0.3 trillion
datapoints. Then, it is not unreasonable to expect that these
groups would be willing to spend hours of CPU time to
glean knowledge from their data.

2 Related work
Our review of related work on time series indexing is neces-
sarily superficial, given the vast amount of work on the top-
ic and page limits. Instead, we refer the interested reader to
two recent papers [Ding et al., 2008; Papapetrou et al.,
2011], which have comprehensive reviews of existing work.
We are interested in datasets that are five to six orders of
magnitude larger than anything else considered in the litera-
ture [Ding et al., 2008].

3 Background and Notations
Definition: The Euclidean distance (ED) between subse-
quences Q and C, where |Q| =|C|, is defined as ����� �� 	

� ��
 � �
���

��

Figure 1. A long time series T can have a subsequence C
extracted and compared to a query Q under the
Euclidean distance.

 The Euclidean distance, as shown in Figure 1, which is a
one-to-one mapping of the two sequences, can be seen as a
special case of DTW, which allows a one-to-many align-
ment, as illustrated in Figure 2. For brevity we ask unfamil-
iar readers to refer to [Fu et al., 2008; Ding et al., 2008;
Keogh et al., 2009] for more detail of DTW.

Figure 2. left) Two time series which are similar but out
of phase. right) To align the sequences we construct a
warping matrix, and search for the optimal warping path
(red/solid squares). Sakoe-Chiba Band with width R is
used to constrain the warping path.

4 Algorithms

4.1 Known Optimizations
We begin by discussing previously known optimizations of
sequential search under ED and/or DTW.
Using the Squared Distance
Both DTW and ED have a square root calculation. Howev-
er, if we omit this step, it does not change the relative rank-
ings of nearest neighbors, since both functions are monoton-
ic and concave.
Lower Bounding
A classic trick to speed up sequential search with an expen-
sive distance measure such as DTW is to use a cheap-to-
compute lower bound to prune off unpromising candidates.
The LB_Keogh bound is well-documented elsewhere, for
brevity we ask the unfamiliar reader to refer to [Fu et al.,
2008; Keogh et al., 2009] for a review.
Early Abandoning of ED and LB_Keogh
During the computation of the Euclidean distance or the
LB_Keogh lower bound, if we note that the current sum of the
squared differences between each pair of corresponding
datapoints exceeds the best-so-far, then we can stop the cal-
culation, secure in the knowledge that the distance had we
calculated it, would have exceeded the best-so-far.
Early Abandoning of DTW
We can incrementally compute the DTW and admissibly
stop if the minimum distance at the any cut exceeds the
best-so-far distance.
Exploiting Multicores
We can get essentially linear speedup using multicores, the
software improvements we will present in the next section
completely dwarf the improvements gained by multicores.

C= Ti,k
Q

T

C

Q

R

Similar, but out of phase peaks …

… produce a large Euclidean distance.

However this can be corrected by DTWs
nonlinear alignment.

CQ

CQ

3048

CC
Q Q

1
32 4

6
5

7

98
3

5
1 42

Standard early abandon ordering Optimized early abandon ordering

CU

L

UQ

L

0

1

O(1) O(n) O(nR)

LB_KimFL LB_KeoghEQ

max(LB_KeoghEQ, LB_KeoghEC)
Early_abandoning_DTW

LB_Kim
LB_YiTi

gh
tn

es
s

of

lo
w

er
 b

ou
nd

LB_Ecorner
LB_FTW DTW

LB_PAA

4.2 Novel Optimizations: The UCR Suite
We are finally in a position to introduce our four original
optimizations of search under ED and/or DTW.
Early Abandoning Z-Normalization
To the best of our knowledge, no one has ever considered
optimizing the normalization step. Our insight here is that
we can interleave the early abandoning calculations of Eu-
clidean distance (or LB_Keogh) with the online Z-
normalization. The mean and standard deviation of a stream
of numbers can be incrementally calculated and maintained.
Thus, we could be pruning not just distance calculation
steps, but also unnecessary normalization steps.
Reordering Early Abandoning
Consider Figure 3.left, which shows the normal left-to-right
ordering in which the early abandoning calculation pro-
ceeds. In this case nine of the thirty-two calculations were
performed before the accumulated distance exceeded b and
we could abandon. In contrast, Figure 3.right uses a differ-
ent ordering and was able to abandon earlier, with just five
of the thirty-two calculations.

