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Abstract

Given its ubiquity, scale and complexity, few prob-
lems have created the combined interest of so many
unrelated areas as the evolution of cooperation. Us-
ing the tools of evolutionary game theory, here we
address, for the first time, the role played by inten-
tion recognition in the final outcome of coopera-
tion in large populations of self-regarding individ-
uals. By equipping individuals with the capacity of
assessing intentions of others in the course of re-
peated Prisoner’s Dilemma interactions, we show
how intention recognition opens a window of op-
portunity for cooperation to thrive, as it precludes
the invasion of pure cooperators by random drift
while remaining robust against defective strategies.
Intention recognizers are able to assign an inten-
tion to the action of their opponents based on an
acquired corpus of possible intentions. We show
how intention recognizers can prevail against most
famous strategies of repeated dilemmas of cooper-
ation, even in the presence of errors. Our approach
invites the adoption of other classification and pat-
tern recognition mechanisms common among Hu-
mans, to unveil the evolution of complex cognitive
processes in the context of social dilemmas.

1 Introduction

In multi-agent systems, the problem of intention recogni-
tion appears to be crucial whenever the achievement of a
goal by an agent does not depend uniquely on its own ac-
tions, but also on the decisions of others. This is partic-
ularly common when agents cooperate or have to coordi-
nate their actions to achieve a task, especially when the pos-
sibility of communication may be limited [Heinze, 2003;
Segbroeck et al., 2010]. For example, in heterogeneous agent
systems it is likely that agents speak different languages, have
different designs or different levels of intelligence; hence,
intention recognition may be the only way agents under-
stand each other to secure successful cooperation. Moreover,
agents often attempt to hide their real intentions and make
others believe in pretense ones [Pereira and Han, 2011].

Intention recognition is defined, in general terms, as the
process of becoming aware of another agent’s intention and,

more technically, as the problem of inferring an agent’s inten-
tion through its actions and their effects on the environment
[Heinze, 2003].

The problem of intention recognition has been paid much
attention in AI, Philosophy and Psychology for several
decades [Kautz and Allen, 1986; Charniak and Goldman,
1993; Bratman, 1987; Geib and Goldman, 2009]. Whereas
intention recognition has been extensively studied in small
scale interactive settings, there is an absolute lack of mod-
elling research with respect to large scale social contexts;
namely the evolutionary roles and aspects of intention recog-
nition.

In this work, we study the role of intention recognition
for one of the most challenging but intriguing issues, travers-
ing areas as diverse as Biology, Economics, Artificial Intelli-
gence, Political Science, or Psychology: the problem of evo-
lution of cooperation [Axelrod, 1984]. Why would natural
selection equip selfish individuals with altruistic tendencies
while it incites competition between individuals and thus ap-
parently rewards only selfish behavior? Several mechanisms
responsible for promoting cooperative behavior have been re-
cently identified [Sigmund, 2010], including kin selection,
direct and indirect reciprocity, network reciprocity, group se-
lection (see [Nowak, 2006] for a survey). Here we wish to
understand how cooperation emerges from the interplay be-
tween population dynamics and individuals’ cognitive abili-
ties, namely the ability to perform intention recognition. Like
addressing the problem of evolution of cooperation, our study
is carried out within the framework of Evolutionary Game
Theory (EGT) [Hofbauer and Sigmund, 1998]. Here, individ-
ual success (or fitness) is expressed in terms of the outcome
of a 2-person game, which, in turn, is used by individuals to
copy others whenever these appear to be more successful.

Intention recognition can be found abundantly in many
kinds of interactions and communications, not only in Hu-
man but also many other species [Tomasello, 2008]. The
knowledge about intention of others in a situation could en-
able to plan in advance, either to secure a successful cooper-
ation or to deal with potential hostile behaviours [Pereira and
Han, 2011]. Given the advantage of knowing others’ inten-
tion and the abundance of intention recognition in many dif-
ferent species, we believe that intention recognition should be
taken into account to design appropriate strategies—in study-
ing and in explaining all the mechanisms for the evolution of
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cooperation.
In this work we take a first step towards employing inten-

