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Abstract
There are many hard shortest-path search problems
that cannot be solved, because best-first search runs
out of memory space and depth-first search runs out
of time. We propose Forward Perimeter Search
(FPS), a heuristic search with controlled use of
memory. It builds a perimeter around the root node
and tests each perimeter node for a shortest path to
the goal. The perimeter is adaptively extended to-
wards the goal during the search process.
We show that FPS expands in random 24-puzzles
50% fewer nodes than BF-IDA* while requiring
several orders of magnitude less memory.
Additionally, we present a hard problem instance
of the 24-puzzle that needs at least 140 moves to
solve; i.e. 26 more moves than the previously pub-
lished hardest instance.

1 Introduction
Many heuristic search algorithms have been devised to find a
shortest path in a graph. A* expands the fewest nodes, but its
applicability is limited because it holds all expanded nodes
in the main memory. IDA* in contrast, uses essentially no
storage and is fast in terms of node expansions per second.
However, it has four weaknesses: (1) Its iterative-deepening
node expansion visits the same nodes multiple times, (2) it is
not able to detect repeated nodes in a graph because it does
not keep information on the visited nodes, (3) it uses a strict
left-to-right traversal of the leaf nodes whereas A* maintains
the frontier in a best-first order, and (4) it does not keep infor-
mation from the preceeding iteration.

Breadth-first search with heuristic pruning has been pro-
posed as a compromise between A* and IDA*. It needs less
memory space than A* for storing the search front and is
still able to detect repeated nodes in graphs, thereby solving
weaknesses (2) and (3). Several variants have been proposed:
breadth-first frontier search [Korf and Zhang, 2000], breadth-
first heuristic search [Zhou and Hansen, 2004], and breadth-
first iterative-deepening A* (BF-IDA*) [Zhou and Hansen,
2004].

Part of this work was supported by the EU project CONTRAIL
‘Open Computing Infrastructures for Elastic Services’.

But the applicability of breadth-first search is limited to
problems where the largest search front fits into the main
memory. Parallel implementations of BF-IDA* [Schütt et al.,
2011] alleviate this problem by partitioning the search front
over several computers and thereby utilizing the main memo-
ries of all parallel machines as a single aggregated node store.
Although these algorithms have been shown to run efficiently
on parallel systems with more than 7000 CPU cores, there
exist large problems that cannot be solved with BF-IDA*.

Forward Perimeter Search (FPS) allows to steer the mem-
ory consumption within certain limits and it does not suf-
fer from IDA*’s weaknesses (2) to (4). FPS first generates
a set of nodes (the perimeter P ) around the root node and
then performs heuristic breadth-first searches to test whether
any perimeter node p ∈ P reaches a solution within a given
threshold. When no solution has been found, the threshold
is increased and the next iteration is begun. Before starting
a new iteration, FPS checks whether a subtree of a perime-
ter node p exceeds a given size limit and, if this is the case,
enlarges the perimeter at p. By this means, the perimeter is
iteratively extended in the most promising direction, because
the test subtrees grow in the direction of the expected goal.
All perimeter nodes are kept in the main memory and their
goal distance estimates are updated.

The adaptive decomposition of the search space allows
FPS to solve large problems without exceeding the avail-
able memory. FPS’ breadth-first expansion of the perimeter
nodes avoids duplicate node expansions as far as possible (de-
pending on the available memory) and its adaptively refined
perimeter makes it likely to find a goal early in the last iter-
ation. This perimeter refinement is the main reason for the
50% node savings with respect to BF-IDA* (Sec. 4).

FPS can be executed on massively parallel systems and on
clusters. It provides two sources of parallelism. First, all
perimeter nodes can be searched concurrently without incur-
ring any communication overhead (‘trivial parallelism’). Sec-
ond, each perimeter node can be tested with the parallel BF-
IDA* algorithm [Schütt et al., 2011] presented in Sec. 3.4. In
fact, all empirical results in Sec. 4 were obtained on compute
clusters of various sizes.

This paper begins with a brief review of related work.
Thereafter, we introduce FPS and present empirical results on
the 24-puzzle and 17-pancake problem. Finally, we present
an instance of the 24-puzzle that is more difficult to solve

Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence

659



than any previously published instance and we give upper and
lower bounds (140 resp. 142 moves) on its solution length.

