
The Increasing Cost Tree Search for Optimal Multi-Agent Pathfinding

Guni Sharon Roni Stern Meir Goldenberg Ariel Felner

Information Systems Engineering Departement
Deutsche Telekom Laboratories

Ben-Gurion University
Be’er-Sheva, Israel

{gunisharon,roni.stern}@gmail.com, mgoldenbe@yahoo.ca, felner@bgu.ac.il

Abstract

We address the problem of optimal path finding for mul-
tiple agents where agents must not collide and their to-
tal travel cost should be minimized. Previous work used
traditional single-agent search variants of the A* algo-
rithm. We present a novel formalization for this prob-
lem which includes a search tree called the increasing
cost tree (ICT) and a corresponding search algorithm
that finds optimal solutions. We analyze this new for-
malization and compare it to the previous state-of-the-art
A*-based approach. Experimental results on various do-
mains show the benefits and drawbacks of this approach.
A speedup of up to 3 orders of magnitude was obtained
in a number of cases.

1 Introduction
The multi-agent path finding (MAPF) problem consists of
a graph and a number of agents. For each agent, a path is
needed from its initial location to its destination without col-
liding into obstacles or other moving agents. The task is to
minimize a cumulative cost function (e.g., total time steps).
MAPF has practical applications in robotics, video games,
vehicle routing etc. [Silver, 2005; Dresner and Stone, 2008].
In its general form, MAPF is NP-complete, because it is a
generalization of the sliding tile puzzle which is known to be
NP-complete [Ratner and Warrnuth, 1986].

Previous work on MAPF falls into two classes. The first
is called the decoupled approach where paths are planned for
each agent separately. A prominent example is HCA* [Sil-
ver, 2005]. Agents are ordered in some order. The path found
for agent ai (location and time) is written (reserved) into a
global reservation table. To resolve conflicts, search for suc-
cessive agents must avoid locations and time points that were
reserved by previous agents. A similar approach was used
for guiding cars that need to cross traffic junctions [Dres-
ner and Stone, 2008]. Other decoupled approaches establish
flow restrictions similar to traffic laws, directing agents at a
given location to move only in a designated direction [Wang
and Botea, 2008; Jansen and Sturtevant, 2008]. Decoupled
approaches run relatively fast, but optimality and even com-
pleteness are not always guaranteed.

The focus of this paper is on the second class of meth-
ods for solving MAPF called the global search approach,
where MAPF is formalized as a global, single-agent search
problem [Ryan, 2008; Standley, 2010] and is solved by an

A*-based search. Global searches usually return the opti-
mal solution but may run for a long time. We introduce a
novel two-level formalization that optimally solves MAPF.
The high-level performs a search on a new search tree called
increasing cost tree (ICT). Each node in the ICT consists of
a k-vector [C1, C2, . . . Ck] which represents all possible so-
lutions in which the cost of the individual path of each agent
ai is exactly Ci. The low-level performs a goal test on each
of these tree nodes. We denote our 2-level algorithm as ICT-
search (ICTS). We compare ICTS to the traditional A*-based
search formalization and show its advantages and drawbacks.
Experimental results on a number of domains show that ICTS
outperforms the previous state-of-the-art A* approach by up
to three orders of magnitude in many cases.

2 Problem definition and terminology

We define our variant of the problem which is commonly used
and some basic terminology. Nevertheless, most algorithms
(including our own) work for other existing variants too.

Input: The input to MAPF is: (1) A graph G(V,E). (2) k
agents labeled a1, a2 . . . ak. Every agent ai is coupled with a
start and goal vertices - starti and goali.

Initially, (at time point t0) every agent ai is located in loca-
tion starti. Between successive time points, each agent can
perform a move action to a neighboring location or can wait
(stay idle) at its current location. The main constraint is that
each vertex can be occupied by at most one agent at a given
time. In addition, if a and b are neighboring vertices, two dif-
ferent agents cannot simultaneously traverse the connecting
edge in opposite directions (from a to b and from b to a). A
conflict is a case where one of the constraints is violated. We
allow agents to follow each other, i.e., agent ai could move
from x to y if at the same time, agent aj moves from y to z.

