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Abstract

Possibilistic logic is a well-known framework for
dealing with uncertainty and reasoning under incon-
sistent knowledge bases. Standard possibilistic logic
expressions are propositional logic formulas associ-
ated with positive real degrees belonging to [0,1].
However, in practice it may be difficult for an expert
to provide exact degrees associated with formulas of
a knowledge base.
This paper proposes a flexible representation of un-
certain information where the weights associated
with formulas are in the form of intervals. We first
study a framework for reasoning with interval-based
possibilistic knowledge bases by extending main
concepts of possibilistic logic such as the ones of
necessity and possibility measures. We then provide
a characterization of an interval-based possibilistic
logic base by means of a concept of compatible stan-
dard possibilistic logic bases. We show that interval-
based possibilistic logic extends possibilistic logic in
the case where all intervals are singletons. Lastly, we
provide computational complexity results of deriv-
ing plausible conclusions from interval-based possi-
bilistic bases and we show that the flexibility in rep-
resenting uncertain information is handled without
extra computational costs.

1 Introduction
Possibilistic logic (e.g. [Dubois et al., 1994; Dubois and Prade,
2004]) is an important framework for representing and reason-
ing with uncertain and inconsistent pieces of information. Un-
certainty is syntactically represented by a set of weighted for-
mulas of the form K = {〈ϕi, αi〉 : i = 1, .., n} where ϕi’s are
propositional formulas and αi’s are real numbers belonging to
[0,1]. The pair 〈ϕi, αi〉 means that ϕi is certain (or important)
to at least a degree αi. An inference machinery has been pro-
posed in [Lang, 2000] to derive plausible conclusions from a
possibilistic knowledge base, which needs log2(m) calls to the
satisfiability test of a set of propositional clauses (SAT), where
m is the number of different degrees used in K. Uncertainty
is also represented at the semantic level by associating a possi-
bility degree with each possible world (or interpretation).

Several extensions of possibilistic logic have been proposed
to replace the unit interval [0, 1] by some complete lattice
or even by a partial pre-order. In [Lafage et al., 1999],
a set of assumptions which supports a formula is used in-
stead of a real positive number. In [Dubois et al., 1992],
the degrees are replaced by a set of positive values (not nec-
essarily in [0, 1]) representing a time frame where the for-
mulas are known to be true. In [Benferhat et al., 2004;
Benferhat and Prade, 2006], a partially ordered extension of
possibilistic logic has been proposed. However, these exten-
sions either increases the computational complexity (e.g. when
dealing with partially pre-ordered information) or fail to gen-
eralize possibilistic logic. For instance, the so-called timed
possibilistic logic proposed in [Dubois et al., 1992] does not
recover standard possibilistic logic when sets of times assigned
to formulas are singletons belonging to [0, 1].

This paper is in the spirit of these extensions of possibilis-
tic logic. It studies theoretical foundations, with an analysis of
computational issues, of interval-based possibilistic logic. The
question addressed in this paper is whether one can extends and
increases the expressive power of standard possibilistic logic,
by representing imprecision regarding uncertainty associated
with formulas, without increasing the computational complex-
ity of the reasoning process.

The framework considered in this paper is the one of
interval-based possibilistic logic. At the syntactic level, pieces
of information are represented by an interval-based possibilis-
tic knowledge base, of the form IK = {〈ϕi, Ii〉 : i = 1, .., n}
where Ii = [αi, βi] is a closed sub-interval of ]0, 1]. The pair
〈ϕi, Ii〉, called an interval-based weighted formula, means that
the weight associated with ϕi is one of the elements in Ii. This
disjunctive interpretation of 〈ϕi, Ii〉 should not be confused
with the conjunctive interpretation (used in [Dubois et al.,
1992]), which corresponds to the fact that ∀αi ∈ Ii, 〈ϕi, αi〉
is true. The conjunctive interpretation of intervals makes sense
when considering temporal information, where 〈ϕi, Ii〉 means
that ϕi is true in all the interval time Ii.

