
Accurate Integration of Crowdsourced Labels Using
Workers’ Self-Reported Confidence Scores

Satoshi Oyama
Hokkaido University

oyama@ist.hokudai.ac.jp
Yuko Sakurai

Kyushu University
ysakurai@inf.kyushu-u.ac.jp

Yukino Baba
The University of Tokyo

yukino baba@mist.i.u-tokyo.ac.jp
Hisashi Kashima

The University of Tokyo
kashima@mist.i.u-tokyo.ac.jp

Abstract
We have developed a method for using confidence
scores to integrate labels provided by crowdsourc-
ing workers. Although confidence scores can be
useful information for estimating the quality of
the provided labels, a way to effectively incorpo-
rate them into the integration process has not been
established. Moreover, some workers are over-
confident about the quality of their labels while
others are underconfident, and some workers are
quite accurate in judging the quality of their la-
bels. This differing reliability of the confidence
scores among workers means that the probability
distributions for the reported confidence scores dif-
fer among workers. To address this problem, we
extended the Dawid-Skene model and created two
probabilistic models in which the values of unob-
served true labels are inferred from the observed
provided labels and reported confidence scores by
using the expectation-maximization algorithm. Re-
sults of experiments using actual crowdsourced
data for image labeling and binary question answer-
ing tasks showed that incorporating workers’ con-
fidence scores can improve the accuracy of inte-
grated crowdsourced labels.

1 Introduction
Crowdsourcing on the Web is a promising approach to solv-
ing problems that are difficult for computers (but relatively
easy for humans). It has thus been extensively studied in
various computer science disciplines such as information re-
trieval, database management, data mining, and machine
learning. Typically, a group of people, i.e., a “crowd,” is
asked to make a judgment regarding given data. The judg-
ments are usually in the form of a binary or multi-class label,
a real value, or a short text. Such human judgments, i.e., “an-
notations,” are indispensable for many Web search and data
mining tasks such as ranking search results, classifying im-
ages, and resolving Web entities. The collection of data an-
notations through crowdsourcing services, as represented by

Amazon Mechanical Turk1, is becoming a pervasive strategy
since a large number of annotations can be collected at rela-
tively low cost.

An inherent problem in applying crowdsourcing is qual-
ity control. In contrast with well-controlled cases with re-
liable, screened workers, labels provided by crowdsourcing
workers tend to contain many errors due to their varied abil-
ities and dedication levels. Moreover, some crowdsourcing
workers, i.e., “spam workers,” simply produce random anno-
tations without actually looking at the data in order to earn
easy money.

The most straightforward way to make crowdsourced an-
notations reliable is to obtain multiple annotations from dif-
ferent workers for each data item and then use a simple ma-
jority vote to infer the true ones. The implicit assumption
with this approach is that all workers have the same proba-
bility of making an error. However, in actual crowdsourcing,
the probability of making an error varies among workers, so
treating the labels given by different workers equally is not an
effective approach.

Several methods have been proposed for inferring true la-
bels from worker provided labels that consider the differences
in the abilities of workers to provide true labels. In the most
well-known method, proposed by Dawid and Skene [1979],
each worker is assumed to have a distinct conditional prob-
ability of producing his/her label given a (an unknown) true
label. They estimated the true labels and the model param-
eter by using the expectation-maximization (EM) algorithm.
Several other methods also consider the difficulty of the task
as well as the ability of the workers in inferring the true la-
bels [Whitehill et al., 2009; Welinder et al., 2010a].

The studies mentioned above took a machine-based ap-
proach: the label or worker quality is automatically estimated
using a statistical inference or machine learning technique.
In contrast, we use a human-based approach to determining
label quality: the workers are directly asked to report their
level of confidence in the labels they provide. Since a worker
can easily judge the difficulty of a task and his/her ability to
perform it, he/she is the person best suited to evaluate the
quality of the label given. Therefore, asking a worker to re-

1https://www.mturk.com/mturk/welcome
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Figure 1: Human intelligence task in which workers are asked
to assign confidence scores

port the quality of the labels given by the worker is reasonable
in the framework of human computation. If the evaluation is
done at the time of task completion, the additional burden is
not onerous. Workers could be asked to assign a numerical
confidence score ranging from 0 to 100 or, more simply, to
give a binary response, e.g., “confident” or “not confident.”
Figure 1 shows an example human intelligence task (HIT) in
which the worker assigns a confidence score as a percentage
ranging from 0 to 100%.

