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Abstract
We propose to measure statistical dependence be-
tween two random variables by the mutual in-
formation dimension (MID), and present a scal-
able parameter-free estimation method for this task.
Supported by sound dimension theory, our method
gives an effective solution to the problem of detect-
ing interesting relationships of variables in massive
data, which is nowadays a heavily studied topic in
many scientific disciplines. Different from classi-
cal Pearson’s correlation coefficient, MID is zero
if and only if two random variables are statistically
independent and is translation and scaling invari-
ant. We experimentally show superior performance
of MID in detecting various types of relationships
in the presence of noise data. Moreover, we illus-
trate that MID can be effectively used for feature
selection in regression.

1 Introduction
How to measure dependence of variables is a classical yet
fundamental problem in statistics. Starting with the Galton’s
work of Pearson’s correlation coefficient [Stigler, 1989] for
measuring linear dependence, many techniques have been
proposed, which are of fundamental importance in scientific
fields such as physics, chemistry, biology, and economics.

Machine learning and statistics has defined a number of
techniques over the last decade which are designed to mea-
sure not only linear but also nonlinear dependences [Hastie
et al., 2009]. Examples include kernel-based [Bach and
Jordan, 2003; Gretton et al., 2005], mutual information-
based [Kraskov et al., 2004; Steuer et al., 2002], and distance-
based [Székely et al., 2007; Székely and Rizzo, 2009] meth-
ods. Their main limitation in practice, however, is the lack
of scalability or that one has to specify the type of nonlinear
relationship one is interested in beforehand, which requires
non-trivial parameter selection.

Recently, in Science, a distinct method called maximal in-
formation coefficient (MIC) has been proposed by Reshef et

al. [2011] (further analyzed in [Reshef et al., 2013]) that mea-
sures any kind of relationships between two continuous vari-
ables. They use the mutual information obtained by discretiz-
ing data and, intuitively, MIC is the maximum mutual infor-
mation across a set of discretization levels.

However, it has some significant drawbacks: First, MIC
depends on the input parameter B(n), which is a natural
number specifying the maximum size of a grid used for dis-
cretization of data to obtain the entropy [Reshef et al., 2011,
SOM 2.2.1]. This means that MIC becomes too small if we
choose small B(n) and too large if we choose large B(n).
Second, it has high computational cost, as it is exponential
with respect to the number of data points1, and not suitable
for large datasets. Third, as pointed out by Simon and Tibshi-
rani [2012], it does not work well for relationship discovery
in the presence of noise.

Here we propose to measure dependence between two ran-
dom variables by the mutual information dimension, or MID,
to overcome the above drawbacks of MIC and other machine
learning based techniques. First, it contains no parameter
in theory and the estimation method proposed in this paper
is also parameter-free. Second, its estimation is fast; the
average-case time complexity is O(n log n), where n is the
number of data points. Third, MID is experimentally shown
to be more robust to uniformly distributed noise data than
MIC and other methods.

The definition of MID is simple:

MID(X;Y ) := dimX + dimY − dimXY

for two random variables X and Y , where dimX and dimY
are the information dimension of random variables X and
Y , respectively, and dimXY is that of the joint distribu-
tion of X and Y . The information dimension is one of the
fractal dimensions [Ott, 2002] introduced by Rényi [1959;
1970], and its links to information theory were recently stud-
ied [Wu and Verdú, 2010; 2011]. Although MID itself is not
a new concept, this is the first study that introduces MID as a
measure of statistical dependence between random variables;

1Since computing the exact MIC is usually infeasible, they used
heuristic dynamic programming for efficient approximation.
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to date, MID has only been used for chaotic time series anal-
ysis [Buzug et al., 1994; Prichard and Theiler, 1995].

MID has desirable properties as a measure of depen-
dence: For every pair of random variables X and Y , (1)
MID(X;Y ) = MID(Y ;X) and 0 ≤ MID(X;Y ) ≤ 1; (2)
MID(X;Y ) = 0 if and only ifX and Y are statistically inde-
pendent (Theorem 1); and (3) MID is invariant with respect
to translation and scaling (Theorem 3). Furthermore, MID is
related to MIC and can be viewed as an extension of it (see
Section 2.4).