tion recognition within the framework of repeated interac-
tions. Similarly to direct reciprocity [Trivers, 1971] intention
recognition is being performed using the information about
past direct interactions. As usual, the inputs of an intention
recognition system are a set of conceivable intentions and a
set of plans achieving each intention (plan library [Geib and
Goldman, 2009] or plan corpus [Blaylock and Allen, 2003]).
In this EGT context, conceivable intentions are the strategies
already known to the intention recognizer, whose recognition
model is learnt from a plan corpus consisting of sequences
of moves (called plan sessions) of different strategies. There
have been several successful corpus-based intention recogni-
tion models in the literature [Blaylock and Allen, 2003; 2004;
Armentano and Amandi, 2009], and we adjust one to the cur-
rent work in lieu of supplying a novel one (see Subsection
3.1). The rationale of the corpus-based approach firstly relies
on the idea of nature-nurture co-evolution or experience in-
heritance [Richerson and Boyd, 2006; Shennan, 2002]: the
corpus represents ancestors’ experience in interacting with
known strategies. Additionally, intention recognizers can use
themselves as a framework for learning and understanding
those strategies by self-experimenting them—as suggested by
the famous ‘like-me’ framework [Meltzoff, 2007]. This is of-
ten addressed in the context of the “Theory of Mind” theory,
neurologically relying in part on “mirror neurons”, at sev-
eral cortical levels, as supporting evidence [Iacoboni et al.,
2005]. In addition, we offer a method to acquire a rational
decision making model from the plan corpus, that states what
to play with a co-player based on the recognized intention
and the game’s current state. Rationality means the decision
maker attempts to achieve the greatest expected benefit for
himself/herself. The model is discussed in Subsection 3.2.

2 EGT Plan Corpus

2.1 Interaction between Agents

Interactions are modeled as symmetric two-player games de-
fined by the payoff matrix

( C D

C R,R S, T
D T, S P, P

)

A player who chooses to cooperate (C) with someone who
defects (D) receives the sucker’s payoff S, whereas the de-
fecting player gains the temptation to defect, T . Mutual co-
operation (resp., defection) yields the reward R (resp., pun-
ishment P) for both players. Depending on the ordering of
these four payoffs, different social dilemmas arise [Macy and
Flache, 2002; Santos et al., 2006; Sigmund, 2010]. Namely,
in this work we are concerned with the Prisoner’s Dilemma
(PD), where T > R > P > S. In a single round, it is always
best to defect, but cooperation may be rewarded if the game
is repeated. In repeated PD, it is also required that mutual co-
operation is preferred over an equal probability of unilateral
cooperation and defection (2R > T + S); otherwise alternat-
ing between cooperation and defection would lead to a higher
payoff than mutual cooperation.

The repeated PD is usually known as a story of tit-for-
tat (TFT), which won both Axelrod’s tournaments [Axelrod,
1984; Axelrod and Hamilton, 1981]. TFT starts by cooper-
ating, and does whatever the opponent did in the previous
round. It will cooperate if the opponent cooperated, and
will defect if the opponent defected. But if there are er-
roneous moves because of noise (i.e. an intended move is
wrongly performed with a given execution error, referred here
as “noise”), the performance of TFT declines, in two ways:
(i) it cannot correct errors and (ii) a population of TFT players
is undermined by random drift when AllC (always cooperate)
mutants appear (which allows exploiters to grow). Tit-for-
tat is then replaced by generous tit-for-tat (GTFT), a strat-
egy that cooperates if the opponent cooperated in the previ-
ous round, but sometimes cooperates even if the opponent de-
fected (with a fixed probability p > 0) [Nowak and Sigmund,
1992]. GTFT can correct mistakes, but remains suffering the
random drift.

Subsequently, TFT and GTFT were replaced by win-stay-
lose-shift (WSLS) as the winning strategy chosen by evolu-
tion [Nowak and Sigmund, 1993]. WSLS repeats the previous
move whenever it did well, but changes otherwise. WSLS cor-
rects mistakes better than GTFT and does not suffer random
drift. However, it is exploited by pure defectors AllD.