The possibility of using these confidence scores to im-
prove the quality of crowdsourced labels was investigated by
Ipeirotis [2009]. He conducted experiments in which work-
ers were asked to report the task difficulty2. He showed that
the reported difficulty was correlated with the probability of
a correct answer. From this finding, he suggested that ask-
ing workers about the difficulty of a labeling task might be
a promising alternative to estimating it using a sophisticated
algorithm. A similar study was conducted by Kazai [2011].

In line with the direction taken by Ipeirotis [2009], we
make use of the confidence scores to improve annotation
quality. Although confidence scores given by workers should
be useful information for inferring the true labels, a way to
effectively incorporate them in an inference algorithm has
not been established. In addition, the quality of the reported
scores varies among workers just as the label quality does.
Some workers may be overconfident and report a high level
of confidence even though their labels are actually incorrect,
while other workers may be underconfident and report a low
level of confidence even though their labels are actually cor-
rect. Some workers may be quite accurate in judging their
actual abilities, i.e., they are “well-calibrated.” And other
workers may report a level of confidence in a random man-
ner or without due consideration. Figure 2 shows that there
was a positive correlation (≈ 0.455) between worker confi-

2A worker’s level of confidence in the label is basically opposite
the worker’s subjective evaluation of the task’s difficulty.
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Figure 2: Correlation between accuracy and average confi-
dence of each worker

dence and accuracy3. The data points falling on or near the
diagonal line represent “well-calibrated” workers. There are
many data points representing “overconfident” or “undercon-
fident” workers, i.e., workers whose confidence scores were
not consistent with the actual accuracy. This means that the
confidence scores should not be treated equally; instead, the
characteristics of the individual workers should be taken into
consideration.

In this work, we assume that each worker has a distinct
conditional distribution for the confidence scores given the
true label and his/her labels. This enables us to model each
worker’s particular tendency in giving confidence scores,
such as an overconfident worker who gives a high confi-
dence score with high probability even when the true label
and his/her label are different or an underconfident worker
who gives a low confidence score with high probability even
when the true label and his/her label are the same.

We propose using two generative probabilistic models in
which the crowdsourced label depends on both the true la-
bel and the workers’ confidence scores. The unobserved true
labels are estimated from the observed workers’ labels and
confidence scores by using the EM algorithm, which alter-
natingly estimates the true labels and the model parameters.

The organization of the paper is as follows. In Section 2,
we describe our problem setting and our proposed probabilis-
tic models, which incorporate worker confidence scores as
observable variables. Section 3 describes the method used to
infer the true labels given the worker labels and confidence
scores. Experimental results for image labeling and binary
question answering tasks using real crowdsourced data are
given in Section 4. Section 5 discusses related work on infer-
ring true labels or worker abilities in crowdsourced labeling
tasks. We summarize the key points and discuss possible fu-
ture work in Section 6.

3This point is discussed in more detail in Section 4.
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2 Problem Setting and Proposed Models
2.1 Problem Setting
The problem setting is similar to that of Dawid and
Skene [1979]. There are N data items and J crowdsourcing
workers (each worker does not necessarily label all items).
Let Ji ⊆ {1, . . . , J} be the subset of workers who labeled
item i. ti ∈ {0, 1} (i ∈ {1, . . . , N}) is the true label for
data item i, and yij ∈ {0, 1} (j ∈ Ji) is the label for data
i given by worker j. In contrast to the setting of Dawid and
Skene [1979], we collect additional information from workers
as well as the label estimates. Each worker is asked to assign
a confidence score to his/her labels. The level of confidence
of worker j in his/her label for item i is given by cij ∈ {0, 1}
(j ∈ Ji). If the worker is confident, cij = 1; otherwise,
cij = 0. The confidence score is given as a binary variable
for simplicity, but the model can be easily extended to enable
the use of more general confidence scores, such as multi-level
scales and numerical scores.