The task is to find a sequence of {move, wait} actions for
each agent such that each agent will be located in its goal
position while aiming to minimize a global cost function.

Cost function: We use the common cost function which is
the summation (over all agents) of the number of time steps
required to reach the goal location [Dresner and Stone, 2008;
Standley, 2010]. Therefore, both move and wait actions cost
1.0. We denote the cost of the optimal solution by C∗. Fig-
ure 2(i) (on page 3) shows an example 2-agent MAPF prob-
lem. Agent a1 has to go from a to f while agent a2 has to go
from b to d. Both agents have a path of length 2. However,

662

Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence

these paths have a conflict, as both of them have state c at the
same time point. One of these agents must wait one time step
or take a detour. Therefore, C∗ = 5 in our case.1

3 Previous work on optimal solution

Previous work on optimal MAPF formalized the problem
as a global single-agent search as follows. The states are
the different ways to place k agents into V vertices with-
out conflicts. At the start (goal) state agent ai is located at
vertex starti (goali). Operators between states are all the
non-conflicting actions (including wait) that all agents have.
Let bbase be the branching factor for a single agent. The
global branching factor is b = O((bbase)

k). All (bbase)
k

combinations of actions should be considered and only those
with no conflicts are legal neighbors. Any A*-based algo-
rithm can then be used to solve the problem. [Ryan, 2008;
2010] exploited special structures of local neighborhoods
(such as stacks, halls, cliques etc.) to reduce the search space.

Standley’s improvements: Recently, [Standley, 2010]
suggested two improvements for solving MAPF with A*:

(1) Operator Decomposition (OD): OD aims at reducing
b. This is done by introducing intermediate states between
the regular states. Intermediate states are generated by apply-
ing an operator to a single agent only. This helps in pruning
misleading directions at the intermediate stage without con-
sidering moves of all of the agents (in a regular state).

(2) Independence Detection (ID): Two groups of agents
are independent if there is an optimal solution for each group
such that the two solutions do not conflict. The basic idea
of ID is to divide the agents into independent groups. Ini-
tially each agent is placed in its own group. Shortest paths
are found for each group separately. The resulting paths of
all groups are simultaneously performed until a conflict oc-
curs between two (or more) groups. Then, all agents in the
conflicting groups are unified into a new group. Whenever a
new group of k ≥ 1 agents is formed, this new k-agent prob-
lem is solved optimally by an A*-based search. This process
is repeated until no conflicts between groups occur. Stand-
ley observed that since the problem is exponential in k, the
A*-search of the largest group dominates the running time
of solving the entire problem, as all other searches involve
smaller groups (see [Standley, 2010] for more details on ID).

Standley used a common heuristic function which we de-
note as the sum of individual costs heuristic (SIC). For each
agent ai we assume that no other agents exist and precalcu-
late its optimal individual path cost. We then sum these costs.
The SIC heuristic for the problem in Figure 2(i) is 2+ 2 = 4.

Standley compared his algorithm (A*+OD+ID) to a ba-
sic implementation of A* and showed spectacular speedups.
We therefore compare our approach to A*+OD+ID. The ID
framework might be relevant for other algorithms that solve
MAPF. It is relevant for ICTS and we ran ICTS on top of the
ID framework as detailed below.

We now turn to present our two-level ICTS algorithm.
1Another possible cost function is the total time elapsed until the

last agent reaches its destination. This would be 3 in our case. Also,
one might only consider move actions but not wait actions. The tile
puzzles are an example for this.

10,10,10

10,10,1210,11,1110,12,1011,10,1111,11,1012,10,10

10,10,1110,11,1011,10,10

Figure 1: ICT for three agents.

4 High-level: increasing cost tree (ICT)

The classic global search approach spans a search tree based
on the possible locations of each of the agents. Our new for-
malization is conceptually different. It is based on the un-
derstanding that a complete solution for the entire problem
is built from individual paths, one for each agent. We intro-
duce a new search tree called the increasing cost tree (ICT).
In ICT, every node s consists of a k-vector of individual path
costs, s = [C1, C2, . . . Ck] one cost per agent. Node s repre-
sents all possible complete solutions in which the cost of the
individual path of agent ai is exactly Ci.