Figure 3. left) ED early abandoning. We have a best-so-
far value of b. After incrementally summing the first nine
individual contributions to the ED, we have exceeded b;
thus, we abandon the calculation. right) A different
ordering allows us to abandon after just five calculations.

The proof to show that the universal optimal ordering is to
sort the indices based on the absolute values of the Z-
normalized Q is available at [UCRsuite, 2012].
Reversing the Query/Data Role in LB_Keogh
Normally the LB_Keogh lower bound builds the envelope
around the query, a situation we denote LB_KeoghEQ for
concreteness, and illustrate in Figure 4.left. If we built the
envelope around each candidate too, a situation we denote
LB_KeoghEC. This only needs to be done once, and thus
saves the time but triples space overhead.

Figure 4. left) Normally the LB_Keogh envelope is built
around the query Q, and the distance between C and the
closer of {U,L} acts as a lower bound. right) However,
we can reverse the roles such that the envelope is built
around C and the distance between Q and the closer of
{U,L} is the lower bound.

However, we can selectively calculate LB_KeoghEC in a
“just-in-time” fashion, only if all other lower bounds fail to
prune. This removes space overhead, and as we will see, the
time overhead pays for itself by pruning more full DTW
calculations. Note that in general, LB_KeoghEQ � LB_KeoghEC
and that on average each one is larger about half the time.
Cascading Lower Bounds
One of the most useful ways to speed up time series similar-
ity search is the use of lower bounds to admissibly prune off

unpromising. This has led to a flurry of research on lower
bounds, with at least eighteen proposed for DTW [Ding et
al., 2008; Keogh et al., 2009; Kim et al., 2001; Yi et al.
1998]. In general, it is difficult to state definitively which is
the best bound to use, since there is a tradeoff between the
tightness of the lower bound and how fast it is to compute.
Moreover, different datasets and even different queries can
produce slightly different results.
 However, as a starting point, we implemented all pub-
lished lower bounds and tested them on fifty different da-
tasets from the UCR archive, plotting the (slightly idealized
for visual clarity) results in Figure 5. Following the litera-
ture, we measured the tightness of each lower bound as
LB(A,B)/DTW(A,B) over 100,000 randomly sampled sub-
sequences A and B of length 256.

Figure 5. The mean tightness of selected lower bounds
from the literature plotted against the time taken to
compute them.

 The reader will appreciate that a necessary condition for a
lower bound to be useful is for it to appear on the “skyline”
shown with a dashed line; otherwise there exists a faster-to-
compute bound that is at least as tight, and we should use
that instead. Using this technique we can prune more than
99.9999% of DTW calculations for a large-scale search.

5 Experimental Results
To ensure our experiments are reproducible, all data and
code will be available at [UCRsuite, 2012]. We consider the
following methods:

� Naive: Each subsequence is Z-normalized from scratch.
The full DTW (or ED) is used at each step.

� State-of-the-art (SOTA): Each sequence is Z-
normalized from scratch, early abandoning is used, and
the LB_Keogh lower bound is used for DTW.

� UCR Suite: We use all of our speedup techniques.
DTW uses R = 5% unless otherwise noted. For experiments
where Naive or SOTA takes more than 24 hours to finish,
we terminate the experiments and present the interpolated
values, shown in gray. Where appropriate we also compare
to an oracle algorithm:

� GOd’s ALgorithm (GOAL) is an algorithm that only
maintains the mean and standard deviation using the
online O(1) incremental calculations.

It is critical to note that our implementations of Naive,
SOTA and GOAL are incredibly efficient and tightly opti-
mized. In particular, the code for Naive, SOTA and GOAL
is exactly the same code as the UCR suite, except the rele-
vant speedup techniques have been commented out.
 While very detailed spreadsheets of all of our results are
archived in perpetuity in the supporting webpage. We pre-
sent subsets of some results below by considering wall
clock time on a 2 Intel Xeon Quad-Core E5620 2.40GHz

3049

with 12GB DDR3 RAM (using just one core unless other-
wise explicitly stated).