In the following, abusing notations, R, S, T and P are also
referred to as game states (in a single round or interaction).
We also use E (standing for empty) to refer to the game state
having no interaction.

2.2 Plan Corpus Description

We made an assumption that all strategies to be recognized
have the memory size bounded-up by M (M ≥ 0)—i.e. their
decision at the current round is independent of the past rounds
that are at a time distance greater than M .

An action in the corpus is of the form s1...sMξ, where si ∈
{E,R, T, S, P}, 1 ≤ i ≤ M , are the states of the M last in-
teractions, and ξ ∈ {C,D} is the current move. We denote by
ΣM the set of all possible types of action. For example, Σ1 =
{EC,RC, TC, SC, PC,ED,RD, TD, SD,PD}. EC and
ED only occur in the first round, when the move is C and D,
respectively (the state of the round before the first one is E).

This way of encoding actions and the assumption about the
players’ memory size lead to the equivalent assumption that
the action in the current round is independent of the ones in
previous rounds, regardless of the memory size. Furthermore,
this encoding method enables to save the game states without
having to save the co-player’s moves, thus simplifying the
corpus representation, described below.

Let us suppose we have a set of strategies to be recognized.
The plan corpus for this set consists of a set of plan sessions
generated for each strategy in the set. A plan session of a
strategy is a sequence of actions played by that strategy (more
precisely, a player using that strategy) against another player.

3 Intention Recognizers’ Models

3.1 Corpus-based Intention Recognition Model

We can use any corpus-based intention recognition model in
the literature for this work. The most successful works are de-
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Figure 1: Decision making model for different values of α. If the recognized intention is AllC or AllD, intention recognizers (IR) always
defect, regardless of the current states. If it is TFT, IR cooperates when α is large enough, regardless of the current states. If it is
WSLS, if the current states are S or T, IR always defects; otherwise, IR cooperates for large enough α. This model is acquired for a
PD with R = 1, S = −1, T = 2, P = 0. The model has the same behavior for all PD payoff matrixes used in this paper.

scribed in [Blaylock and Allen, 2003; 2004; Armentano and
Amandi, 2009]. Blaylock and Allen use the bigram statistical
model, making the assumption that the current action only de-
pends on the previous one. Armentano and Amandi attempts
to avoid this assumption by using the Variable-Order Markov
Model. In our work, because of the independence of actions,
we can derive an even simpler model than that of Blaylock
and Allen, as described below.

Let Ii, 1 ≤ i ≤ n, be the intentions to be recognized, and
O = {A1, ..., Am} the set of current observed actions. The
intention recognition task is to find the most likely intention
I� ∈ {I1, ..., In} given the current observed actions, i.e.

I� = argmax
Ii:1≤i≤n

P (Ii|A1, ..., Am)

= argmax
Ii:1≤i≤n

P (Ii)
∏m

j=1 P (Aj |Ii, A1, ..., Aj−1)

P (O)

The second equation is obtained by applying the Bayes’ and
then Chain rules. Since the denominator P (O) is a positive
constant, we can ignore it. Then, because of the indepen-
dency amongst actions, we obtain

I� = argmax
Ii:1≤i≤n

P (Ii)

m∏

j=1

P (Aj |Ii) (1)

Note that this model is independent of the memory size M .
Also note that if two intentions are assessed with the same
probability, the model predicts the one with higher priority;
these are set depending on the behavioral attitude of the in-
tention recognizer. For example, in Figure 2, if IR’s co-player
cooperates in the first round, the co-player can be predicted
as either AllC, WSLS or TFT. Being concerned of TFT’s and
WSLS’s retaliation after a defect, WSLS and TFT should have
higher priority than AllC.