Our goal is to infer the set of true labels {ti}(i ∈
{1, . . . , N}) given the set of workers’ labels {yij} and the
set of confidence scores {cij} (i ∈ 1, . . . , N, j ∈ Ji).

2.2 Proposed Models
We propose using probabilistic generative models of the con-
fidence scores as well as the labels given by crowdsourcing
workers. With these models, we can use workers’ confidence
scores as well as their labels to infer the value of the true
labels. For example, if a worker’s confidence about his/her
label for an item is high, the likelihood that his/her label co-
incides with the true label is high.

Our models are given as a factorization of the joint distri-
bution:

p({ti}, {yij}, {cij})

=
∏

i∈{1,...,N}

∏
j∈Ji

p(cij |yij , ti)p(yij |ti)p(ti).

The value of a true label for item i takes 1 with probability
pi and 0 with probability 1 − pi; that is, it is sampled from a
Bernoulli distribution,

p(ti) = ptii (1− pi)
(1−ti),

with parameter pi.
In the original Dawid-Skene model, the prior probability

of the true label is common among different items. This is
a reasonable assumption for such areas as medical diagnosis,
where the typical question (which is common to all items) is
whether a person has had a certain disease and we can assume
the prior probability of the disease occurring in the popula-
tion. In crowdsourcing, however, a task can consist of differ-
ent kinds of questions, such as, “Is Mount Everest the highest
mountain in the world?” and “Is the Nile River longer than
the Amazon River?” It is difficult to consider a common prior
among the answers to these questions. In addition, the choice
of class labels is sometimes arbitrary; for example, asking “Is
the Amazon River longer than the Nile River?” instead of the
latter question changes the correct answer from “yes” to “no.”
We therefore introduce parameter pi, which can be estimated
by the rate of workers giving label 1 to item i.

Worker labels {yij |j ∈ Ji} for item i are conditionally
independent given true label ti. The α(j) = {α(j)

0 , α
(j)
1 } in

Figure 3 represents the set of parameters for worker j, where
α
(j)
0 is the probability of worker j giving label 1 if the true

label is 0, and α(j)
1 is the probability of worker j giving la-

bel 1 if the true label is 1. Therefore, when ti = 1, label
yij given by worker j for item i is sampled from a Bernoulli
distribution,

p(yij |ti = 1) = (α
(j)
1 )yij (1− α(j)

1 )(1−yij),

with parameter α(j)
1 . Similarly, when ti = 0, label yij given

by worker j for item i is sampled from a Bernoulli distribu-
tion,

p(yij |ti = 0) = (α
(j)
0 )yij (1− α(j)

0 )(1−yij),

with parameter α(j)
0 .

Worker j’s confidence score cij for his/her label for item
i depends on the true label ti and his/her label yij , and it is
also sampled from a Bernoulli distribution. Our two proposed
models, a worker-independent model and a worker dependent
model, are variants of the confidence generating model.

In the worker dependent model, β(j) =

{β(j)
00 , β

(j)
01 , β

(j)
10 , β

(j)
11 } is the set of parameters specific

to worker j. Here, for example, β(j)
00 is the probability that

worker j’s confidence cij = 1 when true label ti = 0 and
worker j’s label yij = 0. In this case, the confidence is
sampled from the following distribution.

p(cij |ti = 0, yij = 0) = (β
(j)
00 )

cij (1− β(j)
00 )

(1−cij) .

When ti = 0 and yij = 1, the confidence is sampled from the
following distribution.

p(cij |ti = 0, yij = 1) = (β
(j)
01 )

cij (1− β(j)
01 )

(1−cij) .

The conditional distributions for the other two cases,
p(cij |ti = 1, yij = 0) and p(cij |ti = 1, yij = 1) are sim-
ilarly defined.

In the worker independent model, all workers are assumed
to share the identical parameters β = {β00, β01, β10, β11}(=
β(j)). For example, when true label ti = 0 and worker j’s
label yij = 0, the confidence is sampled from the following
distribution (common to all workers).

p(cij |ti = 0, yij = 0) = (β00)
cij (1− β00)(1−cij) .

The conditional distributions for the remaining cases,
p(cij |ti = 0, yij = 1), p(cij |ti = 1, yij = 0), and p(cij |ti =
1, yij = 1), are defined similarly.