To estimate MID from a dataset, we construct an efficient
parameter-free method. Although the general strategy is the
same as the standard method used for estimation of the Box-
counting dimension [Falconer, 2003], we aim to remove all
parameters from the method using the sliding window strat-
egy, where the width of a window is adaptively determined
from the number of data points. The average-case and the
worst-case complexities of our method are O(n log n) and
O(n2) with the number n of data points, respectively, which
is much faster than the estimation algorithm of MIC and the
other state-of-the-art methods such as the Hilbert-Schmidt in-
dependence criterion (HSIC) [Gretton et al., 2005] and the
distance correlation [Székely et al., 2007] whose time com-
plexities areO(n2). Hence MID scales up to massive datasets
with millions of data points.

This paper is organized as follows: Section 2 introduces
MID and analyzes it theoretically. Section 3 describes a prac-
tical estimation method of MID. The experimental results are
presented in Section 4, followed by conclusion in Section 5.

2 Mutual Information Dimension
In fractal and chaos theory, dimension has a crucial role since
it represents the complexity of an object based on a “mea-
surement” of it. We employ the information dimension in this
paper, which belongs to a larger family of fractal dimensions
[Falconer, 2003; Ott, 2002].

In the following, let N be the set of natural numbers includ-
ing 0, Z the set of of integers, and R the set of real numbers.
The base of the logarithm is 2 throughout this paper.

We divide the real line R into intervals of the same width
to obtain the entropy of a discretized variable. Formally,

Gk(z) := [z, z + 1) · 2−k =

{
x ∈ R

∣∣∣∣ z2k ≤ x < z + 1

2k

}
for an integer z ∈ Z. We call the resulting system Gk =
{Gk(z) | z ∈ Z } the partition of R at level k. Partition for
the two-dimensional space is constructed from Gk as G2k =
{Gk(z1)×Gk(z2) | z1, z2 ∈ Z }.

2.1 Information Dimension
Given a real-valued random variableX , we construct for each
level k the discrete random variable Xk over Z, whose prob-
ability is given by Pr(Xk = z) = Pr(X ∈ Gk(z)) for each
z ∈ Z. We denote the probability mass function for Xk by
pk(x) = Pr(Xk = x), and that of the joint probability by
pk(x, y) = Pr(Xk = x and Yk = y).

We introduce the information dimension, which intuitively
shows the complexity of a random variable X as the ratio
comparing the change of the entropy to the change in scale.
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Figure 1: Three intuitive examples. MID is one for linear
relationship (left), and MID is zero for independent relation-
ships (center and right).

Definition 1 (Information Dimension [Rényi, 1959]) The
information dimension of X is defined as

dimX := lim
k→∞

H(Xk)

− log 2−k
= lim

k→∞

H(Xk)

k
,

where H(Xk) denotes the entropy of Xk, defined by
H(Xk) = −

∑
x∈Z pk(x) log pk(x).

The information dimension for a pair of two real-valued
variables X and Y is naturally defined as dimXY :=
limk→∞H(Xk, Yk)/k, whereH(Xk, Yk) = −

∑
x∈Z

∑
y∈Z

pk(x, y) log pk(x, y), the joint entropy of Xk and Yk. Infor-
mally, the information dimension indicates how much a vari-
able fills the space, and this property enables us to measure
the statistical dependence. Notice that

0 ≤ dimX ≤ 1, 0 ≤ dimY ≤ 1, and 0 ≤ dimXY ≤ 2

hold since 0 ≤ H(Xk) ≤ k for each k and

0 ≤ H(Xk, Yk) ≤ H(Xk) +H(Yk) ≤ 2k.

In this paper, we always assume that dimX and dimY
exist and X and Y are Borel-measurable. Our formulation
applies to pairs of continuous random variables X and Y .2

2.2 Mutual Information Dimension
Based on the information dimension, the mutual information
dimension is defined in an analogous fashion to the mutual
information.
Definition 2 (Mutual Information Dimension) For a pair
of random variablesX and Y , the mutual information dimen-
sion, or MID, is defined as

MID(X;Y ) := dimX + dimY − dimXY .

We can easily check that MID is also defined as

MID(X;Y ) = lim
k→∞

I(Xk;Yk)

k
(1)

with the mutual information I(Xk;Yk) of Xk and Yk defined
as I(Xk;Yk) =

∑
x,y∈Z pk(x, y) log(pk(x, y)/pk(x)pk(y)).

Informally, the larger MID(X;Y ), the stronger the statis-
tical dependence between X and Y . Figure 1 shows intuitive
examples of the information dimension and MID.

