
Abstract 
Most time series data mining algorithms use 
similarity search as a core subroutine, and thus the 
time taken for similarity search is the bottleneck 
for virtually all time series data mining algorithms. 
The difficulty of scaling search to large datasets 
largely explains why most academic work on time 
series data mining has plateaued at considering a 
few millions of time series objects, while much of 
industry and science sits on billions of time series 
objects waiting to be explored. In this work we 
show that by using a combination of four novel 
ideas we can search and mine truly massive time 
series for the first time. We demonstrate the 
following extremely unintuitive fact; in large 
datasets we can exactly search under DTW much 
more quickly than the current state-of-the-art 
Euclidean distance search algorithms. We 
demonstrate our work on the largest set of time 
series experiments ever attempted. We show that 
our ideas allow us to solve higher-level time series 
data mining problems at scales that would 
otherwise be untenable. 

1 Introduction1 
Most time series data mining algorithms require similarity 
comparisons as a subroutine, and in spite of the considera-
tion of dozens of alternatives, there is increasing evidence 
that the classic Dynamic Time Warping (DTW) measure is 
the best measure in most domains [Ding et al., 2008]. It is 
difficult to overstate the ubiquity of DTW. It has been used 
in robotics, medicine, biometrics, music/speech processing, 
climatology, aviation, gesture recognition, user interfaces, 
industrial processing, geology, astronomy, space explora-
tion, wildlife monitoring, etc.     
 As ubiquitous as DTW is, we believe that there are thou-
sands of research efforts that would like to use DTW, but 
find it too computationally expensive. For example, consider 
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the following: “Ideally, dynamic time warping would be 
used to achieve this, but due to time constraints…” [Chad-
wick et al., 2011] and [Adams et al., 2005] notes, even “a 
30 fold speed increase may not be sufficient for scaling 
DTW methods to truly massive databases.” As we shall 
show, our subsequence search (called the UCR suite) re-
moves all of these objections. We can reproduce all of the 
experiments in all of these papers in well under a second.  
 We make an additional claim for our UCR suite which is 
almost certainly true, but very hard to prove, given the 
variability in how search results are presented in the 
literature. We believe our exact DTW sequential search is 
much faster than any current approximate search or exact 
indexed search. In a handful of papers the authors are 
explicit enough with their experiments to see this is true. 
Consider [Papapetrou et al., 2011], in which the authors 
introduce a technique that can answer queries of length 
1,000 under DTW with 95% accuracy, in a random walk 
dataset of one million objects in 5.65 seconds. We can 
exactly search this dataset in 3.8 seconds (on a very similar 
machine). An influential paper on gesture recognition on 
multi-touch screens laments that “DTW took 128.26 minutes 
to run the 14,400 tests for a given subject’s 160 gestures” 
[Wobbrock et al., 2007]. However, we can reproduce these 
results in less than three seconds.  

1.1 A Brief Discussion of a Trillion 
In this work, we search a trillion (one million million, or 
1012, or 1,000,000,000,000) objects and, to our knowledge, 
such a large dataset has never been considered in a data 
mining/database paper before.  
 As large as a trillion is, there are thousands of research 
labs and commercial enterprises that have this much data. 
For example, many research hospitals have trillions of 
datapoints of EEG data, NASA Ames has tens of trillions of 
datapoints of telemetry of domestic flights, etc. 

1.2 Explicit Statement of Our Assumptions 
Our work is predicated on several assumptions that we will 
now enumerate and justify. 

Time Series Subsequences Must be Normalized 
In order to make meaningful comparisons between two time 
series, both must be normalized. This was demonstrated a 
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decade ago in a widely cited paper [Keogh and Kasetty, 
2003]. This is critical because some speedup techniques only 
work on the un-normalized data; thus, the contributions of 
these research efforts may be largely nullified.  

Dynamic Time Warping is the Best Measure 
Recent empirical evidence strongly suggests that none of 
alternative measures routinely beats DTW. When put to the 
test on a collection of forty datasets, the very best of these 
measures are sometimes a little better than DTW and 
sometimes a little worse [Ding et al., 2008]. After an 
exhaustive literature search of more than 800 papers, we are 
not aware of any distance measure that has been shown to 
outperform DTW by a statistically significant amount on 
reproducible experiments [Ding et al., 2008; Keogh and 
Kasetty, 2003]. Thus, DTW is the measure to optimize. 

Arbitrary Query Lengths cannot be Indexed 
If we know the length of queries ahead of time we can 
mitigate at least some of the intractability of search by 
indexing the data [Fu et al., 2008;]. Although to our 
knowledge no one has built an index for a trillion real-
valued objects (Google only indexed a trillion webpages as 
recently as 2008), perhaps this could be done. However, 
there are no known techniques to support similarity search 
of arbitrary lengths once we have datasets in the billions. 