2 Related Work
The idea of perimeter search was invented almost twenty
years ago. But in contrast to our approach, the previous
algorithms [Dillenburg and Nelson, 1994; Manzini, 1995;
Kaindl and Kainz, 1997] build a perimeter around the goal
rather than the start node1. Hence, each newly expanded node
must be checked against all perimeter nodes which only pays
off in application domains with expensive operator costs.

Single-frontier bidirectional search [Felner et al., 2010]
also builds a search front around the goal node, but it dy-
namically switches the search direction between forward and
backward search. Several jumping policies (highest branch-
ing degree, smallest h-value) have been evaluated. Further
improvements can be achieved by combining this method
with multiple-goal pattern databases [Felner and Ofek, 2007]
which are seeded with the states’ values that are abstracted
from the perimeter nodes.

Fringe search [Björnsson et al., 2005] stores the search
frontier (fringe) in main memory. It searches the graph in an
iterative-deepening fashion without re-expanding the nodes
inside the fringe. The algorithm is beneficial when inaccurate
heuristics would require many iterations, but it does not allow
to control the memory consumption.

MREC [Sen and Bagchi, 1989] is a combination of A* and
IDA*. It stores as much as possible of the explicit search
graph in memory and searches the remaining nodes with
IDA*. MREC is comparable to FPS, but instead of keeping
the search space in memory, we only store a search frontier
(the perimeter) and instead of using IDA* we use BF-IDA*
to test the tip nodes. But more importantly, we incrementally
extend the perimeter towards the goal with information from
the previous iteration.

Bidirectional BF-IDA* [Barker and Korf, 2012] can find an
optimal solution without performing the last (most costly) it-
eration in which the threshold is equal to the optimal solution
cost. The potential node savings are high, but the algorithm
does not allow to control the memory consumption.

3 Forward Perimeter Search (FPS)
We consider shortest path search in undirected graphs with
non-negative edge costs. The graph is represented implicitly
by a procedure for generating the successors of a node.

Forward Perimeter Search (FPS) has two phases: It first
builds a perimeter around the start node s and then tests for
each perimeter node whether it lies on a shortest path from s
to the goal g. The testing can be done with a variety of search
algorithms. We use BF-IDA*. Both phases are executed in an
iterative-deepening manner. Before starting the next iteration
with a deeper search depth, the perimeter is adjusted by taking
information from the preceeding iteration into account. The
perimeter nodes are sorted so that a goal is found early in the
last iteration.

1We therefore named our algorithm Forward Perimeter Search.

Algorithm 1 Computing a perimeter with radius r

p e r i e x t e n d p e r i m e t e r ( p e r i P ; node s , p ; i n t r ){
P = P \ {p} ;
C = c i r c l e ( p , r ) ;
foreach ( node n ∈ C)

i f ( d ( s , n ) == d ( s , p ) + r )
P = P ∪ n ;

re turn P ;
}

3.1 Perimeter
Let sp(x, y) be the set of all shortest paths between x and y
and let d(x, y) be the length of the shortest path(s). A perime-
ter is a set of nodes around a start node s such that any short-
est path from s to a goal node g passes through at least one
node of the perimeter.

Definition 1 (Perimeter). A set of nodes P in a graph G =
(V,E) is a perimeter around s for the shortest paths between
s, g ∈ V , if ∀ path ∈ sp(s, g) : path ∩ P 6= ∅.

A perimeterP can be incrementally built from a single start
node P = {s}. The function extend perimeter (Alg. 1)
does this by removing a node p from a perimeter P and insert-
ing all descendants v into P which are r steps away from p
and also d(s, p) + r steps away from the start s. The distance
d(s, v) can be determined with a short backward BF-IDA*
search from v to the start node s. It ensures that backwards
lying nodes (dashed line in Fig. 1) will not be inserted into P .

This scheme will be used to incrementally enlarge the
perimeter towards the expected goal. Before describing the
FPS algorithm with an adaptive radius (Sec. 3.3), we present
a simpler version which uses a perimeter with fixed radius.