2Furthermore, it applies to variables with no singular component
in terms of the Lebesgue decomposition theorem [Rényi, 1959]. In
contrast, Reshef et al. [2011] (SOM 6) theoretically analyzed only
continuous variables.
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2.3 Properties of MID
It is obvious that MID is symmetric MID(X;Y ) =
MID(Y ;X) and that 0 ≤ MID(X;Y ) ≤ 1 holds for any
pair of random variables X and Y , as the mutual information
I(Xk;Yk) in equation (1) is always between 0 and k.

The following is the main theorem in this paper.

Theorem 1 MID(X;Y ) = 0 if and only if X and Y are
statistically independent.

Proof. (⇐) Assume that X and Y are statistically in-
dependent. From equation (1), it directly follows that
MID(X;Y ) = 0 since I(Xk;Yk) = 0 for all k.

(⇒) Assume that X and Y are not statistically indepen-
dent. We have MID(X;Y ) = dimX − dimX|Y , where
dimX|Y = limk→∞H(Xk|Yk)/k with the conditional en-
tropy H(Yk|Xk) =

∑
x,y∈Z pk(x, y) log(pk(x)/pk(x, y)).

Thus all we have to do is to prove dimX 6= dimX|Y to
show that MID(X;Y ) 6= 0 holds. From the definition of en-
tropy, dimX = limk→∞−E log p(Xk)/k and dimX|Y =
limk→∞−E log p(Xk|Yk)/k, where E denotes the expecta-
tion. Since p(Xk) and p(Xk|Yk) go to p(X) and p(X|Y )
when k → ∞, −E log p(Xk) > −E log p(Xk|Yk) if k is
large enough. Thus dimX 6= dimX|Y holds. �

Note that I(Xk;Yk) does not converge to I(X;Y ) (and ac-
tually goes to infinity) when X and Y are not statistically
independent. It is analogue to the entropy H(Xk) → ∞ as
k →∞ and is different from the differential entropy of X .

We can also characterize functional relationships with an
MID score of one.

Theorem 2 Let X be a random variable with an abso-
lutely continuous distribution. For any function f such
that f(X) also has an absolutely continuous distribution,
MID(X; f(X)) = 1.

Proof. From Theorem 1 in [Rényi, 1959], it follows that
dimX = dim f(X) = 1. Moreover, since H(Xk) =
H(Xk, f(Xk)), we have dimXf(X) = dimX = 1. �

Corollary 1 Let X be a random variable with an abso-
lutely continuous distribution. Given finitely many functions
f1, f2, . . . , fm such that each fi(X) has an absolutely con-
tinuous distribution. For the multivalued function F with
F (X) = fi(X) (i ∈ {1, 2, . . . ,m}), MID(X;F (X)) = 1.

Ott et al. [1984] provide a detailed analysis of the invari-
ance properties of the information dimension. The translation
(shift) and scale invariance of MID directly follow.

Theorem 3 For any a, b ∈ R,

MID(X;Y ) = MID(aX; bY ) = MID(X + a;Y + b).

2.4 Comparison to MIC
Here we show the relationship between MID and the maximal
information coefficient (MIC) [Reshef et al., 2011]. Let D
be a dataset sampled from a distribution (X,Y ), where X
and Y are continuous random variables. The dataset D is
discretized by a gridGwith x rows and y columns, that is, the
x-values and the y-values of D are divided into x and y bins,
respectively. The probability distribution D|G is induced by
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Figure 2: Example of a dataset (left) and illustration of es-
timation process of dimXY (right). A: The width w used
for linear regression is adaptively determined from n. B:
The best-fitting line. Its slope is the estimator d(X,Y ) of
dimXY . C: H(X̂2, Ŷ2) from partition on the left.

D on the grid G, where the probability mass of each cell is
the fraction of data points falling into the cell.

The characteristic matrix M(D) is defined as M(D)x,y =
I∗(D,x, y)/ logmin{x, y}, where I∗(D,x, y) is the maxi-
mum of the mutual information I(D|G) over all grids G of
x columns and y rows. Then, MIC is defined as MIC(D) =
maxxy<B(n)M(D)x, y . Here, when n goes to infinity, we
can easily check that MID(X;Y ) = limn, x, y→∞M(D)x, y
almost surely since D|G → (X,Y ) as n, x, y → ∞ almost
surely. Thus we can say that MIC is the maximum value un-
der the constraint xy < B(n) specified by the user, while
MID is the limit of M(D) when x, y →∞.

This difference provides more power of detection to MID,
especially for multivalued functions which are referred to as
non-functional in [Reshef et al., 2011]. MID is one for such
relationships (Corollary 1) as MID focuses on the ratio of the
changes in the limit, while MIC does not.

