
Abstract
Recent research has highlighted the benefits of 
completeness as a retrieval criterion in recom-
mender systems. In complete retrieval, any subset 
of the constraints in a given query that can be satis-
fied must be satisfied by at least one of the re-
trieved products. Minimal completeness (i.e., al-
ways retrieving the smallest set of products needed 
for completeness) is also beginning to attract re-
search interest as a way to minimize cognitive load 
in the approach. Other important features of a re-
trieval algorithm’s behavior include the diversity of 
the retrieved products and the order in which they 
are presented to the user. In this paper, we present a 
new algorithm for minimally complete retrieval 
(MCR) in which the ranking of retrieved products 
is primarily based on the number of constraints that 
they satisfy, but other measures such as similarity 
or utility can also be used to inform the retrieval 
process. We also present theoretical and empirical 
results that demonstrate our algorithm’s ability to 
minimize cognitive load while ensuring the com-
pleteness and diversity of the retrieved products.

1 Introduction
Recommender systems use various criteria (e.g., similarity, 
diversity, utility) to guide the retrieval of recommended 
products from a list of available products [Burke, 2002; 
Linden et al., 1997; Pu and Chen, 2008; Smyth and 
McClave, 2001; Viappiani et al., 2006]. We focus in this 
paper on content-based recommender systems in which a 
target query is represented as a set of unary constraints on
the values of product attributes (e.g., PC type = laptop, 
screen size = ���� ���	
� �� ���
. In this context, recent re-
search has highlighted the benefits of completeness as a 
retrieval criterion [McSherry, 2006]. Informally, a set of 
products retrieved for a given query Q is complete if any 
subset of the constraints in Q that is satisfied by one or more
available products is satisfied by at least one of the retrieved 
products. A retrieval algorithm is complete if the retrieval 
set it produces for every query is complete.  

An incomplete retrieval algorithm may fail to retrieve a 

product that satisfies the query constraints that are most 
important to the user even if such a product exists. Moreo-
ver, it is only in a complete retrieval algorithm that failure to 
retrieve a given product can always be explained / justified
on the basis that another product that has been retrieved 
satisfies at least the same constraints. Another important 
benefit of completeness is the user’s ability to infer that 
none of the available products is acceptable if no product in 
the retrieval set satisfies a constraint, or set of constraints, 
that must be satisfied. 

Despite the benefits of complete retrieval, most retrieval 
algorithms used in recommender systems are incomplete. 
For example, case-based recommender systems sometimes 
use a retrieval approach adapted from the k-NN algorithm 
widely used in case-based reasoning (CBR) and elsewhere 
[Bridge et al., 2005; Smyth, 2007]. In this approach, the 
system recommends the k products that are most similar to 
the target query. However, retrieval based on k-NN is in-
complete for all k ���� ��	��
����� ������� ����
ction 2, we 
generalize this result to show that any algorithm that always 
retrieves the same number of products is incomplete.  

One example of a complete retrieval algorithm is com-
promise-driven retrieval (CDR) [McSherry, 2006]. In CDR, 
the available products are initially ranked in order of de-
creasing similarity. Any product that satisfies only a subset 
of the constraints satisfied by another product that precedes 
it in the product ranking is then eliminated, and the remain-
ing products are retrieved. The stronger condition of mini-
mal completeness is also beginning to attract research inter-
est as a retrieval criterion [McSherry, 2008]. A retrieval 
algorithm is minimally complete if it always produces a 
retrieval set of the smallest possible size required for com-
pleteness, thus helping to reduce cognitive load. However, 
the order in which retrieved products are presented to the 
user is another important feature of a recommender system’s 
behavior [Branting, 2004; Coyle and Cunningham, 2004].

In this paper, we present a new algorithm for minimally 
complete retrieval called MCR+ in which the ranking of 
retrieved products is primarily based on the number of query 
constraints that they satisfy, although other measures such 
as similarity or utility can be used as additional ranking cri-
teria. Our approach is motivated by the view that while it is 
natural for products that satisfy most constraints to be 
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ranked highest, more discriminating measures may be need-
ed to rank products that satisfy the same number of con-
straints. One of the secondary ranking criteria that we use to 
illustrate the approach is the similarity measure described 
below. 