5.1 Baseline Tests on Random Walk
We begin with experiments on random walk data. In Table 1
we show the length of time it takes to search large datasets
with queries of length 128. The numbers are averaged over
1000, 100 and 10 queries, respectively.
Table 1. Time taken to search a random walk dataset with |Q| =128.

 Million (Seconds) Billion (Minutes) Trillion (Hours)
UCR-ED 0.034 0.22 3.16

SOTA-ED 0.243 2.40 39.80
UCR-DTW 0.159 1.83 34.09

SOTA-DTW 2.447 38.14 472.80

 These results show a significant difference between SOTA
and UCR suite. However, this is for a very short query;
what happens if we consider longer queries? As we show in
Figure 6, the ratio of SOTA-DTW over UCR-DTW im-
proves for longer queries. Remarkably, UCR-DTW is even
faster than SOTA Euclidean distance. Even though 4,096 is
longer than any published query lengths in the literature,
there is a need for even longer queries.

Figure 6. The time taken to search random walks of
length 20 million with increasingly long queries, for
three variants of DTW. In addition, we include just
length 4,096 with SOTA-ED for reference.

 It is also interesting to consider the results of the 128-
length DTW queries as a ratio over GOAL. Recall that the
cost for GOAL is independent of query length, and this ex-
periment is just 23.57 seconds. The ratios for Naive, SOTA
and UCR suite are 5.27, 2.74 and 1.41, respectively. This
suggests that we are asymptomatically closing in on the
fastest possible subsequence search algorithm for DTW.
Another interesting ratio to consider is the time for UCR-
DTW over UCR-ED, which is just 1.18. Thus, the time for
DTW is not significantly different than that for ED, an idea
which contradicts an assumption made by almost all papers
on time series in the last decade.
 Because the space limitation, we encourage the readers to
see more interesting results at [UCRsuite, 2012] or in the
original version of the paper [Rakthanmanon et al., 2012].

5.2 Speeding up Existing Mining Algorithms
In this section, we demonstrate that we can speed up much
of the code in the time series data mining literature with
minimal effort, simply by replacing their distance
calculation subroutines with the UCR suite. In many cases,
the difference is small, because the algorithms in question
already typically try to prune as many distance calculations

as possible. Nevertheless, even though the speedups are
relatively small (1.5X to 16X), they are “free”, requiring
just minutes of cut-and-paste code editing.
Time Series Shapelets have garnered significant interest
since their introduction in 2009 [Ye and Keogh, 2009]. We
obtained the original code and tested it on the Face (four)
dataset, finding it took 18.9 minutes to finish. After replac-
ing the similarity search routine with the UCR suite, it took
12.5 minutes to finish.
Online Time Series Motifs generalize the idea of mining
repeated patterns in a batch time series to the streaming case
[Mueen and Keogh, 2010]. We obtained the original code
and tested it on the EEG dataset used in the original paper.
The fastest running time for the code assuming linear space
is 436 seconds. After replacing the distance function with
the UCR suite, it took just 156 seconds.
Classification of Ancient Coins [Huber-Mörk et al., 2011].
2,400 irregularly shaped coins are converted to time series
of length 256, and rotation-invariant DTW is used to search
the database, taking 12.8 seconds per query. Using the UCR
suite, this takes 0.8 seconds per query.
Clustering of Star Light Curves [Keogh et al., 2009] is an
important problem in astronomy, as it can be a preprocessing
step in outlier detection. We consider a dataset with 1,000
(purportedly) phase-aligned light curves of length 1,024,
whose class has been determined by an expert [Rebbapragada
et al., 2009]. Doing spectral clustering with DTW (R=5%)
takes about 23 minutes for all algorithms, and averaged over
100 runs we find the Rand-Index is 0.62. As we do not trust
the original claim of phase alignment, we further do rotation-
invariant DTW that dramatically increases the Rand-Index to
0.76. Using SOTA, this takes 16.57 days, but if we use the
UCR suite, this time falls by an order of magnitude, to just
1.47 days on a single core.