The root of ICT is [opt1, opt2, ..., optk], where opti is the
cost of the optimal individual path for agent i which assumes
that no other agents exist. A child is generated by adding a
unit cost to one of the agents. An ICT node [C1, .., Ck] is
a goal node if there is a non-conflicting complete solution
such that the cost of the individual path for agent ai is exactly
Ci. Figure 1 shows an example of an ICT with three agents,
all with individual optimal path costs of 10. Dashed lines
lead to duplicate children which can be pruned. The total
cost of node s is C1 + C2 + . . . + Ck. For the root this is
exactly the SIC heuristic of the start state, i.e., SIC(start) =
opti+opt2+. . . optk. Nodes of the same level of ICT have the
same total cost. It is easy to see that a breadth-first search of
ICT will find the optimal solution, given a goal test function.

The depth of the optimal goal node in ICT is denoted by
Δ. Δ equals the difference between the cost of the opti-
mal complete solution (C∗) and the cost of the root (i.e.,
Δ = C∗ − (opti + opt2 + . . . optk)). The branching factor
of ICT is exactly k (before pruning duplicates) and therefore
the number of nodes in ICT is O(kΔ).2 Thus, the size of
ICT is exponential in Δ but not in k. For example, problems
where the agents can reach their goal without conflicts will
have Δ = 0, regardless of the number of agents.

The high-level searches the ICT with breadth-first search.
For each node, the low-level determines whether it is a goal.

5 Low-level: goal test on an ICT node

A general approach to check whether an ICT node s =
[C1, C2, . . . , Ck] is a goal would be: (1) For every agent
ai, enumerate all the possible individual paths with cost Ci.
(2) Iterate over all possible ways to combine individual paths
with these costs until a complete solution is found. Next, we
introduce an effective algorithm for doing this.

2More accurately, the exact number of nodes at level i in the ICT
is the number of ways to distribute i balls (actions) to k ordered

buckets (agents). For the entire ICT this is
Δ∑

i=0

(
k + i− 1

k − 1

)
.

663

’

f dd

s 1

2

e

d

a c f

b
s

2

(iii)(ii)

2

1MDD

c

a

c

f

MDD

a
1

3

ab

e c

f(i)

g

1g

b

c

d

2
2
2

c

b

MDD MDD 2

Figure 2: (i) 2-agent problem (ii) MDD1 (iii) MDD2

5.1 Compact paths representation with MDDs

The number of different paths of length Ci for agent ai can
be exponential. We suggest to store these paths in a special
compact data structure called multi-value decision diagram
(MDD) [Srinivasan et al., 1990]. MDDs are DAGs which
generalize Binary Decision Diagrams (BDDs) by allowing
more than two choices for every decision node. Let MDDc

i
be the MDD for agent ai which stores all possible paths of
cost c. MDDc

i has a single source node at level 0 and a
single sink node at level c. Every node at depth t of MDDc

i
corresponds to a possible location of ai at time t, that is on a
path of cost c from starti to goali.

Figure 2(ii,iii) illustrates MDD2
1 and MDD3

1 for agent a1,
and MDD2

2 for agent a2. Note that while the number of paths
of cost c might be exponential in c, the size of MDDc

i is at
most |V | × c. For example, MDD3

1 includes 5 possible dif-
ferent paths of cost 3. Building the MDD is very easy. We
perform a breadth-first search from the start location of agent
ai down to depth c and only store the partial DAG which
starts at start(i) and ends at goal(i) at depth c. Furthermore,
MDDc

i can be reused to build MDDc+1
i . We use the term

MDDc
i (x, t) to denote the node in MDDc

i that corresponds
to location x at time t. We use the term MDDi when the
depth of the MDD is not important for the discussion.

Goal test with MDDs. A goal test is now performed
as follows. For every ICT node we build the corresponding
MDD for each of the agents. Then, we need to find a set
of paths, one from each MDD that do not conflict with each
other. For our example, the high-level starts with the root ICT
node [2, 2]. MDD2

1 and MDD2
2 have a conflict as they both

have state c at level 1. The ICT root node is therefore declared
as non-goal by the low-level. Next, the high-level tries ICT
node [3, 2]. Now MDD3

1 and MDD2
2 have non-conflicting

complete solutions. For example, < a − b − c − f > for a1
and < b, c, d > for a2. Therefore, this node is declared as a
goal node by the low level and the solution cost 5 is returned.

