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Abstract

In past decade, more and more data are collected
from multiple sources or represented by multiple
views, where different views describe distinct per-
spectives of the data. Although each view could be
individually used for finding patterns by clustering,
the clustering performance could be more accurate
by exploring the rich information among multiple
views. Several multi-view clustering methods have
been proposed to unsupervised integrate different
views of data. However, they are graph based ap-
proaches, e.g. based on spectral clustering, such
that they cannot handle the large-scale data. How to
combine these heterogeneous features for unsuper-
vised large-scale data clustering has become a chal-
lenging problem. In this paper, we propose a new
robust large-scale multi-view clustering method to
integrate heterogeneous representations of large-
scale data. We evaluate the proposed new methods
by six benchmark data sets and compared the per-
formance with several commonly used clustering
approaches as well as the baseline multi-view clus-
tering methods. In all experimental results, our pro-
posed methods consistently achieve superiors clus-
tering performances.

1 Introduction

With the rising of data sharing websites, such as Facebook
and Flickr, there is a dramatic growth in the number of data.
For example, Facebook reports about 6 billion new photo ev-
ery month and 72 hours of video are uploaded to YouTube ev-
ery minute. One of major data mining tasks is to unsupervised
categorize the large-scale data [Biswas and Jacobs, 2012;
Lee and Grauman, 2009; Dueck and Frey, 2007; Cai et al.,
2011], which is useful for many information retrieval and
classification applications. There are two main computational
challenges in large-scale data clustering: (1) How to integrate
the heterogeneous data features to improve the performance
of data categorizations? (2) How to reduce the computational
cost of clustering algorithm for large-scale applications?
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Many scientific data have heterogeneous features, which
are generated from different data collection sources or fea-
ture construction ways. For example, in biological data, each
human gene can be measured by different techniques, such
as gene expression, Single-nucleotide polymorphism (SNP),
Array-comparative genomic hybridization (aCGH), methy-
lation; in visual data, each image/video can be represented
by different visual descriptors, such as SIFT [Lowe, 2004],
HOG [Dalal and Triggs, 2005], LBP [Ojala et al., 2002],
GIST [Oliva and Torralba, 2001], CENTRIST [Wu and Rehg,
2008], CTM [Yu et al., 2002]. Each type of features can cap-
ture the specific information in the data. For example, in vi-
sual descriptors, CTM uses the color spectral information and
hence is good for categorizing the images with large color
variations; GIST achieves high accuracy in recognizing natu-
ral scene images; CENTRIST is good for classifying indoor
environment images; HOG can describe the shape informa-
tion of the image; SIFT is robust to image rotation, noise,
illumination changes; and LBP is a powerful texture feature.
It is crucial to integrate these heterogeneous features to create
more accurate and more robust clustering results than using
each individual type of features.

Although several graph based multi-view clustering algo-
rithms were presented with good performance, they have the
following two main drawbacks. On one hand, because all of
them are graph based clustering method, the construction of
data graph is a key issue. Using different kernels to build
the graph will affect the final clustering performance a lot.
Moreover, for some specific kernels, we have to consider
the impact of the choice of parameters, such that the clus-
tering results are sensitive to the parameters tuning. On the
other hand, more important, due to the heavy computation of
the kernel construction as well as eigen decomposition, these
graph based methods cannot be utilized to tackle large-scale
data clustering problem.

The classical K-means clustering is a centroid-based clus-
tering method, which partitions the data space into a structure
known as Voronoi diagram. Due to its low computational
cost and easily parallelized process, the K -means clustering
method has often been applied to solve large-scale data clus-
tering problems, instead of the spectral clustering. However,
the K -means clustering was designed for solving single-view
data clustering problem. In this paper, we propose a new ro-
bust multi-view K-means clustering method to integrate het-



erogeneous features for clustering. Compared to related clus-
tering methods, our proposed method consistently achieves
better clustering performances on six benchmark data sets.
Our contributions in this paper are summarized in the follow-
ing four folds:

(1) We propose a novel robust large-scale multi-view K-
means clustering approach, which can be easily parallelized
and performed on multi-core processors for big visual data
clustering;

(2) Using the structured sparsity-inducing norm, /3 ;-
norm, the proposed method is robust to data outliers and can
achieve more stable clustering results with different initial-
izations;

(3) We derive an efficient algorithm to tackle the optimiza-
tion difficulty introduced by the non-smooth norm based loss
function with proved convergence;

(4) Unlike the graph based algorithms, the computa-
tional complexity of our methods is similar to the stan-
dard K-means clustering algorithm. Because our method
does not require the graph construction as well as the eigen-
decomposition, it avoids the heavy computational burden
and can be used for solving large-scale multi-view clustering
problems.