3.2 Decision Making Model

We describe how to acquire a decision making model for
an intention recognizer from the plan corpus. As a rational
agent, the intention recognizer chooses to play what would
provide it the greatest expected payoff against the recognized
strategy (intention). Namely, from training data we need to
extract the function θ(s, I):

θ : {E,R, T, S, P}M × {I1, ..., In} → {C,D}
deciding what to play (C or D) given the current state s =
s1...sM , where si ∈ {E,R, T, S, P} (1 ≤ i ≤ M), and the

recognized intention I ∈ {I1, ..., In}. It is done as follows.
From the training plan sessions for each intention we com-
pute the (per-round) average payoff the intention recognizer
would receive with respect to each choice (C or D), for each
possible state s. The choice giving greater payoff is chosen.
Formally, let DS(I) be the set of all sequences of actions (plan
sessions), Sq = A1....Ak (Ai ∈ ΣM , 1 ≤ i ≤ k), generated
for intention I in the corpus and π(Sq, j) the payoff the co-
player of I gets at round j. In the following, if the sequence
in which the payoff being computed is clear from the context,
we ignore it and simply write π(j). Thus,

θ(s, I) = argmax
ξ∈{C,D}

Παξ/Nαξ (2)

where Παξ =
∑

A1...Ak∈DS(I)

∑
Ai=sξ

∑k
j=i α

j−iπ(j);

Nαξ =
∑

A1...Ak∈DS(I)

∑
Ai=sξ

∑k
j=i α

j−i; and a further
round’s payoff is weighted less than a nearer round’s payoff
by a discounting factor 1/α with 0 < α ≤ 1.

Note that, at the first round, there is no information about
the co-player. The intention recognizer cooperates, i.e.
θ(EM , I) = C ∀I ∈ {I1, ..., In}.

Experimental results obtained from this model are pro-
vided in Subsection 4.3 (Figure 1).

4 Experiments and Results

4.1 Plan Corpus Generation

Let us start by generating a plan corpus of four of the most
famous strategies within the framework of repeated games of
cooperation: AllC (always cooperate), AllD (always defect),
TFT and WSLS (see above). Not only these strategies consti-
tute the most used corpus of strategies used in this context, as
most other strategies can be seen as a high-level composition
of the principles enclosed in these strategies. Hence, inten-
tion recognizers map their opponent’s behaviors to the clos-
est strategy that they know and interact accordingly. When
their knowledge is extended to incorporate new strategies, the
models can be revised on the fly. However, here we do not
deal with this issue.

We collect plan sessions of each strategy by playing a ran-
dom choice (C or D) in each round with it. To be more thor-
ough, we can also play all the possible combinations for each
given number of rounds to be played. For example, if it is
10, there will be 1024 (210) combinations—C or D in each
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Figure 2: Interactions of IR with AllC, AllD, TFT, WSLS and another IR, in the absence of noise and α = 1.

AllC AllD TFT WSLS Total

Precision 0.859 0.999 0.818 0.579 0.824

Recall 0.859 0.999 0.818 0.575 0.824
Converg. 0.859 0.999 0.719 0.579 0.805

Table 1: Intention recognition results for each strategy and the total.

round. When noise is present, each combination is played
repeatedly several times.

The training corpus is generated by playing with each strat-
egy all the possible combinations 20 times, and for each num-
ber of rounds from 5 to 10. The testing dataset is generated
by playing a random choice with each strategy in each round,
and also for each number of rounds from 5 to 10. We continue
until obtaining the same number of sessions as in the training
dataset (corpus). Both datasets are generated in presence of
noise (namely, an intended move is wrongly performed with
probability 0.05).

4.2 Intention Recognition Model Evaluation

Evaluation Metrics

For evaluating the intention recognition model, we use three
different metrics. Precision and recall report the number of
correct predictions divided by total predictions and total pre-
diction opportunities, respectively. If the intention recognizer
always makes a prediction (whenever it has the opportunity),
recall is equal to precision. Convergence is a metric that indi-
cates how much time the recognizer took to converge on what
the current user goal/intention was. Formal definitions of the
metrics can be found in [Armentano and Amandi, 2009].
Results

The intention recognition model is acquired using the training
corpus. Table 1 shows the recognition results of the model for
the testing dataset, using the three metrics described above.
We show the recognition result for each strategy, and for the
whole dataset. Given that the training as well as the testing
datasets are generated in presence of noise, the achieved in-
tention recognition performance is quite good. In the next
section, we study the performance of players using this inten-
tion recognition model (called IR) in the large scale popula-
tion setting: what is the role of intention recognition for the
emergence of cooperation?