Next, we present an efficient algorithm that iterates over
the MDDs to find whether a non-conflicting set of paths exist.
We begin with the 2-agent case and then generalize to k > 2.

5.2 2-agent MDD and its search space

Consider two agents ai and aj located in their start posi-
tions. Define the global 2-agent search space as the state
space spanned by moving these two agents simultaneously to
all possible directions as in any centralized A*-based search.
Now consider their MDDs, MDDc

i and MDDd
j , which cor-

(ii)

1MDD*
a

c

f,d

c,de,d

a,cb,c

a,b
3MDD 12

f

f

ce

b a

(i)

3

Figure 3: (i) MDD12 (ii) unfolded MDD∗31.

respond to a given ICT node [c, d].3
The cross product of the MDDs spans a 2-agent search

space or equivalently, a 2-agent-MDD denoted as MDDij

for agents ai and aj . MDDij is a 2-agent search space which
is a subset of the global 2-agent search space, because we are
constrained to only consider moves according to edges of the
single agent MDDs and cannot go in any possible direction.

MDDij is formally defined as follows. A node n =
MDDij([xi, xj], t) includes a pair of locations [xi, xj] for
ai and aj at time t. It is a unification of the two MDD
nodes MDDi(xi, t) and MDDj(xj , t). The source node
MDDij([xi, xj], 0) is the unification of the two source
nodes MDDi(xi, 0) and MDDj(xj , 0). Consider node
MDDij([xi, xj], t). The cross product of the children of
MDDi(xi, t) and MDDj(xj , t) should be examined and
only non-conflicting pairs are added as its children. In
other words, we look at all pair of nodes MDDi(x̄i, t +
1) and MDDj(x̄j ,t + 1) such that x̄i and x̄k are chil-
dren of xi and xj , respectively. If x̄i and x̄j do not
conflict4 then MDDij([x̄i, x̄j], t + 1) becomes a child of
MDDij([xi, xj], t) in MDDij . There are at most |V | nodes
for each level t in the single agent MDDs. Thus, the size of
the 2-agent-MDD of height c is at most c× |V |2.

One can actually build and store MDDij by performing
a search (e.g. breadth-first search) over the two single agent
MDDs and unifying the relevant nodes. Duplicate nodes at
level t can be merged into one copy but we must add an edge
for each parent at level t− 1. Figure 3(i) shows how MDD3

1

and MDD2′
2 were merged into a 2-agent-MDD, MDD3

12.
Low-level search. Only one node is possible at level

c (the height of the MDDs) - MDDc
ij([goali, goalj], c). A

path to it represents a solution to the 2-agent problem. A goal
test for an ICT node therefore performs a search on the search
space associated with MDDc

ij . This search is called the low
level search. Once a node at level c is found, true is re-
turned. If the entire search space of MDDc

ij was scanned and
no node at level c exists, false is returned. This means that
there is no way to unify two paths from the two MDDs, and
deadends were reached in MDDc

ij before arriving at level c.
Generalization for k > 2 agents is straightforward. A node

in a k-agent-MDD, n = MDD[k](x[k], t), includes k loca-

3Without loss of generality we can assume that c = d. Other-
wise, if c > d a path of (c − d) dummy goal nodes can be added to
the sink node of MDDd

j to get an equivalent MDD, MDDc
j . Fig-

ure 2(iii) also shows MDD2′
2 where a dummy edge (with node d)

was added to the sink node of MDD2
2 .

4They conflict if x̄i = x̄j or if (xi = x̄j and xj = x̄i), in which
case they are traversing the same edge in an opposite direction.

