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Abstract

In this paper, we formulate the problem of early
classification of time series data, which is important
in some time-sensitive applications such as health-
informatics. We introduce a novel concept of MPL
(Minimum Prediction Length) and develop ECTS
(Early Classification on Time Series), an effective
1-nearest neighbor classification method. ECTS
makes early predictions and at the same time re-
tains the accuracy comparable to that of a 1NN
classifier using the full-length time series. Our em-
pirical study using benchmark time series data sets
shows that ECTS works well on the real data sets
where 1NN classification is effective.

1 Introduction

Early classification of time series data is critical in some time-
sensitive applications such as health-informatics. For exam-
ple, a retrospective study of the clinical data of infants admit-
ted to a neonatal intensive care unit [Griffin and Moorman,
2001] found that the infants, who were diagnosed with sepsis
disease, had abnormal heart beating time series patterns 24
hours preceding the diagnosis. Monitoring the heart beating
time series data and classifying the time series data as early as
possible may lead to earlier diagnosis and effective therapy.

However, early classification of time series data is very
challenging. An early classifier is expected to meet two re-
quirements. First, an early classifier should be able to affirm
the earliest time of reliable classification so that the early pre-
dictions can be used for further actions. Second, an early clas-
sifier should retain an accuracy comparable to that of a clas-
sifier using the full length time series or some user-specified
accuracy threshold.

In this paper, we tackle the problem of early classification
on time series data. We introduce a novel concept of MPL
(Minimum Prediction Length) and develop ECTS ( Early
Classification on Time Series), an effective 1-nearest neigh-
bor classification method which makes prediction early and
at the same time retains an accuracy comparable to that of a
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sity Trust Endowment Fund.

1NN classifier using the full-length time series. Our empir-
ical study using benchmark time series data sets shows that
ECTS works well where 1NN classification is effective.

2 Problem Definition and Related Work

A time series s is a sequence of pairs (timestamp, value).
The data values are ordered in timestamp ascending order.
We assume that all timestamps take positive integer values.
We denote by s[i] the value of time series s at timestamp i.

To keep our discussion simple, in this paper, we assume
that all time series in question are of length L, i.e., each time
series s has a value s[i] at timestamp 1 ≤ i ≤ L. L is called
the full length of the time series. In general, we can use tech-
niques like dynamic time warping [Myers and Rabiner, 1981]

to align time series of different lengths.
For a time series s of length L, s[i, j] = s[i]s[i+1] · · ·s[j]

(1 ≤ i < j ≤ L) is the subsequence at timestamp interval
[i, j]. Subsequence s[1, l] (l ≤ L) is the length-l prefix of s.

For two time series s and s′, dist(s, s′) denotes the dis-
tance between them. In this paper, we use the Euclidean dis-

tance dist(s, s′) =
√∑L

i=1(s[i]− s′[i])2, which is a simple

yet effective and popularly adopted choice.
The set of all possible time series of length L isRL and is

called the full-length space, where R is the set of real num-
bers. The prefix space of length-l, denoted byRl, is the set of
length-l prefixes of all possible time series.

In time series classification, a training set T contains a set
of time series and a set of class labels C such that each time
series t ∈ T carries a class label t.c ∈ C. The time series clas-
sification problem is to learn from T a classifier C : RL → C
such that for any time series s, C predicts the class label of
s by C(s). The performance of a classifier is often evaluated
using a test set T ′, which is a set of time series such that each
time series t′ ∈ T ′ also carries a class label t′.c ∈ C. The
accuracy of a classifier C is the percentage that the class la-
bels generated by C match those carried by the time series in

the test set, that is, Accuracy(C, T ′) = |{C(t′)=t′.c|t′∈T ′}|
|T ′| .