3 Estimation of MID
We construct an estimation method for the information di-
mension and MID on finite samples. While the information
dimension itself has been studied from a theoretical perspec-
tive [Ott, 2002; Ott et al., 1984; Wu and Verdú, 2010], actual
estimation of its value from a finite dataset remains a chal-
lenge. For this reason, we design a novel estimation method
for the information dimension and MID.

In the following, we always assume that data are in the
unit interval I = [0, 1] × [0, 1], which can be achieved by
normalization. Since MID is translation and scaling invariant,
this transformation has no effect on MID.

3.1 Preliminaries
We modify the definition of Gk(z) as follows: the domain
dom(Gk) = {0, 1, . . . , 2k − 1}, Gk(z) := [z, z + 1) · 2−k if
z ∈ {0, 1, . . . , 2k − 2}, and Gk(z) := [z, z + 1] · 2−k if z =
2k−1. Moreover, we defineG2

k(z1, z2) := Gk(z1)×Gk(z2)
for a pair of integers z1, z2. We write Gk = {Gk(z) | z ∈
dom(Gk) } and G2k = {G2

k(z1, z2) | z1, z2 ∈ dom(Gk) }.
Given a dataset D = {(x1, y1), (x2, y2), . . . , (xn, yn)}

sampled from a distribution (X,Y ). We use the natural es-
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Algorithm 1 Estimation of MID
Input: Dataset D
Output: Estimator of MID
for each Z ∈ {X,Y, (X,Y )} do

Compute H(Ẑ1), H(Ẑ2), . . . until each point is isolated;
Find the best fitted regression line for k v.s. H(Ẑk) for each
window of width w (equation (2)) started from s ∈ SZ(w);
d(Z)← the gradient of the obtained line;

end for
Output d(X) + d(Y )− d(X,Y );

timator X̂k of Xk, where the probability is defined as

Pr(X̂k = z) :=
# { (x, y) ∈ D | x ∈ Gk(z) }

n

(#A denotes the number of elements of the set A) for all
z ∈ dom(Gk), and similarly defined for Pr(Ŷk = z) and the
joint probability Pr(X̂k = z1, Ŷk = z2). This is the fraction
of points in D falling into each cell. Trivially, X̂k (resp. Ŷk)
converges to Xk (resp. Yk) almost surely when n→∞.

3.2 Estimation via Sliding Windows
Informally, the information dimension dimX (resp. dimY ,
dimXY ) can be estimated as the gradient of the regression
line over k v.s. the entropyH(X̂k) (resp. H(Ŷk),H(X̂k, Ŷk))
since H(X̂k) ' dimX · k + c such that the difference of the
two sides goes to zero as k →∞. This approach is the same
as the standard one for the box-counting dimension [Falconer,
2003, Chapter 3]. However, since n is finite, only a finite
range of k should be considered to obtain the regression line.
In particular, H(X̂k) is monotonically nondecreasing as k in-
creases and finally it converges to some constant value, where
each cell contains at most one data point.

To effectively determine the range of k, we use the sliding
window strategy to find the best fitted regression line. We set
the width w of each window to the maximum value satisfying

|Gw| = 2w ≤ n and |G2w| = 4w ≤ n (2)

for estimation of dimX or dimY and dimXY , respectively.
If |Gw| = 2w > n holds, then there exists a dataset D such
that H(X̂w)−H(X̂w−1) = 0, and hence we should not take
the point (w,H(X̂w)) into account in the regression for es-
timating dimX . Hence w in equation (2) gives the upper
bound of the width of each window that can be effectively
applied to any dataset in estimation of the dimension.

3.3 MID Estimator
Here we give an estimator of MID using the sliding window
strategy. For simplicity, we use the symbol Z to represent the
random variables X , Y , or the pair (X,Y ).

Let w be the maximum satisfying equation (2) and define

SZ(w) :=

{
s ∈ N

∣∣∣∣ H(Ẑk+1)−H(Ẑk) 6= 0 for any
k ∈ {s, s+ 1, . . . , s+ w − 1}

}
.

This is the set of starting points of the windows. Note that
this set is always finite since H(Ẑk) converges. We denote
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Figure 3: Running time. Note that both axes have logarithmic
scales. Points represent averages of 10 trials.

the resulting coefficient by β(s) and the coefficient of deter-
mination by R2(s) when we apply linear regression to the set
of w points { (s,H(Ẑs)), (s + 1, H(Ẑs+1)), . . . , (s + w −
1, H(Ẑs+w−1)) }.
Definition 3 (Estimator of information dimension) Given
a dataset D. Define the estimator d(Z) (Z = X , Y , or the
pair (X,Y )) of the information dimension dimZ as

d(Z) := β
(
argmax s∈SZ(w)R

2(s)
)

and define the estimator of MID as

MID(D) := d(X) + d(Y )− d(X,Y ).