664

Algorithm 1: The ICT-search algorithm
Input: (k, n) MAPF

1 Build the root of the ICT
2 foreach ICT node in a breadth-first manner do
3 foreach agent ai do
4 Build the corresponding MDDi

5 end
6 [foreach pair of agents ai, aj do
7 perform pairwise search //optional
8 if pairwise search failed then
9 break //Conflict found. Next ICT node

10 end

11 end
12] search the k-agent MDD // low-level search
13 if goal node was found then
14 return Solution
15 end

16 end

tions of the k agents at time t in the vector x[k]. It is a unifi-
cation of k non-conflicting single-agent MDD nodes of level
t. The size of MDD[k] is O(c× |V |k). The low-level search
is performed on the search space associated with MDD[k].

ICTS is summarized in Algorithm 1. The high-level
searches each node of the ICT (Line 2). Then, the low-
level searches the corresponding k-agent MDD (Lines 12 -
15). Lines in square brackets (6-11) are optional and will be
discussed in Section 8 as a possible enhancement.

6 Theoretical analysis

This section briefly compares the amount of effort done by
ICTS to that of A* with the SIC heuristic. We note again that
the cost of the root node of the ICT tree is exactly the SIC
heuristic of the initial state of A*.

Let X be the number of nodes expanded by A*, i.e., X is
the number of nodes with f ≤ C∗. We would like to measure
the extra work of both algorithms with respect to X .

We begin with A*. While A* expands X nodes, it gen-
erates (= adds to the open list) many more. When expand-
ing a non-goal node, A* will also generate all its b chil-
dren.5 Therefore, the total number of nodes generated by
A* is X × b. Recall that b = O((bbase)

k). Therefore, A*
will visit more nodes than X by a factor which is exponen-
tial in k.6 The main extra work of A* with respect to X is
that nodes with f > C∗ might be generated as children of
nodes with f = C∗ which are expanded. A* will add these
generated nodes to the open list but will never expand them.

Now, consider the two-level ICTS algorithm.
Proposition: Let n = [C1, .., Ck] be an ICT node such

that C1 + .. + Ck ≤ C∗. Then, the low-level search on the

5To be precise, A* has more overhead. It first considers all the
potential children and selects only the legal ones. If duplicate detec-
tion is performed, duplicate legal nodes are also discarded.

6This is true even if OD was applied on top of A*. OD reduced
b (of regular states) but it is still exponential because each of the k
agents can have many moves that do not increase the f -value.

k k’ Δ (bbase)
k′

k′Δ A* ICTS
3x3 grid

2 1.1 0.1 5 1 0 0
3 1.4 0.4 10 1 0 0
4 2.5 0.9 54 2 5 2
5 3.2 1.4 167 5 7 5
6 4.7 2.8 1,867 80 59 49
7 6.4 5.8 28,221 49,260 3,092 6,625
8 7.6 8.9 205,197 71,921,253 4,679 68,859

8x8 grid
2 1.0 0.0 5 1.0 0 0
4 1.5 0.1 11 1.0 1 0
6 1.5 0.2 18 1.1 3 0
8 2.8 0.5 85 1.7 108 3

10 3.5 0.6 284 2.1 5,915 102
12 5.4 0.8 5,769 3.8 8,765 349

Table 1: Runtime in ms. No obstacles.

relevant k-MDD search space will visit at most X nodes.
Proof: The k-MDD search space of n contains only nodes

where the cost (f -value) of agent ai is at most Ci. Thus,
every node in the k-MDD search space has f -value ≤ C∗.
There are at most X such nodes.7 � Nodes outside the k-
MDD search space are never visited. This means that no node
with cost larger than C∗ will ever be considered by ICTS.
This is a strong advantage over A*. However, the extra work
(over X) of ICTS comes from the fact that there are many
ICT nodes and each of them can visit up to X nodes. Recall
that the number of ICT nodes is bounded by kΔ. Therefore,
the number of nodes visited by ICTS is O(X×kΔ) while the
number of nodes visited by A* is O(X × (bbase)

k).
Consequently, when k increases it hurts the performance of

A* while when Δ increases it hurts the performance of ICTS.
This is backed up in our experimental results below.