Often, we want the classifier C as accurate as possible.
For a time series s, an early classifier C can identify

an integer l0 and make classification based on s[1, l0]. An
early classifier is serial [Xing et al., 2008] if C(s[1, l0]) =
C(s[1, l0 + i]) for any i > 0. In other words, C can clas-
sify s based on only the prefix s[1, l0], and the classification
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remains the same by using any longer prefixes. An early clas-
sifier is preferred to be serial so that the early classification
is reliable and consistent. The minimum length l0 of the pre-
fix based on which C makes the prediction is called the cost
of the prediction, denoted by Cost(C, s) = l0. Trivially, for
any finite time series s, Cost(C, s) ≤ |s|. The cost of the

prediction is Cost(C, T ′) = 1
|T ′|

∑
t′∈T ′ Cost(C, t′).

Among many methods that can be used in time series clas-
sification, the 1-nearest neighbor (1NN) classifier has been
found often accurate in practice [Keogh and Kasetty, 2002;
Wei and Keogh, 2006]. The 1NN classification method is
parameter-free and does not require feature selection and dis-
cretization. Theoretically, Cover and Hart [1967] showed that
the error rate of the 1NN classifier is at most twice that of the
optimal Bayes probability when an infinite sample set is used.

Due to the effectiveness and the simplicity of the 1NN clas-
sifier on time series data, in this paper, we focus on extending
the 1NN classifier for early classification on time series data.
We use the 1NN classifier on full length time series as the
baseline for comparison. Ideally, we want to build a classifier
which is as accurate as the baseline method and minimizes
the expected prediction cost.

In our previous work [Xing et al., 2008], we formulated the
early classification problem on symbolic sequence data. The
major idea is to mine symbolic sequential patterns which have
high utility in early prediction, and then form classification
rules or decision trees using those patterns. Time series are
numeric. To use our symbolic methods, time series have to be
discretized properly. However, appropriate discretization of-
ten heavily relies on good background knowledge. Moreover,
affected by the discretization granularity, the discretization-
based methods may lose important information in time series
data. Our previous study [Xing et al., 2008] shows that the
symbolic methods do not work well on numeric time series
data. Thus, early prediction on time series data, a type of
data prevalent in time-sensitive applications, remains open at
large.

To the best our knowledge, [Rodriguez and Alonso, 2002]

is the only existing study mentioning early classification on
time series data, which refers to classification when only a
partial time series is available. It focuses on how to make
prediction on partial information but does not attempt to make
reliable prediction using minimal partial information.

Generally, most existing sequence classification methods
transform a sequence into a set of features and then apply
conventional classification methods on the features. For ex-
ample, Lesh et al. [1999] proposed a criterion for selecting
features for sequence classification. Nanopoulos et al. [2001]

extracted statistical features such as mean and deviation from
time series, and built a neural network on the features to clas-
sify time series. Eads et al. [2005] employed grammar-guided
feature extraction and proposed a SVM classifier.

Different from feature-based classifiers, instance based
classifiers [Keogh and Kasetty, 2002; Wei and Keogh, 2006;
Xi et al., 2006], such as the 1NN classifier, make predictions
based on the similarities between the time series to be clas-
sified and the ones in the training set. The choice of dis-
tance metric is critical to the performance of 1NN classifiers.
The Euclidean distance is shown [Keogh and Kasetty, 2002;

t-id time series class

t1 (1, 1, 1) c1

t2 (2, 1, 2) c1

t3 (5, 2, 1) c1

t4 (6, 1, 2) c1

t5 (5, 8, 7) c2

t6 (5, 9, 9) c2

t7 (6, 8, 9) c2

Table 1: A training set T as the running example.

Wei and Keogh, 2006] superior on accuracy comparing to
other similarity measurements. Xi et al. [2006] showed that,
on small data sets, elastic measures such as dynamic time
warping (DTW) can be more accurate than the Euclidean dis-
tance. However, on large data sets, the accuracy of elastic
measures converges with the Euclidean distance. In this pa-
per, we focus on extending the 1NN classifier with the Eu-
clidean distance to achieve early classification. However, our
principle can be applied to other instance-based methods us-
ing different distance metrics.