2 Robust Multi-View K -Means Clustering

As one of most efficient clustering algorithms, K -means clus-
tering algorithm has been widely applied to large-scale data
clustering. Thus, to cluster the large-scale multi-view data,
we propose a new robust multi-view K-means clustering
(RMKMC) method.

2.1 Clustering Indicator Based Reformulation

Previous work showed that the G-orthogonal non-negative

matrix factorization (NMF) is equivalent to relaxed K-means

clustering [Ding ef al., 2005]. Thus, we reformulate the K-

means clustering objective using the clustering indicators as:
nlIxXT — gFT|2

min || GF|F

)

K (D)
s.t. Gy, € {0,1}, Z Gip=1,Vi=1,2,--- |n
k=1

where X € R9*" is the input data matrix with n images
and d-dimensional visual features, F € R?*¥ is the cluster
centroid matrix, and G € R™*¥ is the cluster assignment
matrix and each row of G satisfies the /-of-K coding scheme
(if data point x; is assigned to k-th cluster then G = 1,
and G;; = 0, otherwise). In this paper, given a matrix
X = {x;;}, its i-th row, j-th column are denoted as W', w;,
respectively.

2.2 Robust Multi-View K-Means Clustering via
Structured Sparsity-Inducing Norm

The original K-means clustering method only works for
single-view data clustering. To solve the large-scale multi-
view clustering problem, we propose a new multi-view K-
means clustering method. Let X(*) € R%*" denote the fea-
tures in v-th view, F(*) € R% %X pe the centroid matrix for
the v-th view, and G(*) € R"*K pe the clustering indicator
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matrix for the v-th view. Given M types of heterogeneous
features, v =1,2,--- , M.

The straightforward way to utilize all views of features is
to concatenate all features together and perform the cluster-
ing algorithm. However, in such method, the important view
of features and the less important view of features are treated
equally such that the clustering results are not optimal. It
is ideal to simultaneously perform the clustering using each
view of features and unify their results based their importance
to the clustering task. To achieve this goal, we have to solve
two challenging problems: 1) how to naturally ensemble the
multiple clustering results? 2) how to learn the importance of
feature views to the clustering task? More important, we have
to solve these issues simultaneously in the clustering objec-
tive function, thus previous ensemble approaches cannot be
applied here.

When a multi-view clustering algorithm performs clus-
tering using heterogeneous features, the clustering results
in different views should be unique, i.e. the clustering in-
dicator matrices G(*) of different views should share the
same one. Therefore, in multi-view clustering, we force the
cluster assignment matrices to be the same across different
views, that is, the consensus common cluster indicator matrix
G € R™ ¥ which should satisfy the 7-of-K coding scheme
as well.

Meanwhile, as we know, the data outliers greatly affect the
performance of K-means clustering, because the K-means
solution algorithm is an iterative method and in each iteration
we need to calculate the centroid vector. In order to have a
more stable clustering performance with respect to a fixed ini-
tialization, the robust K -means clustering method is desired.
To tackle this problem, we use the sparsity-inducing norm,
{5 1-norm, to replace the />-norm in the clustering objective
function, e.g. Eq. (1). The £5 ;-norm of matrix X is defined as

[| X 1|21 = Zle [|x?[|2 (in other related papers, people also
used the notation ¢; /¢5-norm). The ¢5 1-norm based clus-
tering objective enforces the ¢1-norm along the data points
direction of data matrix X, and ¢5-norm along the features
direction. Thus, the effect of outlier data points in clustering
are reduced by the ¢;-norm. We propose a new robust multi-
view K -means clustering method by solving:

M
min > (@) X" — GFO ||y,
F(v)’G@('v) o—1

X 2
s.t.Gi € {0,1}, > Gy =1,
k=1

M
> a =1,

v=1

where (") is the weight factor for the v-th view and 7 is
the parameter to control the weights distribution. We learn
the weights for different types of features, such that the im-
portant features will get large weights during the multi-view
clustering.