Similarly, the semantic of interval-based possibilistic logic
is an interval-based possibility distribution, where a sub-
interval of [0,1] is assigned to each interpretation. Unlike stan-
dard possibilistic logic, an interval-based possibility distribu-
tion only induces a partial pre-order over the set of interpreta-
tions.

On the basis of a disjunctive interpretation of intervals, we
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propose to view an interval-based knowledge base as a fam-
ily of compatible standard possibilistic knowledge bases. A
compatible possibilistic base is obtained by considering a pos-
sible weight from the interval associated with each formula.
The surprising and interesting result is that reasoning with the
set of all compatible possibilistic bases is equivalent to define
an inconsistency level of an interval-based possibilistic base
that extends the one used in standard possibilistic logic. As a
consequence, we show that reasoning from interval-based pos-
sibilistic knowledge bases is not more expensive than reason-
ing from standard possibilistic bases. Hence, we extend stan-
dard possibilistic logic framework without extra computational
cost. We also provide a semantic characterization where an
interval-based possibilistic knowledge base induces a unique
partial pre-ordering on a set of interpretations.

Section 2 presents a brief refresher on possibilistic logic.
Section 3 and Section 4 study the semantic and syntactic rep-
resentations of interval-based possibilistic logic. Section 5
studies the inference process and its computational issues.
Section 6 proposes alternative consequence relations from
interval-based possibilistic bases by only considering a selec-
tion of compatible possibilistic bases. Section 7 discusses re-
lated works.

2 A brief refresher on possibilistic logic
2.1 Possibility distributions
We consider a finite propositional language L. We denote by
Ω the finite set of interpretations of L and by ω an element
of Ω. A possibility distribution, denoted by π, is a function
from Ω to [0, 1]. π(ω) represents the degree of compatibil-
ity (or consistency) of the interpretation ω with the available
knowledge. π(ω) = 1 means that ω is fully consistent with
available knowledge, while π(ω) = 0 means that ω is impos-
sible. π(ω) > π(ω′) simply means that ω is more compatible
than ω′. A possibility distribution π is said to be normalized if
there exists an interpretation ω such that π(ω) = 1. It is said
to be subnormalized otherwise. Subnormalized possibility dis-
tributions encode inconsistent sets of beliefs.

A possibility distribution allows to define two functions
from L to [0, 1] called possibility and necessity measures, de-
noted by Π and N , and defined by:

Π(ϕ) = max{π(ω) : ω ∈ Ω, ω |= ϕ}, and

N(ϕ) = 1−Π(¬ϕ).
Π(ϕ) measures to what extent the formula ϕ is compatible with
the available knowledge while N(ϕ) measures to what extent
it is entailed.

Given a possibility distribution π encoding some available
knowledge, a formula ϕ is said to be a consequence of π, de-
fined by π |=π ϕ, iff Π(ϕ) > Π(¬ϕ). Intuitively, ϕ is a con-
sequence of π if the best models of ϕ (namely the models of ϕ
having a highest degree) are more plausible (or more preferred)
than the best models of ¬ϕ.

2.2 Possibilistic knowledge bases
A possibilistic formula is a tuple 〈ϕ, α〉 where ϕ is an element
of L and α ∈ (0, 1] is a valuation of ϕ representing N(ϕ).

Note that no formula can be of type 〈ϕ, 0〉 as it brings no in-
formation. A possibilistic base K = {〈ϕi, αi〉, 1 ≤ i ≤ n} is
simply a set of possibilistic formulas.

An important notion that plays a central role in the inference
process in the one of strict α-cut. A strict α-cut, denoted by
Kα, is a set of propositional formulas defined by Kα = {ϕ :
〈ϕ, β〉 ∈ K and β > α}. The strict α-cut is useful to measure
the consistency degree of K defined by Inc(K) = max{α :
Kα is inconsistent or α = 0}.