There Exists Data Mining Problems That We Are 
Willing to Wait Some Hours to Answer 
This point is almost self-evident. If a team of entomologists 
has spent three years gathering 0.2 trillion datapoints, or 
astronomers have spent billions of dollars to launch a 
satellite to collect one trillion datapoints of star-light curve 
data per day [Keogh et al., 2009], or a hospital charges 
$34,000 for a daylong EEG session to collect 0.3 trillion 
datapoints. Then, it is not unreasonable to expect that these 
groups would be willing to spend hours of CPU time to 
glean knowledge from their data. 

2 Related work 
Our review of related work on time series indexing is neces-
sarily superficial, given the vast amount of work on the top-
ic and page limits. Instead, we refer the interested reader to 
two recent papers [Ding et al., 2008; Papapetrou et al., 
2011], which have comprehensive reviews of existing work. 
We are interested in datasets that are five to six orders of 
magnitude larger than anything else considered in the litera-
ture [Ding et al., 2008].  

3 Background and Notations 
Definition: The Euclidean distance (ED) between subse-
quences Q and C, where |Q| =|C|, is defined as  ����� �� 	

� ��
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���


��  

 
Figure 1. A long time series T can have a subsequence C 
extracted and compared to a query Q under the 
Euclidean distance. 

 The Euclidean distance, as shown in Figure 1, which is a 
one-to-one mapping of the two sequences, can be seen as a 
special case of DTW, which allows a one-to-many align-
ment, as illustrated in Figure 2. For brevity we ask unfamil-
iar readers to refer to [Fu et al., 2008; Ding et al., 2008; 
Keogh et al., 2009] for more detail of DTW. 

Figure 2. left) Two time series which are similar but out 
of phase. right) To align the sequences we construct a 
warping matrix, and search for the optimal warping path 
(red/solid squares). Sakoe-Chiba Band with width R is 
used to constrain the warping path. 

4 Algorithms 

4.1 Known Optimizations  
We begin by discussing previously known optimizations of 
sequential search under ED and/or DTW. 
Using the Squared Distance  
Both DTW and ED have a square root calculation. Howev-
er, if we omit this step, it does not change the relative rank-
ings of nearest neighbors, since both functions are monoton-
ic and concave.  
Lower Bounding  
A classic trick to speed up sequential search with an expen-
sive distance measure such as DTW is to use a cheap-to-
compute lower bound to prune off unpromising candidates. 
The LB_Keogh bound is well-documented elsewhere, for 
brevity we ask the unfamiliar reader to refer to [Fu et al., 
2008; Keogh et al., 2009] for a review. 
Early Abandoning of ED and LB_Keogh 
During the computation of the Euclidean distance or the 
LB_Keogh lower bound, if we note that the current sum of the 
squared differences between each pair of corresponding 
datapoints exceeds the best-so-far, then we can stop the cal-
culation, secure in the knowledge that the distance had we 
calculated it, would have exceeded the best-so-far. 
Early Abandoning of DTW 
We can incrementally compute the DTW and admissibly 
stop if the minimum distance at the any cut exceeds the 
best-so-far distance.  
Exploiting Multicores 
We can get essentially linear speedup using multicores, the 
software improvements we will present in the next section 
completely dwarf the improvements gained by multicores.   

C= Ti,k
Q
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Similar, but out of phase peaks …

… produce a large Euclidean distance.

However this can be corrected by DTWs 
nonlinear alignment.
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4.2 Novel Optimizations: The UCR Suite 
We are finally in a position to introduce our four original 
optimizations of search under ED and/or DTW. 
Early Abandoning Z-Normalization  
To the best of our knowledge, no one has ever considered 
optimizing the normalization step. Our insight here is that 
we can interleave the early abandoning calculations of Eu-
clidean distance (or LB_Keogh) with the online Z-
normalization. The mean and standard deviation of a stream 
of numbers can be incrementally calculated and maintained. 
Thus, we could be pruning not just distance calculation 
steps, but also unnecessary normalization steps.  
Reordering Early Abandoning  
Consider Figure 3.left, which shows the normal left-to-right 
ordering in which the early abandoning calculation pro-
ceeds. In this case nine of the thirty-two calculations were 
performed before the accumulated distance exceeded b and 
we could abandon. In contrast, Figure 3.right uses a differ-
ent ordering and was able to abandon earlier, with just five 
of the thirty-two calculations. 