3 1NN Early Classification

Example 1. Consider a training set of time series T in Ta-
ble 1, where each time series, written as a sequence of values
in timestamp ascending order, has a length L = 3.

To classify a time series s1 = (1, 2, 1), the 1NN classifier
using the full length time series finds t1 as the 1NN of s1 in
spaceR3, and outputs c1, the class label of t1.

The prediction on s1 can be made much earlier, since t1 is
also the 1NN of prefixes s1[1] = (1) and s1[1, 2] = (1, 2).
In other words, using the 1NN of the prefixes, we may make
early prediction.

For a time series s and a training data set T , let NN l(s) =
arg mint∈T {dist(s[1, l], t[1, l])} be the set of the nearest

neighbors of s in T in prefix space Rl. In Example 1,
NN1(s1) = {t1} and NN2(s1) = {t1}.

In the full length space RL, using the 1NN classifier, a
time series s is classified by the dominating label in NNL(s).
Consider prefix space RL−1. Let T [1, L − 1] = {t[1, L −
1]|t ∈ T } be the set of length-(L − 1) prefixes of all time
series in the training set T . If the time series in NNL(s)
are still the nearest neighbors of s[1, L − 1] in T [1, L − 1],
i.e., NNL(s) = NNL−1(s), then we can use NNL−1(s) to
make prediction on the class label of s at timestamp (L − 1)
without compromise in accuracy. This immediately leads to
early prediction, as observed in Example 1. The question is
when the data points of s arriving in time ascending order,
how we can know starting from which prefix length l, the
nearest neighbors of s will remain the same.

Generally, the set of length-l prefixes (1 ≤ l ≤ L)
of the time series in T is T [1, l] = {t[1, l]|t ∈ T }.
For t ∈ T , the set of reverse nearest neighbors in pre-
fix space Rl of t(1, l) is RNN l(t) = {t′ ∈ T | t ∈
NN l(t′)}. That is, RNN l(t) is the set of time series
in T that treat t as its nearest neighbor. In Example 1,
since RNN1(t1) = RNN2(t1) = RNN3(t1) = {t2},
RNN1(t2) = RNN2(t2) = RNN3(t2) = {t1}.
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Suppose training set T is a sufficiently large and uniform
sample of the time series to be classified. For a time se-
ries t ∈ T , if there exists a timestamp l < L such that
RNN l(t) = RNN l+1(t) = · · · = RNNL(t), then we
can use t to make prediction early at timestamp l without
loss in expected accuracy, since every time series s which
uses t in RL to predict the class label also likely has t as
the 1NN in prefix spaces Rl, Rl+1, . . . , RL−1. In Exam-
ple 1, t1 can be used to make prediction at timestamp 1 since
RNN1(t1) = RNN2(t1) = RNN3(t1).

Definition 1 (Minimum prediction length). In a training
data set T with full length L, for a time series t ∈ T , the min-
imum prediction length (MPL for short) of t, MPL(t) = k if

for any l (k ≤ l ≤ L), (1) RNN l(t) = RNNL(t) �= ∅ and

(2) RNNk−1(t) �= RNNL(t). Specifically, if RNNL(t) =
∅, MPL(t) = L. We denote by MPP (t) = t[1, MPL(t)]
the minimum prediction prefix of t.

Example 2. In Example 1, MPL(t1) = 1 and MPP (t1) =
(1). Moreover, MPL(t2) = 1, MPL(t3) = MPL(t4) = 2.
MPL(t5) = MPL(t6) = MPL(t7) = 3.

Given a training set T , a simple 1NN early classification
method works as follows. We assume that the training set
is a sufficiently large and uniform sample of the data to be
classified. In the training phase, for each time series t ∈ T ,
we calculate the minimum prediction length MPL(t). In the
classification phase, for a time series s to be classified, the
values of s arrive in timestamp ascending order. At times-
tamp i, we return the dominating class label of time series in
NN i(s) that have a MPL at most i. If no such a time series
is found, we cannot make reliable prediction at the current
timestamp, and have to wait for more values of s.