4.3 Decision Making Model Acquisition

The decision making model (in Subsection 3.2) is acquired
using the training corpus (Figure 1). Figure 2 describes
how IR interacts with other strategies. Except with AllD, IR
plays C in the first two rounds with other strategies: IR al-
ways plays C in the first round, and since others also play C

(thus, the action is EC), they are predicted as a TFT (since
P (EC|ALLC) = P (EC|TFT ) = P (EC|WSLS) �
P (EC|AllD))—therefore, IR plays C in the second round.
Note that here TFT has a higher priority than WSLS, which
has a higher priority than AllC. In the third round, these strate-
gies are all predicted as AllC since they play C in the sec-
ond round (and since P (RC|ALLC) > P (RC|WSLS) >
P (RC|TFT )). Hence, IR plays D in this round. The moves
of these strategies (the other IR plays D, others play C) clas-
sifies IR to be WSLS, and the other three remain to be AllC
(since P (RD|WSLS) > P (RD|TFT ) � P (RD|AllC)).
The two inequalities P (RC|WSLS) > P (RC|TFT ) and
P (RD|WSLS) > P (RD|TFT ), for big enough training
corpus, are easily seen to hold: although TFT and WSLS
equally likely play C (resp., D) after R, since WSLS corrects
mistakes better than TFT, mutual cooperations are more fre-
quent in plan sessions for WSLS. The reaction in the fourth
round classifies TFT to be TFT, IR and WSLS to be WSLS,
and AllC to be AllC; and like that in the subsequent rounds.
From the fifth round on, IR cooperates with WSLS, TFT and
another IR. If the number of rounds to be played is very large,
up to some big round, these three strategies will be recognized
as AllC again (since P (RC|ALLC) > P (RC|WSLS) >
P (RC|TFT )), then the process repeats as from third round.
In our corpus, it only happens after more than 100 rounds.

4.4 Evolutionary Dynamics: Analysis

Consider a population of AllC, AllD and IR players. They
play the repeated PD. Suppose m (m < 100) is the average
number of rounds. In absence of noise, the payoff matrix of
AllC, AllD and IR in m rounds is given by (Figure 2, α = 1)

⎛
⎝

AllC AllD IR

AllC Rm Sm 2R+ S(m− 2)
AllD Tm Pm T + P (m− 1)
IR T (m− 2) + 2R P (m− 1) + S R(m− 1) + P

⎞
⎠

In each round, AllC cooperates. Thus, its co-player would
obtain a reward R if it cooperates and a temptation payoff
T otherwise; Hence, in playing with AllC (first column of the
matrix), another AllC obtains m times of R since it cooperates
in each round; AllD obtains m times of T since it defects in
each round; and IR obtains 2 times of R and (m − 2) times
of T since it cooperates with AllC in the first two rounds and
defects in the remaining rounds (Figure 2). Other elements of
the matrix are computed similarly.

Pairwise comparisons [Nowak, 2006] of the three strate-
gies lead to the conclusions that AllC is dominated by IR and
that IR is an evolutionary stable strategy if R(m − 1) >
T + P (m − 2), which always holds for m ≥ 3. Evolu-
tionarily stable strategy is a strategy which, if adopted by a
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Figure 3: Simulation results for Donor game.

population of players, cannot be invaded by any alternative
strategy that is initially rare [Hofbauer and Sigmund, 1998].
This condition guarantees that once IR dominates the popula-
tion, it becomes stable (for m ≥ 3).

4.5 Evolutionary Simulations

In presence of noise, it was not easy to provide an exact
mathematical analysis. Instead, we will study this case using
computer simulations. For convenience and a clear represen-
tation of simulation results, we use Donor game [Sigmund,
2010]—a famous special case of the PD—where T = b, R =
b− c, P = 0, S = −c, satisfying that b > c > 0.

