Visual Task Inference Using Hidden Markov Models
Amin Haji Abolhassani, James J. Clark
It has been known for a long time that visual task, such as reading, counting and searching, greatly influences eye movement patterns. Perhaps the best known demonstration of this is the celebrated study of Yarbus showing that different eye movement trajectories emerge depending on the visual task that the viewers are given. The objective of this paper is to develop an inverse Yarbus process whereby we can infer the visual task by observing the measurements of a viewer’s eye movements while executing the visual task. The method we are proposing is to use Hidden Markov Models (HMMs) to create a probabilistic framework to infer the viewer’s task from eye movements.