Alternatively, the secondary ranking criterion used in 
MCR+ may be as simple as product price, making the ap-
proach easy to implement in any recommender system. An-
other important benefit of the approach is that ranking the 
available products according to the number of constraints 
they satisfy results in a much simpler retrieval process than 
in previous work [McSherry, 2008]. In MCR+, a minimally 
complete retrieval set can be constructed simply by elimi-
nating any product that satisfies only a subset of the con-
straints satisfied by another product that precedes it in the 
product ranking. 

A common approach to similarity assessment in case-
based recommender systems is to measure each product’s 
similarity to an “ideal” product with attribute values that 
represent the user’s known or assumed preferences. Pre-
ferred values for some of the product attributes may be giv-
en as equality constraints in the target query (e.g., PC type = 
laptop, screen size = 15). Preferred values for some attrib-
utes can be reasonably assumed, whether or not they are 
mentioned in the target query (e.g., the lowest available 
price, or the highest available processor speed). 

For any product x and ideal product y we define:
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where A is the set of product attributes for which preferred 
values are given or assumed, sima(x, y) is a local measure of 
the similarity between the values of a in x and y, and wa is 
an importance weight assigned to a for each a � A. In the 
experiments reported in Section 5, we assign a weight of 
one to each a � A other than price, and an integer weight of 
one or more to price.

For any product x, ideal product y, and numeric attribute
a, we define:
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where v1 and v2 are the values of a in x and y, and min(a)
and max(a) are the minimum and maximum values of a in 
the product dataset. For a nominal attribute (e.g., PC type) 
we may use domain knowledge to assign a local similarity 
score from 0 to 1 to its values in x and y, or simply 0 for 
unequal values and 1 for equal values.

In Section 2, we use an example dataset to compare the 
behavior of k-NN, CDR, and MCR+. A formal definition of 
MCR+ is provided in Section 3. In Section 4, we formally 
demonstrate the minimal completeness of MCR+ and its 
ability to ensure the diversity of the retrieved products. We 
also compare upper bounds for retrieval-set sizes in MCR+

and CDR that we show to be achievable, or almost achieva-
ble, in the respective algorithms. Our empirical results and 
conclusions are presented in Sections 5 and 6.

2 Comparison of Retrieval Algorithms 
Table 1 shows an example dataset and query in the real es-
tate domain that we use to compare k-NN, CDR, and the 
MCR+ algorithm that we formally present in Section 3. The 
attributes of the available properties (P1-P7) are location (A, 
B), bedrooms (2, 3, 4, 5), reception rooms (2, 3), and price 
in units of $1,000. The user is looking for a property in loca-
tion A with at least 4 bedrooms and 3 reception rooms 
(RRs) and is willing to pay up to $300,000. 

The shaded cells in Table 1 indicate constraints that each 
property fails to satisfy. For example, P3 satisfies the con-
��������� ��	��� !��"
#����%�� ��#�&&����'�� "*�� ���� ��
����	
�
constraint. Also shown in Table 1 is the similarity of each 
property from Eqn. 1 with a weight of one assigned to each 
attribute except price, a weight of 5 assigned to price, and 
the preferred values of price and bedrooms assumed to be 
250 and 5 respectively. The properties retrieved by 3-NN, 
CDR, and MCR+, and their ranking in each algorithm (e.g., 
1st, 2nd, 3rd) are shown in the last three columns.

Loc Beds RRs Price 
($1,000) Sim 3-NN CDR MCR+

Query: A ��% 3 ��'��
P1 B 3 3 290 0.48 3rd   
P2 A 3 3 320 0.37   
P3 A 5 3 330 0.38 3rd   
P4 B 2 3 270 0.59 2nd 2nd 2nd 
P5 B 3 2 250 0.67 1st 1st
P6 A 4 3 325 0.37 1st 
P7 A 4 2 315 0.33

Table 1. An example dataset and query in the real estate domain,
and the properties retrieved by 3-NN, CDR, and MCR+.