If Inc(K) = 0 then K is said to be completely consistent.
If a possibilistic base is partially inconsistent, then Inc(K) can
be seen as a threshold below which every formulas is consid-
ered as not enough entrenched to be taken into account in the
inference process. More precisely, we define the notion of core
of knowledge base as composed of formulas with a certainty
degree greater than Inc(K), namely

Core(K) = KInc(K) = {ϕ : 〈ϕ, α〉 ∈ K and α > Inc(K)}
A formula ϕ is a consequence of a possibilistic base K, de-

noted by K �π ϕ, iff Core(K) � ϕ.
A possibilistic knowledge base is one of well-known com-

pact representations of a possibility distribution. Given a pos-
sibilistic base K, we can generate a unique possibility distri-
bution where interpretations ω satisfying all propositional for-
mulas in K have the highest possible degree π(ω) = 1 (since
they are fully consistent), whereas the others are pre-ordered
w.r.t. highest formulas they falsify. More formally:

∀ω ∈ Ω, πK(ω) =

{
1 if ∀〈ϕ, α〉 ∈ K, ω |= ϕ
1−max{αi : 〈ϕi, αi〉 ∈ K,ω � ϕi}

otherwise.

The following completeness and soundness result holds:

K �π ϕ iff πK |=π ϕ.

3 Interval-based possibility distribution
The aim of this section is to study a more general frame-
work, where uncertainty is not encoded with a single neces-
sity value but by means of an interval of possible degrees.
This framework allows to introduce an imprecision on prior-
ities associated with beliefs. We use real number based inter-
vals I = [α, β] ⊆ [0, 1] to encode uncertainty associated with
formulas. We denote by I the set of all intervals over [0, 1].
Operations on intervals Given I1 = [α1, β1] and I2 =
[α2, β2] two intervals, we define the following operations
which will be used in the whole paper, and which will guaran-
tee soundness of results presented in this paper. In particular,
they allow the extension of standard possibilistic logic when
intervals are singletons of the form [α, α].

• Max of intervals: Given a set of intervals Ii = [αi, βi]
M{I1, . . . , In} = [max{α1, . . . , αn},max{β1, . . . , βn}]

• Reverse of an interval: 1	 I1 = [1− β1, 1− α1]

• Comparing intervals: I1 � I2 if β1 < α2

Intuitively, when I1 and I2 are associated with two formulas
ϕ1 and ϕ2, then I1�I2 means that the formula ϕ2 is strictly pre-
ferred to ϕ1. It is clearly a safe (but cautious) interpretation of
preference. Indeed using the comparative relation �, 〈ϕ2, I2〉
is preferred to 〈ϕ1, I1〉 if whatever the degree assigned to ϕ2
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from I2, it will be greater than each degree assigned to ϕ1 from
I1. Other possible definitions of � will be studied in section 6.
Interval-based and compatible possibility distribution An
interval-based possibility distribution, denoted by πI , is a
function from Ω to I. πI(ω) = I means that the possibil-
ity degree of ω is one of the elements of I . πI only induces a
partial pre-ordering between interpretations defined by ω < ω′
(ω′ is more preferred than ω) if and only if πI(ω) � πI(ω′).
Since � is a partial pre-order, an interval-based possibility dis-
tribution only induces a partial pre-order on interpretation. We
interpret an interval-based possibility distribution as a family
of compatible standard possibility distributions defined by:

Definition 1 Let πI be an interval-based possibility distribu-
tion. A possibility distribution π is said to be compatible with
πI iff ∀ω ∈ Ω, π(ω) ∈ πI(ω).