The estimator of MID is obtained by Algorithm 1 and Fig-
ure 2 shows an example of estimation. The average-case and
the worst-case time complexities are O(n log n) and O(n2),
respectively, since computation of H(Ẑk) takes O(n) for
each k and it should be repeated O(log n) and O(n) times
in the average and the worst case.

4 Experiments
We evaluate MID experimentally to check its efficiency and
effectiveness in detecting various types of relationships, and
compare it to other methods including MIC. We use both syn-
thetic data and gene expression data. Moreover, we apply
MID to feature selection in nonlinear regression for real data
to demonstrate its potential in machine learning applications.

Environment: We used Mac OS X version 10.7.4 with
2 × 3 GHz Quad-Core Intel Xeon CPU and 16 GB of mem-
ory. MID was implemented in C3 and compiled with gcc
4.2.1. All experiments were performed in the R environment,
version 2.15.1 [R Core Team, 2012].

Comparison partners: We used Pearson’s correlation co-
efficient (PC), the distance correlation (DC) [Székely et al.,
2007], mutual information (MI) [Kraskov et al., 2004], the
Hilbert-Schmidt independence criterion (HSIC) [Gretton et
al., 2005], and MIC (heuristic approximation) [Reshef et al.,
2011]. DC was calculated by the R energy package; MI and
MIC by the official source code4; HSIC was implemented in

3The source code for MID is available at http://webdav.
tuebingen.mpg.de/u/karsten/Forschung/MID

4MIC: http://www.exploredata.net, MI: http://www.klab.caltech.
edu/∼kraskov/MILCA
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R (computationally expensive processes were done by effi-
cient packages written in C or Fortran). All parameters in
MIC were set to the default values. Gaussian kernels with
the width set to the median of the pairwise distances between
the samples were used in HSIC, which is a popular heuristics
[Gretton et al., 2005; 2008].

4.1 Scalability
We checked the scalability of each method. We used the lin-
ear relationship without any noise, and varied the number n
of data points from 1, 000 to 1, 000, 000.

Results of running time are shown in Figure 3 (we could
not calculate DC and HSIC for more than n = 100, 000 due
to their high space complexity O(n2)). These results clearly
show that on large datasets, MID is much faster than other
methods including MIC which can detect nonlinear depen-
dence. Notice that time complexities of MIC, DC, and HSIC
are O(n2). PC is faster than MID, but unlike MID, it cannot
detect nonlinear dependence.

4.2 Effectivity in Measuring Dependence
First, we performed ROC curve analysis using synthetic data
to check both precision and recall in detection of various rela-
tionship types in the presence of uniformly distributed noise
data. We prepared twelve types of relationships shown in Fig-
ure 4a, same datasets were used in [Reshef et al., 2011]. For
generation of noisy datasets, we fixed the ratio of uniformly
distributed noise in a dataset in each experiment, and varied
from 0 to 1. Figure 4c shows examples of linear relationships
with noise (n = 300). For instance, if the noise ratio is 0.5,
150 points come from the linear relationship, and the remain-
ing 150 points are uniformly distributed noise.

We set the number of data points n = 300. In each exper-
iment, we generated 1000 datasets, where 500 are sampled
from the relationship type with noise (positive datasets), and
the remaining 500 sets are just noise, that is, composed of
statistically independent variables (negative datasets). Then,
we computed the AUC score from the ranking of such 1000
datasets. Thus both precision and recall are taken into ac-
count, while Reshef et al. [2011] evaluated only recall.

Figure 4b shows results of ROC curve analysis for each
relationship type. We omit results for noise ratio from 0 to
0.4 since all methods except for PC have the maximum AUC
in most cases. In more than half of the cases, MID showed
the best performance. Specifically, the performance of MID
was superior to MIC in all cases except for two sinusoidal
types. Moreover, although MI showed better performance
than MID in four cases, its performance was much worse than
MID and MIC in sinusoidal types. In addition, MI is not nor-
malized, hence it is difficult to illustrate the strength of depen-
dence in the real world situations, as mentioned by Reshef et
al. [2011]. In contrast to MI, MID showed reasonable per-
formance in all relationship types. Since MID was shown to
be much faster than MIC, DC, and MI, these results indicate
that MID is the most appropriate among these methods for
measuring dependence in massive data. Note that MIC’s per-
formance is often worst except for sinusoidal types, which
confirms the report by Simon and Tibshirani [2012].
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Figure 5: Associations of gene expression data. (a, b) MID
and MIC versus Spellman’s score. (c) Correlation coefficient
(R). (d) AUC scores.