3 Optimization Algorithm

The difficulty of solving the proposed objective comes from
the following two aspects. First of all, the 5 ;-norm is non-
smooth. In addition, each entry of the cluster indicator matrix



is a binary integer and each row vector must satisfy the /-of-
K coding scheme. We propose new algorithm to tackle them
efficiently.

3.1 Algorithm Derivation
To derive the algorithm solving Eq. (2), we rewrite Eq. (2) as
. M
J = F(”),DI(I}JI)I}Q(“),G vgl (@YY H®) 3)
where
H® =Tr{(x™ - F

DG DY (X — FGTYTY L (4

D®) ¢ R™ ™ is the diagonal matrix corresponding to the
v-th view and the ¢-th entry on the diagonal is defined as:
1

(v) _ L
D’ = 2||e(v)i||, Vi=1,2,...,n, (®)]

where ()" is the i-th row of the following matrix:
E® = xW" _gp®" (6)

The first step is fixing G, D(*), o(*) and updating the clus-
ter centroid for each view F(*).
Taking derivative of J with respect to F(*), we get

% = 2XODWG42FrWGTDWG,  (7)
where _
D@ — (a(v))WD(v)_ 8)
Setting Eq. (7) as 0, we can update F(*):
FO) = X(“)ﬁ(”)G(GTIN)(”)G)_l. 9

The second step is fixing F'(*), D(*), o(*) and updating the

cluster indicator matrix G.

‘We have

M ~
Z r{(X(v) _F(v)GT)D(X(v) _ F(U)GT)T}
v=1
M N

= ZZ VI = FOg |13
P

= ZZD x{" = FOg,|13) (10)
i=1 v=1

We can solve the above problem by decoupling the data
and assign the cluster indicator for them one by one inde-
pendently, that is, we need to tackle the following prob-
lem for the fixed specific i, with respect to vector g =
[91792. e agK]T S RKXl

K
mmZd Dx®) — FWg| 2 s.t.g, € {0,1}, ng =1

v=1 k=1
(1)
where d(¥) = l(f ) is the i-th element on the diagonal of

the matrix D). Given the fact that g satisfies /-of-K cod-
ing scheme, there are K candidates to be the solution of
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Eq. (11), each of which is the k-th column of matrix I =
[e1,e2,- - ,ex]. To be specific, we can do an exhaustive
search to find out the solution of Eq. (11) as,

g" = e, (12)

where k is decided as follows,

M
k= argminzg(”)ﬂx(”) — FWej|[3. (13)
J v=1

The third step is fixing F(*), G, o(*) and updating D)
by Eq. (5) and Egq. (6).
The fourth step is fixing F(*), G, D(*) and updating o(*).

M M
- OV Tl OV 54 @1 a® >0
Iﬁglv,l(a ) Tr{ }, s.t. ;a , ot >
(14)
where H(®) is also defined in Eq. (4). Thus, the Lagrange
function of Eq. (14) is:

M
Z (a (v) ’YH(“) Z a (15)
v=1

In order to get the optimal solution of the above subproblem,
set the derivative of Eq. (15) with respect to a(*) to zero. We

have:
1
A 71
() — [ 2~
o _<W (U)) . (16)

Substitute the resultant a(*) in Eq. (16) into the constraint
M
S ol =1, we get:

v=1

a7

By the above four steps, we alternatively update F(*), G,
D®) as well as o(*) and repeat the process iteratively until
the objective function becomes converged. We summarize
the proposed algorithm in Alg. 1.