6 Discussion and Conclusions
While our work has focused on fast sequential search, we
believe that for DTW, our work is faster than all known
indexing efforts. We also have made a strong and unintui-
tive claim in the abstract. We said that our UCR-DTW is
faster than all current Euclidean distance searches.
 Thus, the contributions of this paper are twofold. First, we
have shown that much of the recent pessimism about using
DTW for real-time problems was simply unwarranted. If
carefully implemented, existing techniques, especially lower
bounding, can make DTW tractable for many problems. Our
second contribution is the introduction of the UCR suite of
techniques that make DTW and Euclidean distance subse-
quence search significantly faster than current state-of-the-
art techniques. We have avoided presenting full pseudo-
code to enhance the readability of the text; however, full
pseudo-code (and highly useable source-code) is readily
available at [UCRsuite, 2012].

Acknowledgements
We would like to acknowledge the financial support for our
research provided by NSF grants 0803410 and 0808770,
FAPESP 2009/06349-0, and Royal Thai Gov. Scholarship.

Naïve DTW

100

1000

10000
seconds

SOTA DTW

OPT DTW

(SOTA ED)

For query lengths of 4,096
(rightmost part of this graph)
The times are:
Naïve DTW : 24,286
SOTA DTW : 5,078
SOTA ED : 1,850
OPT DTW : 567

Query Length

UCR DTW
UCR DTW

3050

References
[Adams et at., 2005] Adams, N., Marquez, D., and Wake-

field, G. 2005. Iterative deepening for melody alignment
and retrieval. ISMIR, 199-206.

[Alon et al., 2009] Alon, J., Athitsos, V., Yuan, Q., and
Sclaroff, S. 2009. A unified framework for gesture recog-
nition and spatiotemporal gesture segmentation. IEEE
PAMI 31, 9, 1685-1699.

[Chadwick et al., 2011] Chadwick, N. A., McMeekin, D. A.,
and Tan, T. 2011. Classifying eye and head movement
atifacts in EEG Signals. IEEE DEST, 285-291.

[Ding et al., 2008] Ding, H., Trajcevski, G., Scheuermann, P.,
Wang, X., and Keogh, E. J. 2008. Querying and mining of
time series data: experimental comparison of representa-
tions and distance measures. PVLDB 1, 2.

[Chen et al., 2009] Chen, Y., Chen, G., Chen, K., and Ooi, B.
C. 2009. Efficient processing of warping time series join
of motion capture data. ICDE, 1048-1059.

[Fornés et al., 2007] Fornés, A., Lladós, J., and Sanchez, G.
2007. Old handwritten musical symbol classification by a
dynamic time warping based method. Graphics Recogni-
tion 5046, 51-60.

[Fu et al., 2008] Fu, A., Keogh, E. J., Lau, L.,
Ratanamahatana, C., and Wong., R. 2008. Scaling and
time warping in time series querying. VLDB J. 17, 4.

[Gillian et al., 2011] Gillian, N., Knapp, R., and O’Modhrain,
S. 2011. Recognition of multivariate temporal musical
gestures using n-dimensional dynamic time warping. Proc
of the 11th Int'l conference on New Interfaces for Musical
Expression.

[Goldberg, 1991] Goldberg, D. 1991. What every computer
scientist should know about floating-point arithmetic.
ACM Computing Surveys 23, 1.

[Hsiao et al., 2005] Hsiao, M., West, K., and Vedatesh, G.
2005. Online context recognition in multisensor system
using dynamic time warping. ISSNIP, 283-288.

[Kahveci and Singh, 2004] Kahveci, T., and Singh, A. K.
2004. Optimizing similarity search for arbitrary length
time series queries. IEEE Trans. Knowl. Data Eng. 16, 4.

[Keogh and Kasetty, 2003] Keogh, E. J., and Kasetty, S.
2003. On the need for time series data mining bench-
marks: a survey and empirical demonstration. Data Min-
ing and Knowledge. Discovery 7, 4, 349-371.