Example 3. In Example 1, it is easy to verify that s1 =
(1, 2, 1) is classified as c1 using t1 at timestamp 1. Consider
s2 = (6, 2, 3). NN1(s2) = {t4, t7}, but the MPLs of t4 and
t7 are greater than 1. Thus, s2 cannot be classified at times-
tamp 1. NN2(s2) = {t3, t4}. The MPLs of t3 and t4 are 2.
Thus, s2 can be assigned label c1 at timestamp 2.

The 1NN early classification method has two drawbacks.
First, to make early prediction using a time series t in a train-
ing set T , the RNNs of t must be stable after timestamp
MPL(t). This requirement is often too restrictive and limits
the capability of finding shorter prediction length. In Exam-
ple 1, the RNNs of t5, t6, t7 are not stable, and the MPLs of
them are all 3. We cannot use those time series to classify
s3 = (5, 8, 8) at timestamp 2.

Second, the 1NN early classification method may overfit a
training set. The MPP of a time series is obtained by only
considering the stability of its RNNs which often consist of a
small number of time series. The learned MPL(t) may not
be long and robust enough to make accurate classification if
the training set is not big enough or is not a uniform sample
of the time series to be classified.

4 The ECTS Method

To overcome the drawbacks in the 1NN early classification
method, we develop the ECTS method which extends the
1NN early classification method by finding the MPL for a
cluster of similar time series instead of a single time series.

Prefix space Clusters

R1 S1 = {t1, t2}, S2 = {t3, t4, t5, t6, t7}
R2 S1 = {t1, t2}, S2 = {t3, t4} S3 = {t5, t6, t7}
R3 S1 = {t1, t2}, S2 = {t3, t4} S3 = {t5, t6, t7}

Table 2: The clusters in different prefix spaces.

Example 4. We cluster the time series in the training set T
in Table 1 in the full space R3 and the prefix spaces R2 and
R1, as shown in Table 2.

Cluster S1 is stable in all three spaces, and thus can be
used at early classification as early as timestamp 1. Clusters
S2 and S3 are stable at timestamps 2 and 3 and thus can be
used as early as at timestamp 2.

We need to address two issues. First, we need to use a
clustering approach to obtain the clusters in the full-length
space. Second, we need to compute the MPLs of clusters.

We adopt single link MLHC [Ding and He, 2005], an
agglomerative hierarchical clustering method to cluster the
training data set in full length space. It builds a hierarchical
clustering tree level by level by merging all mutual nearest
neighbor pairs of clusters at each level. Two clusters form a
mutual nearest neighbor pair if they consider each other as
the nearest neighbor. The distance between two clusters is
measured by the minimum among all inter-cluster pair-wise
distances. In the output hierarchical clustering tree (i.e., a
dendrogram), a cluster represented by a leaf node is called a
leaf-cluster, and a cluster represented by an internal node is
called a sub-cluster. The whole training set is represented by
the root, and thus is called the root-cluster.

A cluster S is called 1NN consistent [Ding and He, 2004]

if for each object (a time series in our case) o ∈ S, the 1NN
of o also belongs to S. Immediately, we have the following.

Lemma 1. The sub-clusters and the root-cluster generated
by single link MLHC are 1NN consistent.

If all time series in a sub-cluster S carry the same label,
S is called a discriminative cluster. We denote by S.c the
common class label of the time series in S. A discriminative
cluster can be used in classification.

Example 5. S1, S2 and S3 in space R3 in Table 2 are dis-
criminative clusters and can be used in classification. For
example, s3 = (5, 8, 8) finds t5 ∈ S3 as the 1NN in R3.
S3.c = c2 can be assigned to s3.

To explore the potential of a discriminative cluster S in
early classification, we find the earliest prefix space in which
S is formed and becomes stable since then. The correspond-
ing prefix length is the minimum prediction length of S. In a
prefix space, we check if the 1NN consistency property holds
for S and the stability of the reverse neighbors of S.