A complete retrieval set for the target query Q = {loc = 
!��"
#����%��&&����'�����	
���'��<�>*�����	�*#
�?�����?%����
no other property satisfies the RRs and price constraints. It 
is also essential for completeness to retrieve one of the 
properties (P3 and P6) that satisfy the constraints loc = A, 
"
#�� �� %�� ��#� &&�� �� '�� ��� ��� �
���� �G�� ���#*	��� >*��� "
�
retrieved for completeness in our example. It can also be 
seen that any subset of the query constraints that is satisfied 
by one or more available products is satisfied by one of the 
products in the MCR+ retrieval set (P4 and P6). It follows 
that the MCR+ retrieval set is minimally complete. 

Note that the user can infer from the MCR+ retrieval set 
that there is no available property in location A that satisfies 
her price constraint. Likewise, there can be no available 
����
����G����"
#����%���#����	
���'��������
�
��������*	��
property in the MCR+ retrieval set. However, these im-
portant inferences can only be made if the retrieval algo-
rithm is known to be complete.

Any product in a minimally complete retrieval set can be 
replaced by another product that satisfies the same con-
straints without affecting the minimal completeness of the 

2300



retrieval set. For example, P4 can be replaced by P1 and/or 
P6 by P3, so the MCR+ retrieval set is only one of 4 possible 
retrieval sets that are minimally complete for the example 
query. By default, MCR+ constructs a retrieval set that min-
imizes the average price of the retrieved products over all 
minimally complete retrieval sets. In Section 3, we show
how other measures (e.g., similarity) can be used to inform 
the choice between minimally complete retrieval sets.  

The incompleteness of 3-NN can be seen from its failure 
to retrieve a property that satisfies the location, bedrooms, 
and RRs constraints even though there are two such proper-
ties in the dataset. As we now show, any algorithm that al-
ways retrieves the same number of products is incomplete.

Theorem 1. Any retrieval algorithm that always retrieves k 
products, where k ���, is incomplete.

Proof. For any integer k �� ��� G
� 	��� 	�����*	�� �� ���#*	��
dataset with k + 1 binary attributes a1, ..., ak+1 and k + 1 
product descriptions x1, ..., xk+1 such that the value of ai in xi
�����J�������i ��k + 1 and the value of ai in xj �����J�������i, j ��
k + 1 such that i � j. Now consider the query Q = {a1 = 1, ...,
ak+1 = 1} in which all attributes are required to have non-
zero values. Any retrieval set of size k must fail to include a 
product that satisfies the constraint ai = 1, where xi is the
product that is not retrieved. As this constraint is satisfied 
by one of the available products, namely xi, it follows that 
any retrieval set of size k is incomplete. ��

While CDR is complete, its lack of minimal completeness 
can be seen from its retrieval of one more product (P5) than 
needed for completeness. In common with k-NN, CDR al-
ways retrieves the most similar product, which can some-
times be useful as a way of drawing the user’s attention to
an otherwise competitive product that narrowly fails to sat-
isfy one or more constraints [McSherry, 2006]. However, 
the most similar property in Table 1 (P5) seems unlikely to 
be acceptable as it satisfies only one of the 4 constraints in 
the user’s query. As we show in Sections 4 and 5, the CDR 
retrieval set for a given query may be considerably larger 
than the MCR+ retrieval set.

A feature that MCR+ shares with CDR is that no two 
products in the retrieval set can satisfy the same constraints, 
thus ensuring the diversity of the retrieved products (if more 
than one). As we show in Section 4, MCR+ enforces an even 
stronger condition with respect to the constraints that two 
retrieved products may satisfy. That the products retrieved 
by k-NN may be lacking in diversity with respect to the con-
straints that they satisfy can be seen from the fact that two 
of the products in the 3-NN retrieval set (P1 and P4) satisfy 
the same constraints.

3 Algorithm Definition 
A formal definition of MCR+, our algorithm for minimally 
complete retrieval, is presented in Figure 1. The algorithm 
constructs a retrieval set for a given query from a list of 
available products, in order of decreasing number of satis-
fied constraints, by eliminating any product that satisfies 
only a subset of the constraints satisfied by another product 

that precedes it in the given list of products. For any product
x and query Q, we denote by satisfied(x, Q) the set of con-
straints in Q that are satisfied by x. A formal proof of the 
minimal completeness of MCR+ is provided in Section 4.