Of course, compatible distributions are not unique. We de-
note by Cmp(πI) the set of all compatible possibility distribu-
tions with πI . An interval-based possibility distribution is said
to be normalized if there exists ω, s.t. πI(ω) = [1, 1]. One
can easily check that πI is normalized if and only if each of its
compatible possibility distribution is also normalized.
Necessity and possibility measures A natural way to define
the counterparts of possibility and necessity measures associ-
ated with a formula ϕ from an interval-based possibility distri-
bution is to use the set of all compatible distributions, namely:

Definition 2 Let πI be an interval-based possibility distribu-
tion and let ϕ be a formula. Then :

ΠI(ϕ) = [ min
π∈Cmp(πI)

Π(ϕ), max
π∈Cmp(πI)

Π(ϕ)], and

NI(ϕ) = [ min
π∈Cmp(πI)

N(ϕ), max
π∈Cmp(πI)

N(ϕ)]

The interval of possibility degrees associated with a formula
represents all possible values that can be obtained from the
set of all compatible distributions. The following proposition
shows that possibility and necessity measures can be equiva-
lently and directly computed using interval-based possibility
distributions.

Proposition 1 Let πI be an interval-based possibility distri-
bution and let ϕ be a formula. Then :

ΠI(ϕ) = M{πI(ω) : ω ∈ Ω, ω |= ϕ} and

NI(ϕ) = 1	ΠI(¬ϕ)
with 1	 and M respectively the reverse and the max opera-
tions on intervals defined above.

One can show that in the particular case where intervals in a
possibility distribution are only consisting of singletons, then
our approach recovers the standard definitions of possibilistic
logic measures. Namely:

Proposition 2 In the case where intervals within πI only con-
sist in singletons (namely for all ω, πI(ω) = [α, α]) then
i) πI has a unique compatible possibility distribution π and
ii) ΠI(ϕ) = [Π(ϕ),Π(ϕ)] and NI(ϕ) = [N(ϕ), N(ϕ)] where
N and Π are standard possibilistic measures.

Definition 3 Given an interval-based possibility distribution
πI , a formula ϕ is said to be accepted or a consequence of πI ,
denoted by πI |=I ϕ, iff ΠI(¬ϕ) �ΠI(ϕ).

It can be shown that Definition 3 can be restated in terms of
compatible possibility distributions, namely:

πI |=I ϕ iff ∀π ∈ Cmp(πI),Π(ϕ) > Π(¬ϕ).
Clearly, at the semantic level, the use of compatible possibil-

ity distributions represents a solid justification of the main con-
cepts of interval-based possibilitic logic: interval-based possi-
bility measure, necessity measure and normalized condition.
Next section shows that this is also the case for syntactic rep-
resentations of interval-based possibilistic logic.

4 Interval-based possibilistic bases
We now study the syntactic representation of interval-based
possibilistic logic. We generalize the notion of a possibilistic
base to an interval-based possibilistic knowledge base.
Definition 4 (Interval-based possibilistic base) An interval-
based possibilistic base, denoted by IK, is a multi-set of for-
mulas associated with intervals:

IK = {〈ϕ, I〉, ϕ ∈ L and I ∈ I}
The intuitive interpretation of 〈ϕ, I〉 is that the certainty de-

gree of ϕ is one of the elements of I = [α, β]. As in the case
of standard possibilistic bases, we do not allow α to be equal
to 0, since only somewhat accepted pieces of information are
explicitly represented. The use of open intervals and intervals
that include 0 is left for further research.

An interval-based possibilistic base IK can be viewed as a
family of standard possibilistic bases called compatible bases.
A possibilistic base K is said to be compatible with IK iff
there exists a bijective function from IK to K such that for
each formula associated with an interval I in IK, the degree of
this formula in K is an element of I . More formally:
Definition 5 (Compatible possibilistic base) A possibilistic
base K is said to be compatible with an interval-based pos-
sibilistic base IK iff there exists a bijection f from IK to K
s.t. f(〈ϕ, [α, β]〉) = 〈ϕ, δ〉 ∈ K s.t. α ≤ δ ≤ β

Namely, compatible possibilistic bases are obtained from
interval-based possibilistic bases by replacing each interval-
based possibilistic formula 〈ϕ, I〉 by a standard possibilistic
formula 〈ϕ, δ〉 where δ ∈ I . Each compatible possibilistic
base is such that K = {〈ϕ, δ〉 : 〈ϕ, I〉 ∈ IK and δ ∈ I}.

