Optimal Pricing for Improving Efficiency of Taxi Systems / 2811
Jiarui Gan, Bo An, Haizhong Wang, Xiaoming Sun, Zhongzhi Shi

In Beijing, most taxi drivers intentionally avoid working during peak hours despite of the huge customer demand within these peak periods. This dilemma is mainly due to the fact that taxi drivers' congestion costs are not reflected in the current taxi fare structure. To resolve this problem, we propose a new pricing scheme to provide taxi drivers with extra incentives to work during peak hours. This differs from previous studies of taxi market by considering market variance over multiple periods, taxi drivers' profit-driven decisions, and their scheduling constraints regarding the interdependence among different periods. The major challenge of this research is the computational intensiveness to identify optimal strategy due to the exponentially large size of a taxi driver's strategy space and the scheduling constraints. We develop an atom schedule method to overcome these issues. It reduces the magnitude of the problem while satisfying the constraints to filter out infeasible pure strategies. Simulation results based on real data show the effectiveness of the proposed methods, which opens up a new door to improving the efficiency of taxi market in megacities (e.g., Beijing).