7 Experimental results

We compared ICTS to the state-of-the-art A* variant of
[Standley, 2010], i.e., to A*+OD+ID with SIC (denoted here-
after as A*). The low-level search on the k-MDD search
space was performed by DFS with transpositions table for
pruning duplicates. Similar to A*, ICTS was also built on top
of the ID framework. That is, the general framework of ID
was activated (see section 3). When a group of conflicting
agents was formed, either A* or ICTS was activated.

Our first experiment is on a 4-connected 3x3 grid with no
obstacles where we varied the number of agents from 2 to 8.
Table 1(top) presents the results averaged over 50 random in-
stances. bbase was set to 5 to account for four cardinal moves
plus wait. The k column presents the number of agents. The
k′ column presents the average effective number of agents,
i.e., the number of agents in the largest independent subgroup
found by ID. In practice, both A* and ICTS were activated
on k′ agents and not on k. The A* and ICTS columns present
the average runtime in milliseconds.The results confirm our
theoretical analysis above. For k ≤ 6 we see that bk

′
> k′Δ,

7This is an upper bound. Searches in ICT nodes at level l will
visit no more than the number of nodes with f = SIC(root) + l.
For depth Δ this equals C∗. Furthermore, one can potentially reuse
information from MDDs across ICT nodes.

665

0
5

10
15
20
25
30
35
40
45
50

2 4 6 8 10 12 14 16 18 20

In
st

an
ce

s
so

lv
ed

number of agents

A*

ICTS

ICTS+Pairs

Figure 4: Success rate on an 8x8 grid with no obstacles.

and ICTS is faster than A*. For k ≥ 7, bk
′
< k′Δ and the per-

formance shifts. A* clearly outperforms ICTS for 8 agents.
The major cause for large Δ is the existence of many con-

flicts. Increasing k can potentially increase the number of
conflicts but this depends on the density of agents and of
obstacles. When the density is low, adding another agent
will add relatively few conflicts and Δ will increase slightly.
When the density is high adding another agent will have a
much stronger effect. This is shown in the Δ column. Mov-
ing from 7 to 8 agents increases Δ much more than from 2
to 3 agents. The size of the graph has direct influence on the
density. For a given k, small graphs are denser and will have
more conflicts (and thus larger Δ) than large graphs.

To demonstrate this, our second experiment is on a larger
grid of size 8x8. We set a time limit of 5 minutes. If an algo-
rithm could not solve an instance within the time limit it was
halted and fail was returned. Figure 4 presents the number of
instances (out of 50 random instances) solved by each algo-
rithm within the 5-minutes limit. The curve “ICTS+P” will
be described in Section 8. Clearly, as the number of agents
increases, ICTS is able to solve more instances than A*. Ta-
ble 1(bottom) presents the average runtime in milliseconds
for the instances that were solved by both algorithms within
the limit. Here too, the tradeoff between kΔ and bk can be
observed. ICTS outperforms A* and for 12 agents (where
k′Δ = 3.8 but bk

′
= 5769) ICTS is 25 times faster.

Limitations of ICTS: When k is very small and Δ is very
large, ICTS will be extremely inefficient compared to A*.
Figure 5 presents such a pathological example. Agents a and
b only need to swap their positions (linear conflict) and thus
the SIC heuristic is 2. However, both agents must travel all
the way to the end of the corridor to swap their relative po-
sitions. The cost of the optimal path is 74 (37 time steps for
each agent). bbase ≤ 3 along the corridor (left, right, wait)
and thus (bbase)

k ≤ 9. A* expanded X = 852 nodes, gen-
erated 2,367 nodes (b ≈ 4 due to illegal and duplicate nodes)
and solved this problem relatively quickly in 51ms. Δ = 72
and as a result, 2,665 ICT nodes were generated and ICTS
solve the problem in 36,688ms.

8 Pairwise abstractions
As shown above, the low-level search for k agents is exponen-
tial in k. However, in many cases, we can avoid the low-level
search by first considering subproblems of pairs of agents.
Consider a k-agent MAPF and a corresponding ICT node
s = {C1, C2, . . . Ck}. Now, consider the abstract problem

ba
Figure 5: ICTS pathology.

of only moving a pair of agents ai and aj from their start
locations to their goal locations at costs Ci and Cj , while ig-
noring the existence of other agents. Solving this problem
is actually searching the 2-agent search space of MDDij .
If no solution exists to this 2-agent problem (i.e., searching
MDDij will not reach a goal node), then there is an immedi-
ate benefit for the original k-agent problem as this ICT node
can be declared as non-goal right away. There is no need to
further perform the low-level search through the search space
of the k-agent MDD.