We also denote by Cmp(IK) the infinite set of all compati-
ble possibilistic bases associated with an interval-based possi-
bilistic base IK.

Given an interval-based possibilistic base IK, we define two
particular compatible possibilistic bases IKlb and IKub by se-
lecting either lower bounds of intervals (pessimistic point of
view) or upper bounds of intervals (optimistic point of view):

1. IKlb = {〈ϕ, α〉 : 〈ϕ, [α, β]〉 ∈ IK}
2. IKub = {〈ϕ, β〉 : 〈ϕ, [α, β]〉 ∈ IK}

Example 1 We will use the following interval-based possi-
bilistic base to illustrate main concepts of this paper:

IK = {〈a, [.7, .9]〉, 〈a ∧ b, [.55, .8]〉,
〈¬a, [.5, .6]〉, 〈¬b, [.1, .3]〉}
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Table 1 presents five examples of compatible possibilistic
bases. The necessity values associated with formulas in each
of these standard bases belong to the intervals associated with
their respective formulas in IK. The compatible bases K1 and
K5 given in Table 1 respectively correspond to IKlb and IKub.

IK K1 K2 K3 K4 K5

a [.7,.9] .7 .7 .8 .8 .9
a ∧ b [.55,.8] .55 .6 .6 .6 .8
¬a [.5,.6] .5 .55 .56 .58 .6
¬b [.1,.3] .1 .2 .2 .2 .3

Table 1: Examples of compatible bases

4.1 Inference from compatible bases
The inference relation from an interval-based possibilistic for-
mula can be defined from the set of compatible bases. Namely,
a formula ϕ is a plausible conclusion from an interval-based
possibilistic base IK iff it can be deduced from each possi-
bilistic base in Cmp(IK). Namely:

IK �c ϕ iff ∀K ∈ Cmp(IK),K �π ϕ

where �π is defined is section 2.2.

4.2 From interval-based possibilistic bases to
interval-based possibility distributions

As in standard possibilistic logic, an interval-based knowledge
base IK is also a compact representation of an interval-based
possibility distribution πIK . The possibility distribution can be
equivalently obtained using: i) an extension of the definition
of πK given in Section 2.2 to deal with intervals, ii) possibility
distributions associated with compatible bases, and iii) the two
particular compatible bases IKlb and IKub. This is summa-
rized by Definition 6 and Proposition 3

Definition 6 (Interval-based possibility distribution) Let
IK be an interval-based possibilistic base, then:

πIK(ω) = [ min
K∈Cmp(IK)

πK(ω), max
K∈Cmp(IK)

πK(ω)]

where πK is a standard possibilistic distribution associated
with the compatible base K.

Proposition 3 πIK given in Definition 6 is equivalent to:

i) πIK(ω) = [πIKub
(ω), πIKlb

(ω)], namely πIK(ω) is
bounded by weights associated with ω with respect to the
particular bases IKlb and IKub

ii) πIK(ω) =

{
[1, 1] if ∀(ϕ, I) ∈ IK, ω |= ϕ
1−M{I : (ϕ, I) ∈ IK, ω �|= ϕ}

otherwise.

An important result is that inference relation from πIK is
equivalent to consider the inference relation based on all com-
patible bases. Namely, the following completeness and sound-
ness result also holds for interval-based possibilistic logic:

Proposition 4 Let IK be an interval-based possibilistic base
then IK |=c ϕ iff ΠIK(¬ϕ) �ΠIK(ϕ).

ωi ∈ Ω a b πIKlb(ωi) πIKub(ωi) πIK(ωi)
ω0 0 0 .3 .1 [.1,.3]
ω1 0 1 .3 .1 [.1,.3]
ω2 1 0 .45 .2 [.2,.45]
ω3 1 1 .5 .4 [.4,.5]

Table 2: Interval-based π function

Example 2 From Example 1, we have IKlb = {〈a, .7〉,
〈a ∧ b, .55〉, 〈¬a, .5〉, 〈¬b, .1〉} and IKub = {〈a, .9〉,
〈a ∧ b, .8〉, 〈¬a, .6〉, 〈¬b, .3〉}. Table 2 gives the possibility
distribution induced by IKlb and IKub.