Algorithm: MCR+

Input:
Q: A query (i.e., a set of constraints) 
L: A list of available products in order of (1) decreasing number 

of satisfied constraints, and (2) increasing price
Output:
R:  A complete retrieval set of the smallest possible size

1 begin
2   R1 Q����
3   while | L | > 0 do
4   begin
5    x1 Q�FIRST(L)  
6    D Q��x1]
7    R1 Q��x1 | R1]    
8    for all x2 � REST(L) do
9     if satisfied(x2, Q) 	 satisfied(x1, Q)  

10     then D Q��x2 | D] 
11    for all x3 � D do L Q�REMOVE(x3, L)  
12   end
13   R Q�REVERSE(R1)  
14   return R
15 end

Figure 1. Minimally complete retrieval in MCR+ with product 
price as a secondary ranking criterion.

Using product price as a secondary ranking criterion in 
MCR+ has the effect of minimizing average price over all 
minimally complete retrieval sets. Alternatively, the goal 
might be to maximize the average similarity of the retrieved 
products over all minimally complete retrieval sets. This can 
be achieved by replacing increasing price by decreasing
similarity as the secondary ranking criterion in MCR+. For 
the example query in Table 1, the result will be that P3 is 
retrieved instead of P6 because of its higher similarity. More 
generally, any measure of product suitability can be used as 
a secondary ranking criterion in MCR+ without affecting the 
minimal completeness of the retrieval set. 

4 Analysis of MCR+ and CDR 
In this section, we present necessary and sufficient condi-
tions for a complete retrieval set to be minimally complete 
and show that MCR+ is minimally complete. We also com-
pare upper bounds for retrieval-set sizes in MCR+ and CDR 
that we show to be achievable, or almost achievable, in the 
two algorithms. For any query Q and retrieval algorithm A,
we denote by r(Q, A) the retrieval set for Q in A. We will 
write r(Q) instead of r(Q, A) when discussing the retrieval 
set for a query Q without reference to the retrieval algo-
rithm. It can easily be verified that the following definitions 
of completeness and minimal completeness are equivalent to 
the informal definitions provided in Section 1. 
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Definition 1. A retrieval set r(Q) is complete if and only if,
for all x 
 r(Q), there exists y � r(Q) such that satisfied(x,
Q) 	 satisfied(y, Q).
Definition 2. A complete retrieval set r1(Q) is minimally 
complete if and only if |r1(Q)���� �r2(Q)| for every complete
retrieval set r2(Q). 
Definition 3. A retrieval algorithm A is complete / minimal-
ly complete if and only if r(Q, A) is complete / minimally 
complete for every query Q.
Theorem 2. A complete retrieval set r(Q) is minimally com-
plete if and only if x = y for all x, y � r(Q) such that satis-
fied(x, Q) 	 satisfied(y, Q).
Proof. Let r1(Q) be a complete retrieval set and suppose 
there exist distinct x, y � r1(Q) such that satisfied(x, Q) 	
satisfied(y, Q). Another possible retrieval set for Q is r2(Q)
= r1(Q) – {x}, and we know that x 
 r2(Q), y � r2(Q), and 
satisfied(x, Q) 	 satisfied(y, Q). Moreover, for any w 

r2(Q) such that w Y x, there exists z � r1(Q) such that satis-
fied(w, Q) 	 satisfied(z, Q). If z = x, then satisfied(w, Q) 	
satisfied(x, Q) 	 satisfied(y, Q), while if z Y x, then z �
r2(Q). We have now established that r2(Q) is complete. As 
|r1(Q)| > |r2(Q)|, r1(Q) is not minimally complete, thus 
proving the necessity. 