3.2 FPS with Fixed Radius
The simple version of the FPS algorithm builds a perimeter
with a fixed radius. This is done by expanding all nodes
that are r steps away from the start s as shown in the func-
tion extend perimeter in Alg. 1. When the perimeter P
has been built, the search process continues in an iterative-
deepening fashion. In each iteration, it tests for each node
p ∈ P whether there is a path of length thresh − r from p to
the goal g. If yes, we terminate the search with a shortest path
of length thresh. If not, we increase thresh by the least cost δ
of all paths that exceeded thresh in the last iteration.

Note that all perimeter nodes are tested in each iteration ex-
cept the last. In the last iteration, the search is stopped as soon
as a solution is found. We therefore sort all nodes p ∈ P so
that the most promising ones will be tested first. We experi-
mented with several sorting schemes (Sec. 4.1) and found that
simple schemes such as longest path first are already close to
the optimum.

The testing can be done with a wide variety of node expan-
sion strategies: breadth-first, best-first, depth-first or breadth-
first frontier search. We used the parallel variant [Schütt et
al., 2011] of breadth-first iterative deepening A* (BF-IDA*)
[Zhou and Hansen, 2004]. It is efficient and it never revisits a
node in the same iteration.
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Algorithm 2 Forward Perimeter Search (FPS)

i n t FPS ( node s , g o a l ; ra d ius r ) {
i n t t h r e s h = h ( s ) ;
p e r i P = { s } ;
P = e x t e n d p e r i m e t e r ( P , s , s , r ) ;
whi le ( t rue ) {

s o r t ( P ) ;
foreach ( node p ∈ P )

i f ( t e s t ( p , goa l , t h r e s h − d ( s , p ) ) )
re turn t h r e s h ;

foreach ( node p ∈ P )
i f ( p . t r e e s i z e > l i m i t )

P = e x t e n d p e r i m e t e r ( P , s , p , r ) ;
t h r e s h = t h r e s h + δ ;

}
}

s

p

P

g

r1

r2

Figure 1: Perimeter adaptation in FPS.

The size of the radius is of crucial importance for the per-
formance and the memory consumption of FPS. The memory
needed to store the perimeter nodes must be carefully bal-
anced with the memory requirements of the test function that
is started at the perimeter nodes. As we will see in Sec. 4.1
larger radii contain more perimeters nodes and need more
memory space, but their smaller subtrees are beneficial for
quickly finding a solution in the last iteration. Smaller radii,
on the other hand, spawn larger subtrees at the perimeter
nodes, which allows to eliminate more duplicates.

3.3 FPS with Adaptive Radius
It is difficult to select a suitable fixed radius without know-
ing the properties of the search graph. The FPS variant with
an adaptive radius uses information from the previous itera-
tion to adaptively extend the perimeter. It starts with a small
perimeter and extends it (using Alg. 1) at those perimeter
nodes that spawned the biggest subtrees in the last iteration.
This is done with the expectancy that these nodes are more
likely to lie on a shortest path and, even more important, that
the final iteration is speeded up by searching a small subtree
(if the sorting was good). This adaptive perimeter refinement
eliminates the major weakness of BF-IDA*, namely the large
amount of node expansions in the last iteration.

Fig. 1 illustrates a scenario where an initial perimeter with
radius r1 was built and later extended at node p by another
radius r2 around p. Note that the nodes on the dashed line
should not be included in the perimeter because they are re-
dundant and the property in Def. 1 holds without them.

Alg. 2 shows the pseudo-code of FPS with adaptive radius.