Figure 3. left) ED early abandoning. We have a best-so-
far value of b. After incrementally summing the first nine 
individual contributions to the ED, we have exceeded b; 
thus, we abandon the calculation. right) A different 
ordering allows us to abandon after just five calculations. 

The proof to show that the universal optimal ordering is to 
sort the indices based on the absolute values of the Z-
normalized Q is available at [UCRsuite, 2012].  
Reversing the Query/Data Role in LB_Keogh 
Normally the LB_Keogh lower bound builds the envelope 
around the query, a situation we denote  LB_KeoghEQ for 
concreteness, and illustrate in Figure 4.left. If we built the 
envelope around each candidate too, a situation we denote 
LB_KeoghEC. This only needs to be done once, and thus 
saves the time but triples space overhead. 
 
 
 

Figure 4. left) Normally the LB_Keogh envelope is built 
around the query Q, and the distance between C and the 
closer of {U,L} acts as a lower bound. right) However, 
we can reverse the roles such that the envelope is built 
around C and the distance between Q and the closer of 
{U,L} is the lower bound. 

However, we can selectively calculate LB_KeoghEC in a 
“just-in-time” fashion, only if all other lower bounds fail to 
prune. This removes space overhead, and as we will see, the 
time overhead pays for itself by pruning more full DTW 
calculations. Note that in general, LB_KeoghEQ � LB_KeoghEC 
and that on average each one is larger about half the time.    
Cascading Lower Bounds  
One of the most useful ways to speed up time series similar-
ity search is the use of lower bounds to admissibly prune off 

unpromising. This has led to a flurry of research on lower 
bounds, with at least eighteen proposed for DTW [Ding et 
al., 2008; Keogh et al., 2009; Kim et al., 2001; Yi et al. 
1998]. In general, it is difficult to state definitively which is 
the best bound to use, since there is a tradeoff between the 
tightness of the lower bound and how fast it is to compute. 
Moreover, different datasets and even different queries can 
produce slightly different results.  
 However, as a starting point, we implemented all pub-
lished lower bounds and tested them on fifty different da-
tasets from the UCR archive, plotting the (slightly idealized 
for visual clarity) results in Figure 5. Following the litera-
ture, we measured the tightness of each lower bound as 
LB(A,B)/DTW(A,B) over 100,000 randomly sampled sub-
sequences A and B of length 256. 

 

Figure 5. The mean tightness of selected lower bounds 
from the literature plotted against the time taken to 
compute them. 

 The reader will appreciate that a necessary condition for a 
lower bound to be useful is for it to appear on the “skyline” 
shown with a dashed line; otherwise there exists a faster-to-
compute bound that is at least as tight, and we should use 
that instead. Using this technique we can prune more than 
99.9999% of DTW calculations for a large-scale search.  

5 Experimental Results 
To ensure our experiments are reproducible, all data and 
code will be available at [UCRsuite, 2012]. We consider the 
following methods: 

� Naive: Each subsequence is Z-normalized from scratch. 
The full DTW (or ED) is used at each step.  

� State-of-the-art (SOTA): Each sequence is Z-
normalized from scratch, early abandoning is used, and 
the LB_Keogh lower bound is used for DTW.  

� UCR Suite: We use all of our speedup techniques.  
DTW uses R = 5% unless otherwise noted. For experiments 
where Naive or SOTA takes more than 24 hours to finish, 
we terminate the experiments and present the interpolated 
values, shown in gray. Where appropriate we also compare 
to an oracle algorithm: 

� GOd’s ALgorithm (GOAL) is an algorithm that only 
maintains the mean and standard deviation using the 
online O(1) incremental calculations.    

It is critical to note that our implementations of Naive, 
SOTA and GOAL are incredibly efficient and tightly opti-
mized. In particular, the code for Naive, SOTA and GOAL 
is exactly the same code as the UCR suite, except the rele-
vant speedup techniques have been commented out.  
 While very detailed spreadsheets of all of our results are 
archived in perpetuity in the supporting webpage. We pre-
sent subsets of some results below by considering wall 
clock time on a 2 Intel Xeon Quad-Core E5620 2.40GHz 
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with 12GB DDR3 RAM (using just one core unless other-
wise explicitly stated).  

5.1 Baseline Tests on Random Walk 
We begin with experiments on random walk data. In Table 1 
we show the length of time it takes to search large datasets 
with queries of length 128. The numbers are averaged over 
1000, 100 and 10 queries, respectively.  
Table 1. Time taken to search a random walk dataset with |Q| =128. 