Now suppose that r1(Q) is a complete retrieval set such 
that x = y for all x, y � r1(Q) such that satisfied(x, Q) 	 sat-
isfied(y, Q). For any complete retrieval set r2(Q), it is clear 
that |r1(Q)�� �� �r2(Q)| if r1(Q) 	 r2(Q). If it is not true that 
r1(Q) 	 r2(Q), then for any x ��r1(Q) – r2(Q), there exists y
��r2(Q) such that satisfied(x, Q) 	 satisfied(y, Q). As x Y y,
it follows that y 
 r1(Q), and so there exists z ��r1(Q) such 
that satisfied(y, Q) 	 satisfied(z, Q). As x, z � r1(Q) and 
satisfied(x, Q) 	 satisfied(z, Q), it must also be true that x =
z. It can also be seen that satisfied(x, Q) � satisfied(y, Q). 
Denoting by x1,…, xk the distinct elements of r1(Q) – r2(Q), 
we can similarly demonstrate the existence of y1,…, yk �
r2(Q) – r1(Q) such that satisfied(xi, Q) � satisfied(yi, Q) for 
1 � i � k.  Moreover, it cannot be true that yi = yj for 1 � i < j 
� k as this would imply that satisfied(xi, Q) � satisfied(xj, Q)
and therefore that xi = xj. It follows that |r2(Q
Z���k + |r1(Q)
� r2(Q)| = |r1(Q)|. We have now established that r1(Q) is 
minimally complete, thus proving the sufficiency. ��

Theorem 3. MCR+ is minimally complete. 

Proof. It can be seen from Figure 1 that for any query Q and 
list of available products L presented to MCR+, a given 
product x � L can fail to be included in the MCR+ retrieval 
set only if there exists y � r(Q, MCR+) such that satisfied(x,
Q) 	 satisfied(y, Q). Thus r(Q, MCR+) is complete by Defi-
nition 1. Now for any distinct x, y � r(Q, MCR+), we can 
assume without loss of generality that x precedes y in L. As 
products in L are ranked by decreasing number of satisfied 
constraints, satisfied(x, Q) � satisfied(y, Q). Moreover, it 
cannot be true that satisfied(x, Q) � satisfied(y, Q), as this 
would ensure the exclusion of y from r(Q, MCR+). As r(Q,
MCR+) is complete, it follows from Theorem 2 that r(Q,
MCR+) is minimally complete, and so MCR+ is minimally 
complete by Definition 3. �

It follows from Theorems 2 and 3 that no product re-
trieved by MCR+ can satisfy a subset of the constraints sat-
isfied by another retrieved product. These results confirm
our algorithm’s ability to minimize cognitive load while 
ensuring the completeness and diversity of the retrieved 
products. Moreover, the initial ranking of available products 
by decreasing number of satisfied constraints is key to the 
simplicity of the retrieval process in MCR+. For example, 
consider a product dataset containing only two products x1
and x2 and query Q such that satisfied(x1, Q) 
 satisfied(x2,
Q). It suffices to retrieve a single product (x2) for minimal 
completeness in this example. But unless x2 is presented to 
MCR+ before x1 as specified in the algorithm definition, the 
retrieval set will contain both x1 and x2. 

For any product dataset, query Q, and distinct x, y � r(Q,
MCR+), we know from Theorems  2 and 3 that satisfied(x,
Q) and satisfied(y, Q) are incomparable subsets of the con-
straints in Q. It follows from Sperner’s [1928] theorem that 
the size of the MCR+ retrieval set cannot be more than 
nC�n/2�, where n = |Q|, the number of constraints in Q. For 
example, the size of the MCR+ retrieval set cannot be more 
than 5C2 = 10 for queries with up to 5 constraints. As no two 
products retrieved by CDR for a given query Q can satisfy 
the same constraints, the size of the CDR retrieval set can-
not be more than 2n, where n = |Q|.  

An important question is whether these upper bounds for 
the sizes of the retrieval set in MCR+ and CDR are achieva-
ble.  In Theorems 4 and 5, we show that they are achievable, 
or almost achievable, in both algorithms. For example, it 
follows from Theorem 4 that the number of products re-
trieved for a query containing 5 constraints can be as high as 
31 in CDR. However, as shown by our empirical results in 
Section 5, retrieval-set sizes in both algorithms tend to be 
much smaller than the sizes we now show to be possible. 

Theorem 4. For any integer n ���, it is possible to construct 
a product dataset and target query Q such that |Q| = n and  
|r(Q, CDR)| = 2n – 1.