Algorithm 3 The BF-IDA* test function used in Fig. 2.

void mapper ( node n , s e t<node> p red ) {
foreach ( succ in g e t a d j a c e n t n o d e s ( n ) )

i f ( ! p r ed . c o n t a i n s ( succ ) )
i f ( g + 1 + h ( succ ) <= t h r e s h ) / / p r u n i n g

emit ( succ , n ) ;
}

void r e d u c e r ( node n , l i s t <node> p r e d l s t ){
s e t<node> p r e d s = {} ;
foreach ( p in p r e d l s t )

p r e d s . add ( p ) ; / / merge p r e d e c e s s o r s
s o l v e d = s o l v e d ∨ pos == g o a l ;
emit ( n , p r e d s ) ;

}

bool t e s t ( node s , g o a l ; i n t t h r e s h ) {
f r o n t i e r = [ ( s , { } ) ] ;
g = 0 ; s o l v e d = f a l s e ;
whi le ( ! s o l v e d ∧ f r o n t i e r . s i z e ( ) != 0 ) {

i n t e r m e d i a t e = map ( f r o n t i e r , mapper ) ;
f r o n t i e r = r e d u c e ( i n t e r m e d i a t e , r e d u c e r ) ;
g ++;

}
re turn s o l v e d ;

}

The search is started by building an initial perimeter with ra-
dius r. FPS then performs three steps in a loop:

1. It orders the perimeter nodes p ∈ P according to the
information gathered in the previous iteration so that the
most promising nodes are tested first.

2. It iterates over all perimeter nodes and tests whether any
of them lie on a shortest path between s and g within
thresh. If this is true, the search is terminated with thresh
as the solution length.

3. It checks for all subtrees spawned at perimeter nodes p
whether they surpassed the given memory limit. If this
is the case, the radius is enlarged at this node. The size
of the new radius depends on the branching factor of the
graph and thus is domain dependent.

In our implementation, we store for each perimeter node:
the distance to the start node, the maximum path length to-
wards the goal, the number of expanded nodes and the widest
search front in the last iteration.

3.4 Testing the Perimeter Nodes with BF-IDA*
The test function in Alg. 2 spawns the subtrees from the
perimeter nodes. Many different node expansion strategies
can be used for the testing. We used the parallel BF-IDA*
algorithm [Schütt et al., 2011] which is based on [Zhou and
Hansen, 2004]. It expands all nodes of a search frontier in
parallel and eliminates duplicates on-the-fly.

The parallel BF-IDA* uses the MapReduce framework
[Dean and Ghemawat, 2008] for orchestrating the concurrent
process execution. Alg. 3 shows the program code of test.
The search space is partitioned among all processes. In each
step, the map processes apply the mapper function to all
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nodes in the current frontier. For each node the mapper ex-
pands the successors and emits them to the next stage. Back-
ward moves are eliminated by keeping track of the nodes’
predecessors.

A global function is then used to assign the generated
nodes to the reduce processes. The function (partially) sorts
the nodes so that duplicates are assigned to the same reduce
process. This is done with a hash function, which also pro-
vides a good load balancing over all reduce processes.

For each unique node found in its local dataset, the
reducermerges the predecessors into a single set and emits
the node with the joined set of predecessors. This imple-
ments the delayed duplicate elimination described in [Korf
and Schultze, 2005; Zhou and Hansen, 2006]. The output of
the reducer is fed as input into the next map phase until
there are no more data pairs to process or a solution is found.

The described algorithm is efficient and simple to imple-
ment. The MapReduce framework orchestrates the concur-
rent mapper and reducer processes which iteratively ex-
pand the graph without visiting duplicates.

3.5 Reconstructing the Solution Path
At the end of the search, FPS returns only the cost of the
shortest path but not the path itself. The path can be deter-
mined in two steps. First we compute the shortest path from
s to the perimeter node p. This is easy because of the shallow
search. Second, we determine the path from p to g which is
done by recursively applying FPS. This is easier than the orig-
inal problem since we know that the goal is thresh− d(s, p)
moves away from p. Hence the path can determined with a
direct, i.e. non-iterative, FPS search.

4 Results
We first present empirical results on the 24-puzzle and there-
after on the 17-pancake problem. FPS was run on a cluster
with 32 compute nodes, each of them with 2 quad-core AMD
Opteron processors and 8 GB of main memory. BF-IDA*
needed for the same problem instances a much larger system
with more main memory. For the hardest problem we used
256 nodes, each equipped with 2 quad-core Intel Xeon pro-
cessors and 48 GB of main memory. As a heuristic estimate
function, we used the same 6-6-6-6 pattern database (PDB)
with mirroring as in [Korf and Felner, 2002].