 Million (Seconds) Billion (Minutes) Trillion (Hours) 
UCR-ED 0.034 0.22 3.16 

SOTA-ED 0.243 2.40 39.80 
UCR-DTW 0.159 1.83 34.09 

SOTA-DTW 2.447 38.14 472.80 

 These results show a significant difference between SOTA 
and UCR suite. However, this is for a very short query; 
what happens if we consider longer queries? As we show in 
Figure 6, the ratio of SOTA-DTW over UCR-DTW im-
proves for longer queries. Remarkably, UCR-DTW is even 
faster than SOTA Euclidean distance. Even though 4,096 is 
longer than any published query lengths in the literature, 
there is a need for even longer queries. 

Figure 6. The time taken to search random walks of 
length 20 million with increasingly long queries, for 
three variants of DTW. In addition, we include just 
length 4,096 with SOTA-ED for reference.  

 It is also interesting to consider the results of the 128-
length DTW queries as a ratio over GOAL. Recall that the 
cost for GOAL is independent of query length, and this ex-
periment is just 23.57 seconds. The ratios for Naive, SOTA 
and UCR suite are 5.27, 2.74 and 1.41, respectively. This 
suggests that we are asymptomatically closing in on the 
fastest possible subsequence search algorithm for DTW. 
Another interesting ratio to consider is the time for UCR-
DTW over UCR-ED, which is just 1.18. Thus, the time for 
DTW is not significantly different than that for ED, an idea 
which contradicts an assumption made by almost all papers 
on time series in the last decade.   
 Because the space limitation, we encourage the readers to 
see more interesting results at [UCRsuite, 2012] or in the 
original version of the paper [Rakthanmanon et al., 2012]. 

5.2 Speeding up Existing Mining Algorithms 
In this section, we demonstrate that we can speed up much 
of the code in the time series data mining literature with 
minimal effort, simply by replacing their distance 
calculation subroutines with the UCR suite. In many cases, 
the difference is small, because the algorithms in question 
already typically try to prune as many distance calculations 

as possible. Nevertheless, even though the speedups are 
relatively small (1.5X to 16X), they are “free”, requiring 
just minutes of cut-and-paste code editing. 
Time Series Shapelets have garnered significant interest 
since their introduction in 2009 [Ye and Keogh, 2009]. We 
obtained the original code and tested it on the Face (four) 
dataset, finding it took 18.9 minutes to finish. After replac-
ing the similarity search routine with the UCR suite, it took 
12.5 minutes to finish.  
Online Time Series Motifs generalize the idea of mining 
repeated patterns in a batch time series to the streaming case 
[Mueen and Keogh, 2010]. We obtained the original code 
and tested it on the EEG dataset used in the original paper. 
The fastest running time for the code assuming linear space 
is 436 seconds. After replacing the distance function with 
the UCR suite, it took just 156 seconds. 
Classification of Ancient Coins [Huber-Mörk et al., 2011]. 
2,400 irregularly shaped coins are converted to time series 
of length 256, and rotation-invariant DTW is used to search 
the database, taking 12.8 seconds per query. Using the UCR 
suite, this takes 0.8 seconds per query.   
Clustering of Star Light Curves  [Keogh et al., 2009] is an 
important problem in astronomy, as it can be a preprocessing 
step in outlier detection. We consider a dataset with 1,000 
(purportedly) phase-aligned light curves of length 1,024, 
whose class has been determined by an expert [Rebbapragada 
et al., 2009]. Doing spectral clustering with DTW (R=5%) 
takes about 23 minutes for all algorithms, and averaged over 
100 runs we find the Rand-Index is 0.62. As we do not trust 
the original claim of phase alignment, we further do rotation-
invariant DTW that dramatically increases the Rand-Index to 
0.76. Using SOTA, this takes 16.57 days, but if we use the 
UCR suite, this time falls by an order of magnitude, to just 
1.47 days on a single core. 

6 Discussion and Conclusions 
While our work has focused on fast sequential search, we 
believe that for DTW, our work is faster than all known 
indexing efforts. We also have made a strong and unintui-
tive claim in the abstract. We said that our UCR-DTW is 
faster than all current Euclidean distance searches.  
 Thus, the contributions of this paper are twofold. First, we 
have shown that much of the recent pessimism about using 
DTW for real-time problems was simply unwarranted. If 
carefully implemented, existing techniques, especially lower 
bounding, can make DTW tractable for many problems. Our 
second contribution is the introduction of the UCR suite of 
techniques that make DTW and Euclidean distance subse-
quence search significantly faster than current state-of-the-
art techniques. We have avoided presenting full pseudo-
code to enhance the readability of the text; however, full 
pseudo-code (and highly useable source-code) is readily 
available at [UCRsuite, 2012]. 
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