From Table 2, we have, for instance, πIK |= a since
ΠIK(¬a) = [.5, .6] �ΠIK(a) = [.7, .9].

5 Computational issues analysis
5.1 Inconsistency degree
The previous section provides the definition of an inference
relation from an interval-based possibilistic belief base using
the concept of compatible bases or its associated interval-based
possibility distribution. This section focuses on computational
issues by proposing a syntactic characterization of inference
relation. It is based on a natural extension of the notion of
inconsistency degree and the notion of core of a possibilistic
base used in standard possibilistic logic (see Section 2).

Again, one way to define the inconsistency associated with
an interval-based possibilistic base is to consider the set of
all inconsistency values associated with each possibilistic base
which is compatible with IK. Namely:
Definition 7 (Interval-based inconsistency degree) Let IK
be an interval-based possibilistic base then:

Inc(IK) = {Inc(K) : K ∈ CmpIK}
The following proposition shows that Inc(IK), the set of

inconsistency degrees associated with all compatible bases, is
an interval. Namely:

Proposition 5 Let IK be an interval-based possibilistic base
then Inc(IK) = [Inc(IKlb), Inc(IKub)].

5.2 Core of an interval-based possibilistic base
The core of IK is simply the set of propositional formulas
whose associated intervals are higher than Inc(IK) with re-
spect to � given in the section 4.1. Namely:

Definition 8 Let IK be an interval-based possibilistic base
then Core(IK) = {ϕ : 〈ϕ, I〉 ∈ IK and Inc(IK) � I}.

Proposition 6 shows that Core(IK) is consistent and is in-
cluded in the core of each compatible base, namely:

Proposition 6 Let IK be an interval-based possibilistic base
then:

i) Core(IK) is consistent;
ii) ∀K ∈ CmpIK , Core(IK) ⊆ Core(K).

Lastly, the following proposition shows that plausible con-
clusions derived from Core(IK) are the same as the ones ob-
tained from the whole set of compatible bases. As a corollary
they are also the same as the ones provided at the semantical
level.
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Proposition 7 Let IK be an interval-based possibilistic base
then ∀ψ ∈ L:

IK |=c ψ iff Core(IK) � ψ iff ∀K ∈ CmpIK , Core(K) � ψ

Example 3 From Example 1, we have IKlb = {〈a, .7〉,
〈a ∧ b, .55〉, 〈¬a, .5〉, 〈¬b, .1〉} and IKub = {〈a, .9〉,
〈a ∧ b, .8〉, 〈¬a, .6〉, 〈¬b, .3〉}. Hence, we obtain Inc(IKlb) =
.5 and Inc(IKub) = .6 and then Inc(IK) = [.5, .6].

Thus, Core(IK) = {a}. One can check that conclu-
sions obtained in Example 3 are equivalent to the ones using
Core(IK).

5.3 Computational complexity
This subsection analyses computational complexity of our in-
ference process. Recall that the decision problem ”Is a for-
mula ψ a consequence of a standard possibilistic base?” is
Δ2

p-complete [Nebel, 1994]. Since when intervals are single-
tons the inference from interval-based possibilistic bases corre-
sponds to the one of standard possibilistic logic, our inference
relation is at least in Δ2

p. In fact, it is Δ2
p − complete:

Proposition 8 The decision problem ”Is a formula ψ a con-
sequence of an interval-based possibilistic base?” is a Δ2

p-
complete problem.

Proposition 8 shows that interval-based possibilistic bases
offer more flexibility for representing uncertain information
without extra computational cost. The computational com-
plexity of reasoning from such bases indeed is the same order
of magnitude as the one obtained from standard possibilistic
bases.