8.1 The pairwise pruning enhancement
The pairwise pruning enhancement is optional and can be
performed just before the low-level search. This is shown in
lines 9-14 of Algorithm 1. Pairwise pruning iterates over all
pairs MDDi, MDDj and searches the 2-agent search space
of MDDij . If a pair of MDDs with no pairwise solution is
found, the given ICT node is immediately declared as a non-
goal and the high-level search moves to the next ICT node.
Otherwise, if pairwise solutions were found for all pairs of
MDDs, we activate the low-level search through the search
space of the k-agent MDD of the given ICT node.

There are O(k2) prunings in the worst case where all pair-
wise searches resolved in a 2-agent solution and the k-agent
low-level search must be activated. However, pairwise prun-
ing produce valuable benefits even in this worst case. Assume
that MDDij was built by unifying MDDi and MDDj . We
can now unfold MDDij back into two single agent MDDs,
MDD∗i and MDD∗j which are sparser than the original
MDDs. MDD∗i only includes paths that do not conflict with
MDDj and (vice versa). In other words, MDD∗i only in-
cludes nodes that were actually unified with at least one node
of MDDj . Nodes from MDDi that were not unified at all,
are called invalid nodes and can be deleted.

Figure 3(ii) shows MDD∗31 after it was unfolded from
MDD3

12. Light items correspond to parts of the original
MDD that were pruned. Node c in the right path of MDD3

1 is
invalid as it was not unified with any node of MDD3

2 . Thus,
this node and its incident edges, as well as its only descendent
(f) can be removed and are not included in MDD∗31.

In practice, one can delete invalid nodes from each indi-
vidual MDD while performing the pairwise pruning search
through the search space of MDDij . If the entire MDDij

was searched (e.g., when a solution to the 2-agent problem
was found), the sparser MDDs MDD∗i and MDD∗j are
available. These sparser MDDs can be now used in the
following two cases. (1) Further pairwise pruning. After
MDD∗i was obtained, it is used for the next pairwise check
of agent ai. Sparser MDDs will perform more pruning as
they have a smaller number of possible options for unifying
nodes. (2) The general k-agent low-level search. This has a
great benefit as the sparse MDDs will span a smaller k-agent
search space for the low-level than the original MDDs.

8.2 Experiments with ICTS+pairwise pruning

Figure 4 also presents the number of instances that were
solved under 5 minutes for ICTS with the pairwise pruning
(denoted ICTS+P). Clearly, ICTS+P solves more instances

666

k k’ A* ICTS ICTS+P
2 1.0 0.5 0.1 0.2
4 1.1 0.7 0.2 0.4
6 1.5 2.9 0.4 0.4
8 2.7 108.0 2.7 3.3

10 3.5 23,560.4 542.1 14.0
12 5.2 50,371.4 2,594.6 69.8
14 7.1 >300,000.0 20,203.1 707.7
16 9.6 >300,000.0 29,634.2 833.7
Table 2: Runtime in ms. 8x8 grid. No obstacles.

than basic ICTS and many more than A*. Table 2 presents
the average runtime over the instances that were solved by
both ICTS and ICTS+P. This is a larger set of instances than
that of Table 1(bottom) which included all instances that were
solved by all three algorithms. ICTS+P clearly outperforms
basic ICTS by more than an order of magnitude when the
number of agents exceeds 8. The runtime of A* is only pre-
sented here up to 12 agents. Above that, A* could not solve
this set of instances under 5 minutes.