The worker dependent model is not based on such an as-
sumption. Introducing worker specific distributions for the
confidence values enables more flexible worker modeling, so
the model captures the different tendencies among workers in
reporting their confidence, i.e., overconfident workers report-
ing high confidence even when their labels are incorrect and
underconfident workers reporting low confidence even when
their labels are correct.
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Figure 3: Graphical models for label integration: (a) Dawid-Skene model, (b) worker independent confidence model, and (c)
worker dependent confidence model

The differences among the Dawid-Skene model, our
worker independent confidence model, and our worker de-
pendent confidence model are illustrated in the graphical
models given in Figure 3. We can see that our models ex-
tend the Dawid-Skene model by introducing worker confi-
dence scores as probabilistic variables.

3 Inference Algorithm

Given labels {yij} and confidence scores {cij} obtained from
the workers, we want to estimate true labels {ti}. Similar to
the approach of Dawid and Skene [1979], we use the EM al-
gorithm to obtain the maximum likelihood estimate of model
parameters {α(j)} and {β(j)}, with true labels {ti} as latent
variables.

We first give the EM algorithm for the worker dependent
confidence model since it also gives that for the worker in-
dependent confidence model as a special case. The EM al-
gorithm for the worker dependent model alternately performs
two steps until convergence.

E-step: Estimate the expected values of unobserved vari-
ables {ti} by using the current estimates of parameters
{α(j)} and {β(j)}.

M-step: Estimate parameters {α(j)} and {β(j)} by using
the current expectations of {ti}.

In the E-step, the expectation of ti is represented as

E[ti] = p(ti = 1|{yij}, {cij})

=
pi
zi

∏
j∈Ji

{
(α

(j)
1 )yij (1− α(j)

1 )(1−yij)

× (β
(j)
11 )

yijcij (1− β(j)
11 )

yij(1−cij)

×(β(j)
10 )

(1−yij)cij (1− β(j)
10 )

(1−yij)(1−cij)
}
,

(1)

where zi is an unknown normalization constant. Computing

the expectation also requires evaluating

1− E[ti] = p(ti = 0|{yij}, {cij})

=
1− pi
zi

∏
j∈Ji

{
(α

(j)
0 )yij (1− α(j)

0 )(1−yij)

× (β
(j)
01 )

yijcij (1− β(j)
01 )

yij(1−cij)

×(β(j)
00 )

(1−yij)cij (1− β(j)
00 )

(1−yij)(1−cij)
}
.

(2)

Solving these two equations (given that E[ti]+(1−E[ti]) =
1) to obtain the value of zi, we obtain the value of E[ti].

In the M-step, the maximum likelihood estimates of
α
(j)
µ (µ ∈ {0, 1}) are respectively computed by using

α̂
(j)
0 =

∑
{i:j∈Ji}(1− E[ti])yij∑
{i:j∈Ji}(1− E[ti])

α̂
(j)
1 =

∑
{i:j∈Ji}E[ti]yij∑
{i:j∈Ji}E[ti]

.

(3)

β(j) is estimated by using

β̂
(j)
00 =

∑
{i:j∈Ji}(1− E[ti])(1− yij)cij∑
{i:j∈Ji}(1− E[ti])(1− yij)

β̂
(j)
01 =

∑
{i:j∈Ji}(1− E[ti])yijcij∑
{i:j∈Ji}(1− E[ti])yij

β̂
(j)
10 =

∑
{i:j∈Ji}E[ti](1− yij)cij∑
{i:j∈Ji}E[ti](1− yij)

β̂
(j)
11 =

∑
{i:j∈Ji}E[ti]yijcij∑
{i:j∈Ji}E[ti]yij

.

(4)

In practice, we often face the “zero frequency problem.”
For example, if we have no data such that worker j gives
label 1 with confidence 0 to an instance whose true label is 1,
the maximum likelihood estimation gives 0 probability to the
event. Therefore, we use the Laplace smoothing technique to
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Figure 4: Results for image labeling

give virtual occurrence counts to such unobserved events:

β̂
(j)
00 =

∑
{i:j∈Ji}(1− E[ti])(1− yij)cij + 1∑
{i:j∈Ji}(1− E[ti])(1− yij) + 2

.