Figure 4d is the average of the means of AUC over all re-
lationship types (noise ratio from 0.5 to 0.9 were taken into
account). The score of MID was significantly higher than
other methods (the Wilcoxon signed-rank test, α = 0.05).

Next, we evaluated MID using the cdc15 yeast (Saccha-
romyces cerevisiae) gene expression dataset from [Spellman
et al., 1998], which was used in [Reshef et al., 2011] and
contains 4381 genes5. This dataset was originally analyzed
to identify genes whose expression levels oscillate during the
cell cycle. We evaluated dependence between each time se-
ries against time in the same way as [Reshef et al., 2011,
SOM 4.7]. The number n = 23 for each gene.

Figure 5a, b illustrate scatter plots of MID and MIC versus
Spellman’s score. We observe that genes with high Spell-
man’s scores tend to have high MID scores: the correlation
coefficient (R) between Spellman’s scores and MID was sig-
nificantly higher than others (α = 0.05, Figure 5c).

To check both precision and recall in real data, we again
performed ROC curve analysis. That is, we first ranked genes
by measuring dependence, followed by computing the AUC
score. Genes whose Spellman’s scores are more than 1.314
were treated as positives as suggested by Spellman et al.
[1998]. Figure 5d shows the resulting AUC scores. It con-
firms that MID is the most effective compared to other meth-
ods in measuring dependence. The AUC score of PC is low
since it cannot detect nonlinear dependence. DC, MI, and
HSIC also show low AUC scores. The reason might be the
lack of power for detection due to the small n.

4.3 Effectivity in Feature Selection
Finally, we examined MID as a scoring method for feature
selection. To illustrate the quality of feature selection, we
performed kNN regression using the selected features to esti-
mate the nonlinear target function, where the average of the k
nearest neighbors is calculated as an estimator for each data

5http://www.exploredata.net/Downloads/Gene-Expression-
Data-Set
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Figure 4: ROC curve analysis for synthetic data. (a) Relationship types (n = 300 each). (b) AUC scores. (c) Examples of
noisy data for linear relationship (n = 300 each). (d) The average of the means of AUC over all relationship types.

point (k was set to 3). We measured the quality of prediction
by the mean squared error (MSE). For each dataset, we gen-
erated training and test sets by 10-fold cross validation and
performed feature selection using only the training set. Eight
real datasets were collected from UCI repository [Frank and
Asuncion, 2010] and StatLib6.

We adopted the standard filter method, that is, we measured
dependence between each feature and the target variable, and
produced the ranking of the features from the training set.
We then applied kNN regression (based on the training set)
to the test set repeatedly, varying the number of selected top
ranked features. Results for each dataset are shown in Fig-
ure 6a, and the average R2, which is the correlation between
predicted and target values over all datasets, is summarized in
Figure 6b. MID performed significantly better than any other
methods (the Wilcoxon signed-rank test, α = 0.05).

5 Conclusion
We have developed a new method based on dimension the-
ory for measuring dependence between real-valued random
variables in large datasets, the mutual information dimen-
sion (MID). MID has desirable properties as a measure of
dependence, that is, it is always between zero and one, it
is zero if and only if variables are statistically independent,
and it is translation and scaling invariant. Moreover, we have
constructed an efficient parameter-free estimation method for

6http://lib.stat.cmu.edu/datasets/

MID, whose average-case time complexity is O(n log n).
This method has been experimentally shown to be scalable
and effective for various types of relationships, and for non-
linear feature selection in regression.

MID overcomes the drawbacks of MIC: (1) MID con-
tains no parameter; (2) MID is fast and scales up to mas-
sive datasets; and (3) MID shows superior performance in de-
tecting relationships in the presence of uniformly distributed
noise. In [Reshef et al., 2011], an additive noise model was
considered; MID might not work well for this type of noise
model. Since MID is based on dimension theory, it tends
to judge that the true distribution is a two-dimensional plane,
with no dependence. We will further explore the exciting con-
nection between dimension theory and statistical dependence
estimation to address this challenge.
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