[Keogh et al., 2009] Keogh, E. J., Wei, L., Xi, X., Vlachos,
M., Lee, S. H., and Protopapas, P. 2009. Supporting exact
indexing of arbitrarily rotated shapes and periodic time se-
ries under Euclidean and warping distance measures.
VLDB J. 18, 3, 611-630.

[Kim et al., 2001] Kim, S., Park, S., and Chu, W. 2001. An
index-based approach for similarity search supporting
time warping in large sequence databases. ICDE, 607-61.

[Mueen and Keogh, 2010] Mueen, A., and Keogh, E. J. 2010.
Online discovery and maintenance of time series motifs.
KDD, 1089-1098.

[Mueen et al., 2011] Mueen, A., Keogh, E. J., Zhu, Q., Cash,

S., Westover, M. B., and Shamlo, N. 2011. A disk-aware
algorithm for time series motif discovery. Data Min.
Knowl. Discov. 22, 1-2, 73-105.

[Papapetrou et al., 2011] Papapetrou, P., Athitsos, V.,
Potamias, M., Kollios, G., and Gunopulos, D. 2011.
Embedding-based subsequence matching in time-series
databases. ACM TODS 36, 3, 17.

[Raghavendra et al., 2011] Raghavendra, B., Bera, D.,
Bopardikar, A., and Narayanan, R. 2011. Cardiac ar-
rhythmia detection using dynamic time warping of ECG
beats in e-healthcare systems. WOWMOM, 1-6.

[Rakthanmanon et al., 2012] Rakthanmanon, T., Campana,
B., Mueen, A., Batista, G., Westover, B., Zhu, Q.,
Zakaria, J., and Keogh E., 2012. Searching and Mining
Trillions of Time Series Subsequences under Dynamic
Time Warping, SIGKDD, 262-270.

[Rebbapragada et al., 2009] Rebbapragada, U., Protopapas,
P., Brodley, C., and Alcock, C. 2009. Finding anomalous
periodic time series. Machine Learning 74, 3, 281-313.

[Sakurai et al., 2007] Sakurai, Y., Faloutsos, C., and
Yamamuro, M. 2007. Stream monitoring under the time
warping distance. ICDE, 1046-55.

[Sakurai et al., 2005] Sakurai, Y., Yoshikawa, M., and
Faloutsos, C. 2005. FTW: fast similarity search under the
time warping distance. PODS, 326-337.

[Srikanthan et al., 2011] Srikanthan, S., Kumar, A., and
Gupta, R. 2011. Implementing the dynamic time warping
algorithm in multithreaded environments for real time and
unsupervised pattern discovery. IEEE ICCCT.

[Stiefmeier et al., 2007] Stiefmeier, T., Roggen, D., and
Tröster, G. 2007. Gestures are strings: efficient online
gesture spotting and classification using string matching.
Proceedings of the ICST 2nd international conference on
Body area networks.

[Vlachos et al., 2003] Vlachos, M., Hadjieleftheriou, M.,
Gunopulos, D., and Keogh, E. J. 2003. Indexing multi-
dimensional time-series with support for multiple distance
measures. KDD, 216-225.

[Wobbrock et al., 2007] Wobbrock, J. O., Wilson, A. D., and
Li, Y. 2007. Gestures without libraries, toolkits or
training: a $1 recognizer for user interface prototypes.
ACM UIST, 159-168.

[Ye and Keogh, 2009] Ye, L., and Keogh, E. J. 2009. Time
series shapelets: a new primitive for data mining. KDD.

[Yi et al., 1998] Yi, B., Jagadish, H., and Faloutsos, C. 1998.
Efficient retrieval of similar time sequences under time
warping. ICDE, 201-208.

[Zinke and Mayer, 2006] Zinke, A., and Mayer, D. 2006.
Iterative Multi Scale Dynamic Time Warping. Universität
Bonn, Tech Report # CG-2006-1.

[UCRsuite, 2012] UCR Suite Supporting Website. 2012.
www.cs.ucr.edu/~eamonn/UCRsuite.html

3051