Now we explicit an algorithm (Algorithm 1) which is in
O(log2(n) ∗ SAT ) where SAT is the propositional satisfia-
bility test and n = max(mlb,mub), where mlb (resp. mub)
is the number of different degrees in IKlb (resp. IKub). The
algorithm first computes Core(IK). This is done by determin-
ing IKlb and IKub and their associated inconsistency degrees
(Steps 1-5). These steps need 2.log2(n) calls to a SAT oracle.
Steps 6-10 compute Core(IK) from IK by considering propo-
sitional formulas ϕ such that their associated interval is greater
than Inc(IK). This step is in O(|IK|) where |IK| is the num-
ber of formulas in IK. The last step needs one call to SAT to
check whether ψ is a consequence of Core(IK). Hence, deriv-
ing plausible conclusions can be achieved in O(log2(N)) calls
to the SAT problem.

6 Other interpretations of intervals
In the previous section, we considered a safe interpretation of
interval-based possibilistic knowledge bases (resp. possibility
distributions) by considering all possible compatible knowl-
edge bases (resp. possibilistic distributions). This leads to a
cautious but safe inference relation based on Core(IK) which
uses the comparative relation �. The comparative relation �
was used in order to recover the inference from all standard
compatible bases. The question considered in this section is
whether one may go beyond this inference relation by consid-
ering other comparative relations rather than the one used in
the previous section, namely �. We recall that I � I ′ holds
iff every element of I ′ is preferred to every element of I . Of

Algorithm 1 Computing inferences for interval-based possi-
bilistic knowledge bases
Input: IK, ψ
Output: True if ψ is a consequence of IK. False otherwise.
1: Compute IKlb

2: Compute Inc(IKlb)
3: Compute IKub

4: Compute Inc(IKub)
5: Inc(IK) ← [Inc(IKlb), Inc(IKub)]
6: Core(IK) ← ∅
7: for all 〈ϕ, I〉 ∈ IK do
8: if Inc(IK) � I then
9: Core(IK) ← Core(IK) ∪ {ϕ}

10: end if
11: end for
12: return CoreIK 	 ψ

course, the obtained inference relations should also extend pos-
sibilistic logic inference when intervals are singletons. In this
section, we propose to consider alternative definitions of pref-
erence and their consequences in terms of inferences in our
framework.

Definition 9 Let I = [α, β] and I ′ = [α′, β′] be two intervals
in I. Then the following pre-orders are defined by:

• I �1 I
′ iff α < α′ and β < β′;

• I �2 I
′ iff α < α′;

• I �3 I
′ iff β < β′.

Intuitively, I �1 I
′ can be understand as ”there exists an el-

ement in I ′ which is preferred to any element of I”. I �2 I ′
can be understand as ”the least element in I is less preferred
than the least element in I ′”. I �3 I

′ is dual to �2 and can be
understand as ”the best element in I is less preferred than the
best element in I ′”.

Clearly, the following statements hold: (i) if I � I ′ then I �1
I ′; (ii) if I �1 I ′ then I �2 I ′ and I �3 I ′; (iii) if I �2 I ′ and
I �3 I

′ then I �1 I
′.

These comparative relations give birth to new inferences
in the interval-based possibilistic framework by replacing in
Definition 8 � by �1, �2 or �3. The obtained definitions are
denoted by Core�i(IK) and their associated inference rela-
tions, denoted by �i, are defined by: ∀ϕ ∈ L, IK �i ϕ iff
Core�i(IK) � ϕ

Example 4 Let IK2 = {〈a, [.4, .9]〉, 〈¬a ∨ ¬b, [.2, .7]〉,
〈¬a ∨ b, [.3, .5]〉} be the interval-based possibilistic base rep-
resented by Figure 1.

a

¬a ∨ ¬b

¬a ∨ b

Inc(IK2)0 1

Figure 1: Intervals associated with the formulas of IK2

The inconsistency degree of IK2 is Inc(IK2) = [.2, .5]. In
this example, we have: using �, we have Core(IK2) = ∅;
using �1, IK2 �1 ψ iff Core�1

(IK2) = {a} � ψ; using �2,
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IK2 �2 ψ iff Core�2(IK2) = {a,¬a ∨ b} � ψ; using �3,
IK2 �3 ψ iff Core�3(IK2) = {a,¬a ∨ ¬b} � ψ.