The EM algorithm for the worker independent model is
given by simply changing β(j) to β in Eqs. (1), (2), and (4)
and by changing the domains of summation from {i : j ∈ Ji}
to {i, j : 1 ≤ i ≤ N, 1 ≤ j ≤ J} in Eq. (4).

4 Evaluation
4.1 Image Labeling
To evaluate the effectiveness of using confidence scores in in-
ferring true labels, we conducted experiments using Amazon
Mechanical Turk. We chose ten images from the Caltech-
UCSD Birds 200 dataset [Welinder et al., 2010b] and asked
crowdsourcing workers to choose one of two bird names as
the label for each image. We also asked them to report their
level of confidence in each choice. To determine the effect of
the number of workers on the accuracy of the inferred labels,
we asked 100 workers to label the same ten images. Although
each worker labeled all ten images, there were some missing
values due to input errors. The workers were instructed to
report their confidence level for each answer by entering a
numeric value ranging from 0 to 100.

Since our current model is based on the assumption that
the confidence score is in binary form, we had to convert the
confidence scores into binary form. We first found the median
score for each worker and then converted his/her confidence
scores greater than the median to 1 and the ones smaller than
the median to 0. The confidence scores equal to the median
were converted to either 1 or 0 so that the number of confi-
dence scores of 1 and of 0 became better balanced.

To see the effect of the number of workers per task on accu-
racy, we split the workers into groups of equal size, inferred
the true labels from the worker labels and confidence scores
within each group, and averaged the accuracies of the true
labels obtained from each group. We conducted experiments
with four different group sizes: 5, 10, 20, and 50. The average
accuracies for each group size were obtained with majority
vote, the Dawid-Skene model, the worker-independent con-
fidence model, and the worker-dependent confidence model.
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Figure 5: Results for binary question answering

As shown in Figure 4, with 50 workers, all three models and
even a simple majority vote provided sufficient accuracy due
to the high level of redundancy. In practice, however, the
number of workers that can be used for a task is limited due
to cost. Ten workers at most for each task would be a rea-
sonable number. As shown in Figure 4, when the number of
workers was 5 or 10, the two models using the confidence
score achieved better accuracy than majority vote and the
Dawid-Skene model. In particular, for the case of 5 work-
ers per task, the worker-dependent confidence model greatly
outperformed the other models.

4.2 Binary Question Answering
We conducted experiments using another dataset, one con-
taining 120 binary questions on general knowledge, e.g. “Is
Mount Everest the highest mountain in the world?” We used
Lancers crowdsourcing service4 to collect answers for this
dataset. Each question was answered by ten crowdsourcing
workers. Again, along with the answers, we also asked them
to assign confidence scores. The confidence scores were pro-
cessed in exactly the same way as in the image labeling ex-
periments. We collected the confidence scores, which ranged
from 0 and 100, and converted them into binary form.

4http://www.lancers.jp/
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In this case, totally 42 workers involved in the tasks. As
shown in Figure 5, when we used all ten of the workers’ la-
bels, the accuracy of simple majority vote was similar to that
of the two models using the confidence score. As we saw
in the results for image labeling, majority vote can achieve
sufficient accuracy when the number of labels per item is rel-
atively large. In contrast, when we used the labels of half
the workers (average number of labels per item is five), the
worker-independent confidence model achieved the best ac-
curacy, followed by the worker-dependent confidence model.
The better performance of the worker-independent model is
attributed to the fact that the variations in the confidence
scores given by the workers were smaller than those for the
image labeling experiments. The standard deviation of the av-
erage scores for image labeling was 0.22 while that for binary
question answering was 0.16.

5 Related Work

5.1 Quality Control in Crowdsourcing

One of the fundamental challenges in crowdsourcing is
controlling the quality of the obtained data. Crowdsourc-
ing workers are rarely trained and do not necessarily have
adequate ability to complete their assigned tasks accu-
rately [Snow et al., 2008]. There are also great differences
in the skill levels of such workers. A particular problem is
malicious behavior by spam workers [Eickhoff and de Vries,
2011]. These workers are motivated by financial reward and
thus complete the task as quickly as possible with minimum
effort, resulting in worthless submissions.