For a quick overview, Table 1 lists the node expansions and
memory consumption on Korf’s hardest problem instance of
the 24-puzzle [Korf and Felner, 2002]. The performance of
IDA* and BF-IDA* is given as a reference. As expected,
IDA* expands the most nodes and requires the smallest mem-
ory space. BF-IDA* expands only one fourth of the IDA*
nodes, but it keeps 50 billion nodes in the main memory,
which is the widest search front in the final iteration. Note
that it is not feasible to solve much larger problems with BF-
IDA* because of its excessive memory requirements.

FPS outperforms BF-IDA* in two ways: It expands only
approximately half of the nodes and, even more important, it
needs far less memory—up to three orders of magnitude in
this example. In the first set of experiments (lines 3-7) we

node expansions memory [nodes]
IDA* 4,156,099,168,506 113
BF-IDA* 1,067,321,687,213 50,675,640,000
FPS, r=4 423,306,411,815 5,922,529,960
FPS, r=6 428,072,054,940 2,876,547,362
FPS, r=10 564,996,269,605 1,220,873,196
FPS, r=16 647,863,040,082 503,869,879
FPS, r=18 671,310,216,245 257,590,848
FPS, 1.88 · 108 404,811,541,671 1,437,995,218
FPS, 3.5 · 107 452,935,148,947 1,078,733,091
FPS, 1.7 · 107 486,941,686,873 457,659,207
FPS, 2 · 106 619,262,051,017 112,469,403
FPS, 1 · 106 652,659,857,757 54,618,898

Table 1: Korf’s hardest 24-puzzle (#50, 113 moves).

used perimeters with fixed radii r = 4 . . . 18. In the sec-
ond set of experiments, we used FPS with an adaptively ex-
panded perimeter. Here, FPS decides after each iteration for
each perimeter node whether it should be extended so that
the given memory limit is not overrun. The memory limits
are given in terms of nodes, i.e. 1 · 106, 2 · 106, 35 · 106 and
188 · 106 nodes respectively. We extended the radius by at
least r ≥ 3 moves, depending on how much the limit was
overshot in the previous iteration.

Most impressive is that fact that FPS with adaptive radius
was able to solve the given problem instance on a single com-
puter with only 8 gigabytes of main memory. BF-IDA*, in
contrast, needed 256 compute nodes with several terabytes of
main memory—and still expanded more nodes.

4.1 Fixed Radius
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Figure 2: FPS node expansions relative to BF-IDA* for dif-
ferent radii on 40 instances of the 24-puzzle.

Fig. 2 compares the performance of FPS with various fixed
radii to BF-IDA*. We could only run the first 40 instances of
Korf’s random set, because the search trees spawned by FPS
with fixed radii were too large and it ran out of memory on the
largest 10 instances. The graphs indicate, that FPS expands
for all radii on the average only half of the BF-IDA* nodes.
Note the stable improvement over all radii.
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Figure 3: FPS node expansions for various radii (puzzle #17).

Fig. 3 illustrates that increasing the radius r yields dra-
matic node savings in the last iteration (× ticks), especially
for r ≤ 4. But unfortunately the node savings must be paid
for by extra expansions in the second to last iteration (+
ticks). This is because larger radii contain more perimeter
nodes which spawn overlapping subtrees in the testing. The
perimeter nodes are tested separately, and hence duplicates
cannot be eliminated. In the end these two effects compen-
sate each other (see the ∗ ticks) and radii between 4 and 6
seem to be optimal. While this result was obtained from only
a single problem instance (puzzle #17), it is in accordance
with the larger test set shown in Fig. 4.
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Figure 4: FPS node expansions relative to A* for differ-
ent radii (x-axis) and different perimeter node sortings (diff.
curves) on 40 instances of the 24-puzzle.

Fig. 4 shows the effect of sorting the perimeter nodes. The
sort function uses information from the previous threshold:
• max tree sorts the perimeter nodes in decreasing order of

their subtree sizes of the previous iteration.
• longest path + max tree favors the perimeter node with

the longest path (i.e. max g). In case of ties, it takes the
one with the bigger subtree.