3.2 Discussion of The Parameter -

We use one parameter ~y to control the distribution of weight
factors for different views. From Eq. (17), we can see that
when v — oo, we will get equal weight factors. And when
v — 1, we will assign 1 to the weight factor of the view
whose H () value is the smallest and assign 0 to the weights
of the other views. Using such a kind of strategy, on one
hand, we avoid the trivial solution to the weight distribution
of the different views, that is, the solution when v — 1. On
the other hand, surprisingly, we can take advantage of only
one parameter -y to control the whole weights, reducing the
parameters of the model greatly.



Algorithm 1 The algorithm of RMKMC

Input:
1. Data for M views {X® ... X1 and X(®) ¢
Rden.

2. The expected number of clusters K.

3. The parameter .

Output:

1. The common cluster indicator matrix G

2. The cluster centroid matrix F{,) for each view.

3. The learned weight o(”) for each view.
Initialization:
1.Sett =0
2. Initialize the common cluster indicator matrix G €
R"*¥ randomly, such that G satisfies the I-of-K coding
scheme.
3. Initialize the diagonal matrix DW =7 », for each view,
where I,, € R™"*" is the identity matrix.
4. Tnitialize the weight factor a*) = L. for each view.
repeat
1. Calculate the diagonal matrix D(*) by Eq. (8)
2. Update the centroid matrix F{,, for each view by
Eq. (9)
3. Update the cluster indicator vector g for each data one
by one via Eq. (12) and Eq. (13)
4. Update the diagonal matrix D) for each view by
Eq. (5) and Eq. (6)
5. Update the weight factor a(*) for each view by
Eq. (17)
6. Updatet =t +1
until Converges

3.3 Convergence Analysis

We can prove the convergence of the proposed Alg. 1 as fol-
lows: We can divide the Eq. (2) into four subproblems and
each of them is a convex problem with respect to one variable.
Therefore, by solving the subproblems alternatively, our pro-
posed algorithm will guarantee that we can find the optimal
solution to each subproblem and finally, the algorithm will
converge to local solution.

4 Time Complexity Analysis

As we know, graph based clustering methods, like spec-
tral clustering and etc., will involve heavy computation,
e.g. kernel/affinity matrix construction as well as eigen-
decomposition. For the data set with n images, the above
two calculations will have the time complexity of O(n?) and
O(n?) respectively, which makes them impractical for solv-
ing the large-scale image clustering problem. Although some
research works have been proposed to to reduce the compu-
tational cost of the eigen-decomposition of the graph Lapla-
cian [Yan er al., 2009] [Sakai and Imiya, 2009], they are de-
signed for two-way clustering and have to use the hierarchical
scheme to tackle the multi-way clustering problem.
However, our proposed method is centroid based clustering
method with the similar time complexity as traditional K-
means. For K-means clustering, if the number of iteration
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Table 1: Data set summary.

Data sets | # of data | # of views | # of cluster
SensIT 300 2 3
Caltech7 441 6 7
MSRC-v1 210 6 7
Digit 2000 6 10
AwA 30475 6 50
SUN 10000 7 100

is P, then the time complexity is O(PKnd) and the time
complexity of our proposed method is O(PKndM), where
M is the number of views and usually P < n, M < n and
K < n. In addition, in the real implementation, if the data is
too big to store them in memory, we can extend our algorithm
as an external memory algorithm that works on a chunk of
data at a time and iterate the proposed algorithm on each data
chunk in parallel if multiple processors are available. Once all
of the data chunks have been processed, the cluster centroid
matrix will be updated. Therefore, our proposed method can
be used to tackle the very large-scale clustering problem.

Because the graph based multi-view clustering methods
cannot be applied to the large-scale image clustering, we did
not compare the performance of our method with them in the
experiments.

S Experiments

In this section, we will evaluate the performance of the pro-
posed RMKMC method on six benchmark data sets: SensIT
Vehicle [Duarte and Hu, 2004], Caltech-101 [Li et al., 2007],
Microsoft Research Cambridge Volume 1(MSRC-v1) [Winn
and Jojic, 2005] Handwritten numerals [Frank and Asuncion,
2010], Animal with attribute [Lampert et al., 2009] and SUN
397 [Xiao et al., 2010]. Three standard clustering evaluation
metrics are used to measure the multi-view clustering per-
formance, that is, Clustering Accuracy (ACC), Normalized
Mutual Information(NMI) and Purity.