We also experimented with maps of the game Dragon Age:
Origins from [Sturtevant, 2010]. Figure 6 shows three such
maps (den520d (top), ost003d (middle) and brc202d
(bottom)) and the success rate of solving 50 random instances
of these maps within the 5 minutes limit. Curves have the
same meaning as figure 4. Table 3 presents the running times
of A* and ICTS+P on the instances that could be solved by
A*. When the number of agents increases, only relatively
easy problems (out of 50) were solved, hence the numbers do
not necessarily increase. In all these maps, ICTS+P signifi-
cantly outperforms A*. The differences are due to the topol-
ogy of the maps and the amount of conflicts. brc202d has
small corridors and is denser and shows relatively smaller ad-
vantage of ICTS (and ICTS+P) compared to A*.

9 Discussion and future work
We presented the ICTS algorithm for optimally solving
MAPF. We also provided a pairwise pruning enhancement
which further speeds up ICTS. We compared ICTS to A*
theoretically and experimentally and observed that the perfor-
mance of A* tends to degrade mostly when k increases while
the performance of ICTS tends to degrade when Δ increases.
There is no universal winner. In very dense environments
such as the 3x3 grid with 8 agents or the pathological case
ICTS will be inefficient. However, we have demonstrated that
in practical cases, when there are relatively many chunks of
open areas, ICTS obtained significant speedup of up to 3 or-
ders of magnitude over the state-of-the-art version of A*.

Future work will continue in a number of directions: (1)
More insights about the influence of parameters on the diffi-
culty of MAPF will better reveal which algorithm performs
best under what circumstances. (2) Improved pruning meth-
ods, (e.g., triples, quadruples etc) or CSP-based approaches

den520d ost003d brc202d
k A* ICTS+p A* ICTS+p A* ICTS+p
5 42 65 128 25 3,555 218

10 913 385 7,961 127 5,553 780
15 4,361 481 5,821 206 9,775 7,138
20 3,581 803 21,453 344 30,090 25,766
25 16,162 2,667 16,756 295 N/A N/A
30 47,277 4,919 26,203 850 N/A N/A

Table 3: A* Vs. ICTS+P on the DAO maps

0

5

10

15

20

25

30

35

40

45

50

5 10 15 20 25 30 35 40 45 50 55

A*

ICTS

ICTS+P

0

5

10

15

20

25

30

35

40

45

50

5 10 15 20 25 30 35

A*

ICTS

ICTS+P

0
5

10
15
20
25
30
35
40
45
50

5 10 15 20 25

A*

ICTS

ICTS+P

Figure 6: DAO maps (left). Their performance (right). The
x-axis = number of agents. The y-axis = success rate.

might speed-up the goal test. (3) A* might also benefit from
heuristics that are more informed than SIC.

10 Acknowledgements

This research was supported by the Israeli Science Founda-
tion (ISF) under grant no. 305/09 to Ariel Felner.

References
[Dresner and Stone, 2008] K. Dresner and P. Stone. A multia-

gent approach to autonomous intersection management. JAIR,
31:591–656, March 2008.

[Jansen and Sturtevant, 2008] M. Jansen and N. Sturtevant. Direc-
tion maps for cooperative pathfinding. In AIIDE, 2008.

[Ratner and Warrnuth, 1986] D. Ratner and M. Warrnuth. Finding
a shortest solution for the N × N extension of the 15-puzzle is
intractable. In AAAI-86, pages 168–172, 1986.

[Ryan, 2008] M. Ryan. Exploiting subgraph structure in multi-
robot path planning. JAIR, 31:497–542, 2008.

[Ryan, 2010] M. Ryan. Constraint-based multi-robot path plan-
ning. In ICRA, pages 922–928, 2010.

[Silver, 2005] D. Silver. Cooperative pathfinding. In AIIDE, pages
117–122, 2005.

[Srinivasan et al., 1990] A. Srinivasan, T. Kam, S. Malik, and R. K.
Brayton. Algorithms for discrete function manipulation. In IC-
CAD, pages 92–95, 1990.

[Standley, 2010] T. Standley. Finding optimal solutions to cooper-
ative pathfinding problems. In AAAI, pages 173–178, 2010.

[Sturtevant, 2010] N. Sturtevant. Pathfinding benchmarks. Avail-
able at http://movingai.com/benchmarks, 2010.

[Wang and Botea, 2008] K. C. Wang and A. Botea. Fast and
memory-efficient multi-agent pathfinding. In ICAPS, pages 380–
387, 2008.

667