• longest path + min tree is the same as above, but takes
the smaller subtree in case of ties.

• optimal ordering shows the theoretical optimum that
cannot be surpassed. It is achieved when the perimeter
node leading to the goal is selected first.

Interestingly, all heuristics are close to the optimum. This
indicates that further refinements probably do not pay off. We
used longest path + min tree in all following experiments.

It can also be concluded from Fig. 4 that FPS expands 3.5
to 4 times more nodes than A*—but with much lower mem-
ory requirements. We obtained the A* performance by count-
ing the nodes of BF-IDA* in the pre-final iteration, i.e. all
nodes with f ≤ f∗ − δ. These nodes are in A*’s Closed list
just before A* finds a goal in the optimal case.

Compared to BF-IDA*, FPS saves almost half of the node
expansions—again with less memory space. The leftmost
tick at radius 0 shows the performance of BF-IDA*, which
is equivalent to FPS with r = 0. IDA*, which is not plotted
in the figure, expands approx. 32 times more nodes.

4.2 Adaptive Radius

id d IDA* BF-IDA* FPS r1 r2

38 96 38,173,507 58,097,633 58,097,633 1.0 0.7
40 82 65,099,578 26,320,497 26,320,497 1.0 2.5
25 81 292,174,444 127,949,696 127,949,696 1.0 2.3
32 97 428,222,507 399,045,498 359,856,263 1.1 1.2
44 93 867,106,238 181,555,996 181,555,996 1.0 4.8
37 100 1,496,759,944 1,646,715,005 791,581,404 2.1 1.9
30 92 1,634,941,420 661,835,606 208,712,943 3.2 7.8
13 101 1,959,833,487 1,979,587,555 873,708,021 2.3 2.2
1 95 2,031,102,635 1,059,622,872 726,851,395 1.5 2.8

28 98 2,258,006,870 450,493,295 252,154,079 1.8 9.0
36 90 2,582,008,940 603,580,192 931,547,680 0.6 2.8
5 100 2,899,007,625 1,859,102,197 656,266,607 2.8 4.4

22 95 3,592,980,531 581,539,254 345,150,484 1.7 10.4
16 96 3,803,445,934 1,783,144,872 815,385,915 2.2 4.7
29 88 4,787,505,637 1,090,385,785 1,215,237,665 0.9 3.9
4 98 10,991,471,966 5,154,861,019 2,636,598,392 2.0 4.2

26 105 12,397,787,391 6,039,700,647 1,774,851,940 3.4 7.0
3 97 21,148,144,928 4,805,007,493 3,342,146,581 1.4 6.3

31 99 26,200,330,686 7,785,405,374 3,300,963,647 2.4 7.9
41 106 26,998,190,480 8,064,453,928 7,515,143,103 1.1 3.6
47 92 30,443,173,162 4,385,270,986 2,560,742,525 1.7 11.9
27 99 53,444,360,033 7,884,559,441 3,766,782,211 2.1 14.2
43 104 55,147,320,204 8,816,151,498 3,691,192,969 2.4 14.9
46 100 65,675,717,510 21,674,806,323 8,216,215,161 2.6 8.0
45 101 79,148,491,306 17,068,061,084 5,920,247,048 2.9 13.4
6 101 103,460,814,368 9,810,208,759 4,680,653,771 2.1 22.1
7 104 106,321,592,792 27,686,193,468 11,176,127,231 2.5 9.5

49 100 108,197,305,702 11,220,738,849 3,853,356,482 2.9 28.1
35 98 116,131,234,743 23,049,423,391 10,672,528,952 2.2 10.9
8 108 116,202,273,788 29,575,219,906 8,678,999,139 3.4 13.4

39 104 161,211,472,633 34,198,605,172 34,631,205,598 1.0 4.7
23 104 171,498,441,076 54,281,904,788 21,548,668,016 2.5 8.0
15 103 173,999,717,809 52,178,879,610 32,003,810,688 1.6 5.4
2 96 211,884,984,525 40,161,477,151 18,918,010,988 2.1 11.2