5.1 Data Set Descriptions

We summarize the six data sets that we will use in our exper-
iments in Table 1.

SensIT Vehicle data set is the one from wireless distributed
sensor networks (WDSN). It utilizes two different sensors,
that is, acoustic and seismic sensor to record different signals
and do classification for three types of vehicle in an intelligent
transportation system. We download the processed data from
LIBSVM [Chang and Lin, 2011] and randomly sample 100
data for each class. Therefore, we have 300 data samples, 2
views and 3 classes.

Caltech101 data set is an object recognition data set con-
taining 8677 images, belonging to 101 categories. We chose
the widely used 7 classes, i.e. Faces, Motorbikes, Dolla-
Bill, Garfield, Snoopy, Stop-Sign and Windsor-Chair. Fol-
lowing [Dueck and Frey, 20071, we sample the data and
totally we have 441 images. In order to get the different
views, we extract LBP [Ojala et al., 2002] with dimension
256, HOG [Dalal and Triggs, 2005] with dimension 100,
GIST [Oliva and Torralba, 2001] with dimension 512 and



color moment (CMT) [Yu et al., 2002] with dimension 48,
CENTRIST [Wu and Rehg, 2008] with dimension 1302 and
DoG-SIF [Lowe, 2004] with dimension 128 visual features
from each image.

MSRC-v1 data set is a scene recognition data set contain-
ing 8 classes, 240 images in total. Following [Lee and Grau-
man, 2009], we select 7 classes composed of tree, building,
airplane, cow, face, car, bicycle and each class has 30 images.
We also extract the same 6 visual features from each image
with Caltech101 dataset.

Handwritten numerals data set consists of 2000 data
points for 0 to 9 ten digit classes. (Each class has 200 data
points.) We use the published 6 features to do multi-view
clustering. Specifically, these 6 features are 76 Fourier coeffi-
cients of the character shapes (FOU), 216 profile correlations
(FAC), 64 Karhunen-love coefficients (KAR), 240 pixel aver-
ages in 2 x 3 windows (PIX), 47 Zernike moment (ZER) and
6 morphological (MOR) features.

Animal with attributes is a large-scale data set, which
consists of 6 feature, 50 classes, 30475 samples. We utilize all
the published features for all the images, that is, Color His-
togram (CQ) features , Local Self-Similarity (LSS) features
[Shechtman and Irani, 2007], PyramidHOG (PHOG) features
[Bosch et al., 20071, SIFT features [Lowe, 2004], colorSIFT
(RGSIFT) features [van de Sande et al., 2008], and SURF
features [Bay et al., 2008].

SUN 397 dataset [Xiao et al., 2010] is a published dataset
to provide researchers in computer vision, human percep-
tion, cognition and neuroscience, machine learning and data
mining, with a comprehensive collection of annotated images
covering a large variety of environmental scenes, places and
the objects. It consists of 397 classes with 100 images for
each class. We conduct the clustering experiment on the top
100 classes via the 7 published features for all the 10000
images.The 7 visual features are color moment, dense SIFT,
GIST, HOG, LBP, MAP and TEXTON.

5.2 Experimental Setup

We will compare the multi-view clustering performance of
our method (RMKMC) with their corresponding single-view
counterpart. In addition, we also compare the results of our
method with the baseline method naive multi-view K-means
clustering (NKMC), and affinity propagation (AP). In our
method, when we ignore the weight learning for each type of
visual features, the method degenerates to a simple version,
called as simple MKMC (SMKMC). In order to see the im-
portance of the weight learning, we also compare our method
to this simple version method.

Before we do any clustering, for each type of features, we
normalize the data first, making all the values in the range
[-1,1]. When we implement naive multi-view K-means,
we simply use the concatenated normalized features as input
for the classic K -means clustering algorithm. As for affinity
propagation methods, we need to build the similarity kernel
first. Due to the fact that linear kernel is preferred in large-
scale problem, we use the following way to construct linear
kernel.