We start with a well-mixed population of size N, whose
individuals use different strategies. In each round of a gen-
eration, each individual interacts with all others, engaging
in a PD game. As usual, the accumulated payoff from all
interactions emulates the individual fitness (f) or social suc-
cess and the most successful individuals will tend to be im-
itated by others. Such behavioral evolution is implemented
using the pairwise comparison rule [Traulsen et al., 2006]:
after each generation an individual A will adopt the strategy
of a randomly chosen individual B with a probability given
by the Fermi function (from statistical physics) p(A,B) =
(1 + e−β(f(B)−f(A)))−1. The quantity β, which in physics
corresponds to an inverse temperature, controls the intensity
of selection.

The results are shown in Figure 3. All results were obtained
averaging over 100 runs, for m = 10, N = 100 and β = 0.1.
In (a) and (b), we consider populations of three strategies—
AllC, AllD and either IR, TFT or WLSL—equally distributed
at the beginning. We plot the final fraction of IR, TFT and
WSLS. All simulations end up in a homogeneous state (i.e.
having only one type of strategy) in less than 5000 genera-
tions. Our results show that IR prevails TFT and WSLS for
different benefit-to-cost ratios b/c (panel a) and for different

levels of noise (panel b). For a small ratio b/c (around 1.2),
IR starts having winning opportunity, and from around 1.4
the population always converges to the homogeneous state of
IR. For TFT, they are 1.4 and 2.1, respectively. WSLS has
no chance to win for b/c ≤ 2.4. The dashed black curve in
(a) shows that the fraction of cooperation in the population of
AllC, AllD and IR is monotonic to b/c. In (b), our results show
that, in the presence of noise, IR is advantageous when com-
pared with TFT and WSLS. This result is robust to chances on
the value of b/c (the inset of panel b)). In (c), we consider
a more complex setting where the population consists of sev-
eral types of strategies: AllC, AllD, TFT, WSLS, GTFT (prob-
ability of forgiveness of a defect p = 0.5) and IR. Except for
the defective AllD and rational IR, the other strategies are co-
operative. Thus, instead of initially being equally distributed,
we include a higher fraction of AllDs in the initial population.
Namely, each type has 40 individuals, and AllD has 80. IR
always wins (main panel in c)). However, if IR individuals
are removed, AllD is the winner (the inset figure), showing
how IRs work as a catalyzer for cooperation. We have tested
and obtained similar results for larger population sizes. Fi-
nally, in (a) and (b) we show how WSLS performs badly, as
WSLS needs TFTs as a catalyst to perform well [Sigmund,
2010]—which can be observed in (c).

5 Concluding Remarks

The main contribution of this work is that we have shown, for
the first time, that intention recognition promotes the emer-
gence of cooperation. Given the broad spectrum of problems
which are addressed using this cooperative metaphor, our re-
sult indicates how intention recognition can be pivotal in so-
cial dynamics. We have shown that a population with some
fraction of intention recognizers acting rationally can lead to
a stable cooperation. The intention recognition strategy has a
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greater range of benefit-to-cost ratios leading to cooperation
than the most successful existent strategies (TFT, WSLS).

Secondly, our approach of using plan corpus makes a case
for different other AI techniques to work with the problem
of cooperation. In this work, we studied the role of intention
recognition for the emergence of cooperation, but other cog-
nitive abilities are also of great interest and importance, for
example pattern recognition algorithms. Classification algo-
rithms (or supervised learning in general) are clearly a good
candidate. Indeed, intention recognition can be considered as
a classification problem: the sequence of observed actions is
classified into a known strategy. Clustering algorithms (or un-
supervised learning in general) can be used to categorize the
sequences of actions that are not fit with the known strategies.
This is a way to learn about unknown strategies, categorize
them, revise the model to take them into account (and pass
the revised model to the successors).

Moreover, for the intention recognition community, given
the rich set of strategies in the literature [Hofbauer and Sig-
mund, 1998; Sigmund, 2010], we have provided an impor-
tant, easily extendable benchmark for evaluating intention
recognition methods; especially as it is known that there are
only one or two regularly used plan corpora available: the
Linux Plan Corpus and its ancestor Unix Plan Corpus [Blay-
lock and Allen, 2003], and both are of a quite small size.
Lastly, once we have an IR model, we can next employ it
to enrich the corpus, and then iteratively acquire a new gen-
eration IR model, and so forth.
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