19 106 218,284,544,233 22,761,173,348 10,522,016,442 2.2 20.7
42 108 245,852,754,920 37,492,323,962 14,077,400,074 2.7 17.5
20 92 312,016,177,684 20,689,215,063 17,749,626,017 1.2 17.6
24 107 357,290,691,483 38,272,741,957 15,469,908,701 2.5 23.1
17 109 367,150,048,758 143,972,316,747 66,065,410,824 2.2 5.6
34 102 481,039,271,661 59,225,710,222 25,435,856,454 2.3 18.9
48 107 555,085,543,507 58,365,224,981 28,230,656,080 2.1 19.7
12 109 624,413,663,951 76,476,143,041 39,642,016,410 1.9 15.8
21 103 724,024,589,335 98,083,647,769 54,251,101,992 1.8 13.3
18 110 987,725,030,433 126,470,260,027 49,378,654,583 2.6 20.0
33 106 1,062,250,612,558 134,103,676,989 79,801,410,332 1.7 13.3
14 111 1,283,051,362,385 312,885,453,572 149,676,413,245 2.1 8.6
10 114 1,519,052,821,943 525,907,193,133 229,545,788,925 2.3 6.6
11 106 1,654,042,891,186 309,253,017,124 212,671,847,577 1.5 7.8
9 113 1,818,005,616,606 132,599,245,368 54,077,256,435 2.5 33.6

50 113 4,156,099,168,506 1,067,321,687,213 619,262,051,017 1.7 6.7
average 360,892,479,671 71,004,578,707 37,246,320,717 1.99 10.29

Table 2: Node expansions on Korf’s fifty 24-puzzle instances
with a 6-6-6-6 PDB. (id: Korf’s Id, d: depth, r1: BF-
IDA*/FPS, r2: IDA*/FPS)

663



Table 2 lists the performance of IDA*, BF-IDA* and FPS
on the fifty random puzzles. We used the same 6-6-6-6 PDB
with mirroring as a heuristic function. The perimeter was
extended when the widest search front in a subtree exceeded
2 · 106 nodes.

The two rightmost columns r1 and r2 show the relative
overhead of BF-IDA* and IDA* compared to FPS. FPS out-
performs IDA* on the average by a factor of 10 and BF-IDA*
by a factor of 2 in terms of node expansions. The benefits are
more pronounced in the harder problem instances.

More important than the node savings are FPS’ lower
memory requirements. It allowed us to run all fifty in-
stances on a single compute node with 8 GB of main memory
whereas BF-IDA* needed a compute cluster with more than
a terabyte to store the widest search front.

4.3 17-Pancake Problem

exp. nodes widest front
IDA* 137,148,572,155 15
BF-IDA* 478,979,227 97,629,006
FPS, r=2 227,904,600 13,398,750
FPS, 5 · 106 375,255,854 11,095,517

Table 3: Results on the 17-pancake problem. Average of ten
random instances.

As a second benchmark we used the 17-pancake problem
to evaluate the performance of FPS. An N -pancake problem
is a stack of N pancakes of different size [Dweighter, 1975].
To solve the problem, the pancakes must be sorted by size.
The only available operation is to reverse the order of a subset
of pancakes at the top of the stack. Thus, a state has N − 1
successors.

We generated ten random instances with an average solu-
tion length of 15.2 and performed a shortest path search. A
PDB of the 8 topmost pancakes was used to guide the search.
The results are summarized in Table 3. Compared to BF-
IDA*, FPS reduces the number of node expansions by a fac-
tor of 2. Additionally the widest front and thus the memory
consumption is reduced by a factor of 7.

5 A Hard Problem of the 24-Puzzle
Korf’s fifty random instances of the 24-puzzle [Korf and
Schultze, 2005] are often used as a benchmark for assess-
ing the performance of search algorithms. Unfortunately, this
set does not contain any really hard problem. As is known
from the 15-puzzle, the distribution of the solution lengths
of all puzzle instances gives a bell curve and hard problems
are therefore unlikely to occur in a random set. Note that
the hardest puzzle in Korf’s set requires only 114 moves
while [Karlemo et al., 2000] presented a much higher upper
bound of 210.