Vi, j=1,2,.. (18)

A
wqjj _Xi Xj, ,n,

Table 2: SensIT Vehicle data set

Methods

ACC

NMI

Purity

acoustic

0.5049 £ 0.030

0.1018 £ 0.023

0.5055 £ 0.029

seismic

0.5122 £ 0.047

0.1149 £ 0.046

0.5129 £ 0.046

NKMC

0.5449 £ 0.041

0.1375 £ 0.030

0.5465 £+ 0.039

AP

0.3867 £ 0.000

0.0084 £ 0.000

0.3867 £ 0.000

SMKMC

0.5490 £ 0.040

0.1395 £ 0.032

0.5494 £ 0.040

RMKMC

0.5504 £ 0.049

0.1484 + 0.033

0.5542 + 0.044

Table 3: Caltech101-7 data set.

Methods ACC NMI Purity

LBP  |0.5236 £ 0.021| 0.4319 + 0.006

HOG ]0.5561 = 0.052| 0.5020 4 0.035 | 0.6459 £ 0.038

GIST |0.5663 £ 0.032| 0.4737 £ 0.024 | 0.6418 £ 0.028

CMT  |0.3809 + 0.015] 0.2706 £ 0.021 | 0.4346 £ 0.010

DoG-SIFT |0.6125 £ 0.037| 0.5637 £ 0.018 | 0.6673 £ 0.028

CENTRIST]0.6315 £ 0.058| 0.5981 £ 0.046

NKMC [0.6587 £ 0.063| 0.6561 £ 0.035 | 0.7458 £+ 0.030

AP 0.5125 £ 0.000(0.3611 £ 0.1054

SMKMC [0.6723 £ 0.058| 0.6775 = 0.034 | 0.7561 £ 0.026

RMKMC [0.6797 £ 0.053| 0.6892 + 0.029
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In addition, RMKMC has a parameter - to control the weight
factor distribution among all views. We search the logarithm
of the parameter +, that is, logy¢, in the range from 0.1 to 2
with incremental step 0.2 to get the best parameters v*. Since
all the clustering algorithms depend on the initializations, we
repeat all the methods 50 times using random initialization
and report the average performance.

5.3 Clustering Results Comparisons

Table 2 demonstrates the clustering results on SensIT Vehi-
cle data set. From it, we can see that although there are only
two views (acoustic and seismic), compared with single-view
K -means counterparts, our proposed RMKMC can boost the
clustering performance by more than 10%. Our RMKMC can
also beat NKMC and AP. Table 3 and Table 5 show the clus-
tering results on regular size Caltech101-7, MSRC-v1 as well
as Handwritten numerals data set. From it, we can see that
with more feature views involved in, our method can improve
the clustering performance even further. Also, on large-scale
data set Animal with attribute, although doing clustering on a
50 class data set is hard, the performance of our method can
still outperform that of the other compared methods as shown
in Table 6.

We plot the confusion matrices of RMKMC and NKMC in
terms of clustering accuracy in Fig. 1. Because the clustering
numbers of AwA and SUN data sets are large, their confusion
matrices cannot be plotted within one page. We skip these
two figures. From both tables and figures, we can see that our
proposed methods consistently beat the base line method on
all the data sets.

6 Conclusion

In this paper, we proposed a novel robust multi-view K-
means clustering methods to tackle the large-scale multi-view

0.6005 £ 0.008

0.7035 £ 0.044

0.5170 £ 0.1290

0.7595 £ 0.027
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Figure 1: The calculated average clustering accuracy confusion matrix for Caltech101, MSRCV1, SensIT Vehicle, and Hand-
written numerals data sets.

Table 6: Animal with attribute data set.

Table 4: MSRC-v1 data set.
NMI

Methods ACC Purity Methods Purity
LBP 0.4726 + 0.039]0.4156 + 0.024|0.5087 + 0.030 CP_ 10.0675 + 0.002[0.0773 = 0.00310.0874 <+ 0.002
HOG 0.6361 + 0.041]0.5669 & 0.032(0.6610 £ 0.037 LSS 10.0719 =+ 0.002]/0.0819 = 0.005/0.0887 = 0.002
GIST 0.6283 + 0.057(0.5523 £+ 0.039(0.6511 4+ 0.044 PHOG [0.0690 = 0.004/0.0691 = 0.003[0.0823 + 0.004
CMT  ]0.5076 £ 0.043]0.4406 + 0.037/0.5307 £ 0.037  "RGSIFT [0.0725 £ 0.003[0.0862 £ 0.004]0.0889 = 0.003