The following propositions summarizes main results of our
inference relations:

Proposition 9 Let IK be an interval-based possibilistic base

• For all �i, Core�i(IK) is consistent.

• For all i = 1, ... , 3, the decision problem ”Is a formula ϕ
a consequence of a standard possibilistic base IK using
�i?” is Δ2

p-complete.

• If intervals are singletons, then for all �i,�i is equivalent
to �c. Namely, �i extends standard possibilistic inference.

• For all �i,�c is more cautious than �i.

• �1 is more cautious than �2 and �3.

However, �2 is incomparable with �3, as shown by Example 4
where IK2 �2 a ∧ b and IK2 �3 a ∧ ¬b.

7 Related works
In [Dubois et al., 1992], it has been proposed an extension of
possibilistic logic in order to deal with temporal information.
Formulas are valued with finite sets of values whose bound-
aries are any real number (they can be interval and they are
not necessarily in [0, 1]) representing the time frame where the
formula is certainly true, i.e. the necessity value is true for
every element of the intervals. The underpinning semantics is
different from the present work. It is thus dual to our interpre-
tation, where we used disjunctive interpretation by consider-
ing only one element in the interval. Therefore, the tools and
all operators used in [Dubois et al., 1992] (such as the inter-
section and the union operators) differ from the ones used in
this paper. The difference between the two approaches is ex-
plained by different interpretations associated with intervals.
Their framework makes sense for reasoning with temporal in-
formation where our framework is more oriented to situations
where the uncertainty rank is imprecise. However, an impor-
tant difference is that our approach extends the standard possi-
bilistic logic while the proposal made in [Dubois et al., 1992]
does not. Indeed, for instance if ω1 and ω2 are the only models
of ϕ, and if π(ω1) = [.3, .3], π(ω2) = [.4, .4] (namely single-
tons), then with our approach we get Π(ϕ) = [.4, .4], while
in [Dubois et al., 1992] we get Π(ϕ) = [.3, .4] and we are no
longer in standard possibilistic logic.

The logic of supporters proposed by Lafage and al. [Lafage
et al., 1999] is very close to the one given in [Dubois et al.,
1992]. The main difference consists again in the meaning of
intervals: they are considered as justification (in the sense of
ATMs) of a formula. This approach also has a conjunctive
interpretation.

In a recent paper, Marquis and Öztürk [Marquis and Öztürk,
2009] propose to encode preferences by means of formu-
las weighted by intervals. The intervals do not represent
a certainty degree associated with the formula but a knowl-
edge about some numerical value. For example, a formula
〈height,≥, 6,≤, 7〉 represents the belief that the value height
is included between 6 and 7. The aim of their paper is to
compactly encode interval orders on interpretations using these

weighted formulas. They study some families of aggregation
operators, provide several complexity results on dominance
and consistency useful in decision theory and deal with prefer-
ences. Their work is dedicated to decision problems and they
do not investigate the inference problems.

Conclusion
This paper proposed foundations of reasoning with interval-
based possibilistic bases that extends the standard possibilistic
framework in the case where all intervals are singletons. The
flexibility in representing uncertain information is done using
the concept of compatible bases. We showed that possibility
measures, necessity measures and possibility distributions can
be conveniently computed in the interval-based possibilistic
framework without extra computational cost. The deduction
problem in the interval-based context is Δ2

p-complete.
This paper also provided three additional consequence rela-

tions that are only based on selection of compatible possibility
distributions. Finally, when intervals are singletons, all conse-
quence relations presented in this paper collapse with the one
used in standard possibilistic logic. A future work is to study
the fusion and revision process in the interval-based possibilis-
tic logic framework.
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