Promising approaches for quality control can be catego-
rized into task design [Kittur et al., 2008], worker filter-
ing, and inter-agreement metrics for multiple submissions.
A widely used approach is to obtain multiple submissions
from different workers and aggregate them by applying a ma-
jority vote [Sheng et al., 2008] or other rules. Dawid and
Skene [1979] addressed the problem of aggregating medical
diagnoses from multiple doctors to improve decision accu-
racy. Smyth et al. [1995] applied this method to the prob-
lem of inferring true labels for images from multiple noisy
labels. Whitehill et al. [2009] explicitly modeled the diffi-
culty of each task, and Welinder et al. [2010a] introduced the
idea of evaluating the difficulty of each task differently for
each worker.

A number of researchers in the machine learning and data
mining communities have addressed the problem of super-
vised learning from multiple labels obtained from crowd-
sourcing workers [Sheng et al., 2008]. Raykar et al. [2010]
extended the Dawid-Skene model to enable inferring both
the true labels and predictive models simultaneously. Yan
et al. [2010] presented a model in which the error rate of
the workers is assumed to depend on the task. Kajino et
al. [2012] proposed a convex optimization formulation for
learning from crowds. Other research has contributed to la-
beler selection in the contexts of repeated trials [Donmez et
al., 2009], active learning [Yan et al., 2011], and cluster-
ing [Gomes et al., 2011].

5.2 Use of Confidence Scores in Quality Control
We assume that confidence scores are useful information for
estimating the reliability of labels given by workers; how-
ever, this assumption is not especially novel. Ipeirotis [2009]
conducted an experiment to examine the correlation between
the self-reported difficulty of tasks and the probability of cor-
rect answers. Kazai [2011] investigated the relationship be-
tween worker confidence and label quality in the context of
document relevance assessment. Branson et al. [2010] col-
lected three-level confidence scores for visual recognition
tasks. However, these efforts did not include the use of con-
fidence scores for quality control purpose, and they did not
investigate the usefulness of the scores.

In Kazai’s study, each worker was asked to rate his/her fa-
miliarity with the given topic and the task difficulty. The re-
sults showed that workers who rated the task easier had higher
accuracy. However, the workers who claimed to be an expert
had less accuracy than the ones who did not. Karzai postu-
lated that veteran workers would be better at measuring their
expertise than amateur workers and that the less confident
workers would be more likely to take more time completing
the tasks.

While Ipeirotis and Kazai investigated the correlation be-
tween worker confidence and the reliability of the output,
to the best of our knowledge, we are the first to propose a
method for utilizing the level of confidence to improve the
quality of crowdsourced labels. Studies using item response
theory [de Ayala, 2009] have used tests consisting of multi-
ple choice questions for which each examinee was asked to
express his/her degree of confidence that the response was
correct [de Finetti, 1965]. The assumptions made in item re-
sponse theory differ significantly from those in crowdsourc-
ing; the true answers are known to the test provider in item
response theory while they are unknown in crowdsourcing.

6 Conclusion
We propose utilizing crowdsourcing workers’ confidence
scores to integrate their answers and to infer the unobserved
true labels. We extended the Dawid-Skene model to incor-
porate confidence scores into the label generation process;
that is, workers’ confidence levels scores depend on the un-
observed true labels and workers’ labels. We devised an EM-
based algorithm for estimating the model parameters and true
labels. The experimental results showed that incorporating
workers’ confidence scores can improve the accuracy of in-
tegrated crowdsourced labels, especially when the number of
workers that can be used for a task is limited.

One possible future direction is to design effective ways of
asking workers to assign confidence scores. In item response
theory [de Ayala, 2009], examinees are sometimes asked to
assign a confidence distribution to the response they give to
each question [de Finetti, 1965]. Kato and Zhang [2010]
reported that more than 60% of the confidence scores were
either ‘0%’ or ‘100%’ in their experiments and suggested
adding a pre-training phase for teaching examinees how to
better represent their confidence. How to ask workers to as-
sign confidence scores is an important research question. Al-
though assigning a confidence score for each response is rel-
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atively easy, it is still an additional burden. Replacing the use
of confidence scores with another metric that is automatically
measurable (such as the time needed for completing a task) is
another possible direction worth studying.
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