DoG-SIFT |0.4341 4 0.036{0.3026 4 0.028]0.4558 + 0.030 SIFT 10.0732 =+ 0.003]0.0944 + 0.005(0.0919 + 0.004

CENTRIST|0.5977 + 0.062|0.5301 £ 0.037(0.6205 & 0.054 SURF [0.0764 =+ 0.003]0.0885 = 0.003[0.0978 = 0.004
NKMC [0.7002 + 0.085/0.6405 £ 0.057[0.7207 4= 0.073 NKMC [0.0802 &+ 0.001]0.1075 £ 0.00310.1007 = 0.001

AP 10.1571 £ 0.000]0.2890 £ 0.000|0.1714 £ 0.000 AP [0.0769 & 0.001[0.0793 & 0.003]0.0975 & 0.001

SMKMC |0.7423 + 0.093]0.6940 £ 0.070|0.7652 £ 0.079 SMEKMC [0.0841 + 0.005/0.1108 = 0.005/0.1039 == 0.005

RMKMC [0.8142 £ 0.087[0.7776 & 0.071]0.8341 = 0.073 RMKMC|0.0943 £ 0.005/0.1174 = 0.005/0.1140 =+ 0.005

Table 5: Handwritten numerals data set.
Methods | ACC NMI Purity Methiods | ACe S e Purity
FOU _10.5560 £ 0.062|0.5477 4 0.02810.5793 £ 0.048 - <=5 Gp165507 £ 0.003(0.1417 & 0.003]0.0544 & 0,003
FAC [0.7078 £ 0.065[0.6791 4 0.032{0.7374 4+ 0.051
DSIFT |0.0661 & 0.002|0.1717 4 0.002{0.0710 4 0.002

KAR [0.6898 4 0.051{0.6662 + 0.030/0.7149 =+ 0.044
GIST [0.0740 & 0.002]/0.2008 =+ 0.002(0.0812 4 0.004

MOR [0.6143 + 0.058|0.6437 £ 0.034[0.6428 4 0.050
HOG [0.0715 =+ 0.003]0.1862 £ 0.003(0.0772 £ 0.003

PIX [0.6945 =+ 0.067(0.7030 & 0.040{0.7235 4 0.059
LBP 0.0599 &+ 0.002|0.1618 4 0.002{0.0644 + 0.002

ZER ]0.5348 4+ 0.052(0.5123 &+ 0.025|0.5684 =+ 0.043
MAP [0.0656 & 0.003/0.1917 £ 0.003[0.0710 4 0.004

NKMC {0.7282 + 0.067(0.7393 £ 0.039{0.7609 4 0.059
TEXTON|0.0561 =+ 0.002]0.1682 = 0.002|0.0608 £ 0.002

AP 10.6285 £ 0.000{0.5940 4 0.000{0.6600 = 0.000
NKMC [0.0546 4 0.001[0.1507 & 0.003[0.0591 + 0.001

SMKMC|[0.7758 4+ 0.079(0.7926 + 0.039|0.8106 = 0.060
RMEMC0.7889 £ 0.0750.8070 £ 0.03310.8247 £ 0.052 AP  ]0.0667 &+ 0.001[0.1693 £ 0.003[0.0765 4 0.001
. . . . . . SMKMC [0.0834 £ 0.003[0.2106 4 0.003[0.0839 + 0.003
RMKMC [0.0927 + 0.003/0.2154 & 0.003[0.0922 4 0.003

clustering problems. Utilizing the common cluster indicator,
we can search a consensus pattern and do clustering across

multiple visual feature views. Moreover, by imposing the
structured sparsity £ ;-norm on the objective function, our
method is robust to the outliers in input data. Our new method
learns the weights of each view adaptively. We also introduce

an optimization algorithm to iteratively and efficiently solve
the proposed non-smooth objective with proved convergence.
We evaluate the performance of our methods on six multi-
view clustering data sets.
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