We constructed one problem instance of the 24-puzzle that
is especially hard to solve (Fig. 5). Starting with the sorted
puzzle on the left side in Fig. 5, we embed the hardest 15-
puzzle (80 moves) into the upper left corner. We then com-
pute the worst-case configuration for the lower fringe with

1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

18 12 10 15 4

13 17 11 16 9

2 7 6 1 14

3 8 5 19

20 21 22 23 24

23 22 21 20 4

18 13 11 10 9

7 12 6 15 14

2 17 5 16 19

3 8 1 24

24 19 13 21 20

23 7 22 11 10

2 17 12 6

9 18 8 1 15

4 14 3 5 16

80 moves 59 moves 75 moves

Figure 5: Constructing a hard 24-puzzle instance.

a breadth-first search. Thereafter, the same is done with the
right fringe. Summing up the solution lengths gives an upper
bound on the moves needed to solve this particular instance.

A direct solution of the hard problem in Fig. 5 is currently
not possible. However, we can give a lower (140) and an up-
per bound (142) which are only two moves apart. The lower
bound was computed by running FPS up to threshold 138
without finding a solution. This took three months.

thresh 6-6-6-6 PDB 8-8-8 PDB
126 399,633,789 51,115,210
128 3,468,558,764 457,928,595
130 29,048,297,692 3,986,628,500
132 393,504,563,894 33,417,370,606
134 3,996,860,914,262 457,717,114,294
136 - 4,499,126,967,518
138 - 42,854,920,933,846
140 - ?

Table 4: Trying to solve the hard problem with FPS.

Table 4 shows the node expansions of FPS with a memory
limit of 5·108. In our experiments, we found the standard 6-6-
6-6 PDB to be insufficient for solving this problem instance.
Hence, we built a more powerful 8-8-8 PDB [Döbbelin et al.,
2013] which requires 122 GB memory space compared to 0.5
GB for the 6-6-6-6 PDB. Table 4 shows that the 8-8-8 PDB
expands one order of magnitude fewer nodes. Even so, we
were only able to run FPS up to threshold 138 without finding
a solution2.

We computed an upper bound by recursively calling FPS
on the most promising perimeter nodes as illustrated in Fig. 6.
From the first perimeter p0, we picked a position t at dis-
tance 8 which looked promising according to the node or-
dering (4,499,126,967,518 node expansions). Since we were
not able to compute the shortest path between t and g either,
we again approximated the distance with the same approach
(4,861,328,174,120 node expansions). We picked u from the
perimeter p1 and found an optimal path of length 119 from
u to g (59,165,019,511 node expansions). Hence, the upper
bound from s to g is 8 + 15 + 119 = 142. This is only two
moves longer than the lower bound 140 and we conclude that
the optimal solution has either 140 or 142 moves which is
≥ 26 moves longer than the hardest instance in Korf’s ran-
dom set.

2IDA* could not be used either, because it expands approx. 10x
more nodes. This extra effort is not compensated by IDA*’s faster
node handling.

664



s

p0

t

p1

u

g

d(s,
g) ≤ 8 + (15

+ 119)
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8
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=
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d(t, g) ≤ 15 + 119

d(u, g) = 119

Figure 6: Computing the upper bound 142 with FPS.

6 Conclusion
We presented a heuristic search algorithm (FPS) that expands
fewer nodes and requires several orders of magnitude less
memory space than BF-IDA* on the 24-puzzle. This is pos-
sible by using information from the previous iteration to ex-
pand the perimeter in the direction of the expected goal. With
its reduced memory consumption, FPS can be used to solve
very large problems. As an example we solved the hardest
24-puzzle of the standard random benchmark set with 8 CPU
cores and just 8 GB of memory—an instance for which BF-
IDA* needs several terabytes.

FPS is flexible in two ways: It can dynamically trade the
memory used for the perimeter with memory used by the test
function, and it provides a template which can be used with
various test functions. In the future we will experiment with
better informed pattern databases [Döbbelin et al., 2013] to
further reduce the search effort of the test function.

We additionally presented a very hard problem instance of
the 24-puzzle that can be used as a challenging benchmark
for heuristic search algorithms. We applied FPS to this prob-
lem and established a lower and upper bound on the solution
length which are only two moves apart.
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