Proof. For any integer n ������*����
�G
���
�\�^
��n prod-
uct attributes a1, ..., an, each with integer values in the range 
from 0 to 2n – 1, and that the user can be assumed to prefer 
the highest possible value of each attribute. Thus the ideal 
product (y) is such that ai = 2n – 1 for i = 1 to n. Now con-
sider the query Q = {a1 > 0, ..., an > 0} in which all attrib-
utes are required to have non-zero values. For r = 1 to n,
there are nCr distinct product descriptions x = {a1 = v1, …, an

= vn} such that |satisfied(x, Q)| = r and vi�������2n-r+1 – 1} 
J������� i ��n. We can thus construct a product dataset con-
taining nC1 + nC2 +… + nCn = 2n – 1 product descriptions 
such that the number of constraints satisfied by each product 
ranges from 1 to n and no two products satisfy the same 
constraints. Moreover, with all attributes assigned equal 
weights in Eqn. 1, the similarity of each product x in the 

dataset to the ideal product y is Sim(x, y) = 
)12(

)12( 1

�

���

n

rn

n
r ,

where r = |satisfied(x, Q)|. It can also be verified that 
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r is strictly decreasing as r increases from 1 to n.

In CDR, a product can fail to be retrieved only if there exists 
a more (or equally) similar product that satisfies at least the 
same constraints. As this is not the case for any product in 
the dataset, the CDR retrieval set must include all the 2n – 1 
products in the dataset. �

Theorem 5. For any integer n ���, it is possible to construct 
a product dataset and target query Q such that |Q| = n and 
|r(Q, MCR+)| = nC�n/2��

Proof. That the result is true for n = 1 can be seen from the 
fact that |r(Q, MCR+)| = 1 for any product dataset and query 
Q such that |Q| = 1. For any integer n �����	����#
���\������
�
dataset and target query constructed in the proof of Theorem 
4. It can be seen from Theorems 2 and 3 that only a single 
product will be retrieved by MCR+, namely the one that 
satisfies all the query constraints. However, if all products 
are deleted from the dataset except the nC�n/2��products that 
satisfy �n/2��constraints in the target query, then all the re-
maining products must be retrieved by MCR+. �

5 Empirical Study 
In this section, we compare the performance of MCR+ and 
CDR on two benchmark datasets in terms of average re-
trieval-set size for queries of different sizes. While CDR can 
never retrieve fewer products than MCR+, we expect aver-
age retrieval-set size to increase with query size (i.e., num-
ber of constraints) in both algorithms. Also of interest in our 
analysis is the extent to which average retrieval-set size in 
CDR depends on the weights assigned to product attributes 
in the underlying similarity measure. We will refer to a ver-
sion of CDR with an integer weight of w �� �� ����\�
#� ���
price, and a weight of one to each of the other attributes, as 
CDR(w). Our first experiment applies MCR+, CDR(1), and 
CDR(10) to the PC dataset [McGinty and Smyth, 2002]. 
The dataset contains descriptions of 120 PCs in terms of  
attributes such as price, memory, and screen size.

Using a leave-one-out approach to evaluation, we tempo-
rarily remove each PC from the dataset and use its descrip-
tion to generate a total of 127 queries of sizes n = 2, 4, 6, 
and 8. For example, the 8 attributes in a PC’s description 
provide 8C2 = 28 different queries involving 2 of the 8 at-
tributes (e.g., type = laptop, price � 750). We use a left-out 
PC’s price to create a constraint that specifies the maximum 
amount that the user would like to pay. We use its speed, 
memory, and hard disk size to create constraints that specify 
the minimum values that the user is willing to consider. Fi-
nally, we use the make, processor, type, and screen size 
(which we round to the nearest inch in the experiment) to 
create equality constraints.

We submit each query to recommender systems based on 
MCR+, CDR(1), and CDR(10) and observe the retrieval-set 
size for each algorithm. Similarity assessment is based on 
Eqn. 1, for example with the ideal price / memory assumed 
to be the lowest / highest in the dataset. This process is re-

peated for all 120 products in the dataset, and the results are 
summarized in Figure 2. 

Average retrieval-set size can be seen to increase as query 
size increases in all three algorithms, but is lowest in MCR+

for all query sizes. However, average retrieval-set sizes in 
MCR+ and CDR are much smaller than the sizes we know to 
be possible from Theorems 4 and 5. This is particularly no-
ticeable for query sizes n = 6 and n = 8, for which retrieval-
set sizes can be as high as 20 and 70 in MCR+ and even 
higher in CDR. A detail not shown in Figure 2 is that re-
trieval-set size was never more than 10 in MCR+, while the
largest retrieval-set size in CDR (with w = 10) was 14.  

Figure 2. Average sizes of MCR+, CDR(1), and CDR(10) retrieval 
sets for query sizes n = 2, 4, 6, and 8 on the PC dataset. 

Average retrieval-set size in CDR(10) is higher than in 
CDR(1) for all query sizes, and the observed differences are 
greatest for query sizes n = 6 and n = 8. Other factors that 
may influence the size of the CDR retrieval set, though be-
yond the scope of our analysis, include the attribute types 
(i.e., numeric and/or nominal) used to describe the available 
products, and local similarity measures used in the assess-
ment of product similarity.

Figure 3 shows cumulative frequencies of observed re-
trieval-set sizes in MCR+, CDR(1), CDR(5), and CDR(10)
for queries of size n = 8 in a similar experiment on the 
“Travel” dataset from  http://cbrwiki.fdi.ucm.es/.
This is a larger dataset that contains the descriptions of 
1,024 holidays (e.g., price, holiday type, duration). Retriev-
al-set sizes from 1 to 6 can be seen to account for more than 
50% of queries in MCR+. In contrast, only 27% of retrieval 
sets contain from 1 to 6 products in CDR(10). It can also be 
seen from the steep rise in cumulative frequency as retriev-
al-set size increases from 14 to 15+ in CDR(10) that it is not 
exceptional for 15 or more products to be retrieved in this 
version of CDR.

As might be expected, average retrieval-set size in MCR+

(6.9) is higher than for queries of size n = 8 on the smaller 
PC dataset (4.0). However, the largest retrieval-set size in 
MCR+ for any query on the Travel dataset (19) is much 
smaller than the maximum size (70) we know to be possible 
for queries of size n = 8.

0
1
2
3
4
5
6
7

n = 2 n = 4 n = 6 n = 8
R

et
ri

ev
al

-S
et

 S
iz

e

MCR+ CDR(1) CDR(10)

2303



Figure 3. Cumulative frequencies of retrieval-set sizes for queries 
of size n = 8 on the Travel dataset. 

6 Conclusions 
We presented a new algorithm for minimally complete re-
trieval called MCR+ and demonstrated its ability to mini-
mize cognitive load while ensuring the completeness and 
diversity of the retrieved products. While the size of the 
MCR+ retrieval set can never be more than 10 for queries of 
size n �����G
����G
#��������
��*>"
���J����ducts retrieved 
by CDR can be as high as 31 for such queries. Moreover, 
our empirical results show that retrieval-set size in MCR+,
while increasing with query size, tends to be much lower in 
practice than the maximum we showed to be possible for 
each query size. 

Even for queries of size n = 8 on the PC dataset, only 4 
products were retrieved on average by MCR+, with 
retrieval-set sizes from 1 to 10 accounting for 87% of que-
ries of this size on the larger Travel dataset. Retrieved prod-
ucts are ranked by decreasing number of satisfied con-
straints in MCR+, making the approach easy to implement in 
any recommender system. Moreover, any measure of prod-
uct suitability can be used as a secondary ranking criterion 
in MCR+ without affecting the minimal completeness of the 
retrieval set. 

We focused in this paper on MCR+ as an approach to en-
suring the minimal completeness and diversity of an initial
set of recommended products. As in CDR [McSherry, 
2006], additional recommendations can be provided in our 
approach without increasing the number of initially recom-
mended products by allowing the user to view other prod-
ucts that satisfy the same constraints as an initially recom-
mended product. We expect this to be most beneficial in 
situations where recommended items are sought in competi-
tion with other users (e.g., jobs, rental apartments). Other 
approaches to generating additional recommendations when 
none of the products initially retrieved by MCR+ is accepta-
ble to the user will be investigated in our future research.  
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