For a sub-cluster S, in space Rl (1 ≤ l ≤ L), we de-

fine the reverse nearest neighbors of S as RNN l(S) =
∪s∈SRNN l(s)\S. If S is well separated from other clusters,

RNN l(S) is empty. Often, some sub-clusters in a training
set may not be well separated from others. In such a case,
RNN l(S) is the boundary area of S.

Definition 2 (MPLs of clusters). In a training data set T
with full length L, for a discriminative cluster S, MPL(S) =
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k if for any l ≥ k, (1) RNN l(S) = RNNL(S); (2) S is

1NN consistent in space Rl; and (3) for l = k − 1, (1) and
(2) cannot be both satisfied.

Example 6. For discriminative clusters S1, S2 and S3,
MPL(S1) = 1, MPL(S2) = 2 and MPL(S3) = 2. Take
S3 as an example, in spaceR3 andR2, S3 is 1NN consistent
and RNN3(S3) = RNN2(S3) = ∅. In space R1, S3 is not
1NN consistent. Thus, MPL(S3) = 2.

In a discriminative cluster S, there may be another discrim-
inative cluster S′ ⊂ S. MPL(S) may be longer or shorter
than MPL(S′). Moreover, for a time series t ∈ T , t itself
is a leaf-cluster with MPL(t) (Definition 1). Among all the
discriminative or leaf clusters containing t, we can use the
shortest MPL to achieve the earliest prediction using t.

As one drawback of the 1NN early classification method,
the MPL obtained from a very small cluster may cause over-
fitting. To avoid over-fitting, a user can specify a parameter
minimum support to control the size of a cluster. We calculate
the support of a cluster in a way that is aware of the population
of the corresponding class.

Definition 3 (Support). In a training set T , let Tc = {s ∈
T |s.c = c} be the set of time series that have label c. For a
discriminative cluster or a leaf cluster S such that S.c = c,

Support(S) = |S|
|Tc|

.

We only use clusters passing the user-specified mini-
mum support threshold for early prediction. The ECTS
method works in two phases. In the training phase, given
a training set T with full-length L and a minimum sup-
port threshold p0, for a time series t ∈ T , let SS =
{S|t ∈ S ∧ S is a discriminative or leaf cluster} be the set
of discriminative or leaf clusters containing t. MPL(t) =
minS∈SS,Support(S)≥p0

MPL(S). The training process is to

compute MPL(t) for all t ∈ T . The classification phase is
the same as the 1NN early prediction method in Section 3.

Section 2 states that we want to build a classifier as accurate
as the 1NN classifier using the full-length time series. The
following result answers the requirement.

Theorem 1. In a training data set T of full length L, assum-
ing for any t ∈ T and 1 ≤ l ≤ L, NN l(t) contains only
one time series1, ECTS has the same leave-one-out accuracy
on T as the 1NN classifier using the full-length time series.
Moreover, ECTS is a serial classifier on the time series in T .

Proof sketch. Using Lemma 1, we can show that in any leave-
one-out test, if ECTS assigns label c to a time series t ∈ T
using prefix t(1, l), the 1NN classifier assigns to t the same
class label using any longer prefix t(1, k), where l < k ≤ L.
Limited by space, we omit the details here.

The only remaining question is how to compute the sub-
clusters and the MPLs. Given a training set T , we first pre-
compute the nearest neighbors for each time series in T in all
prefix spaces. This pre-computation step takes time O(|T |2 ·
L) where L is the full length.

1If multiple 1NNs exist, we can select the 1NN of the smallest
index .

Input: a training data set T;
Output: MPL(t) for each t ∈ T ;
Method:
1: pre-compute 1NNs for each t ∈ T in all prefix spaces;
2: compute the MPLs of leaf clusters and update the MPL

for each t ∈ T ;
3: n = |T |, the number of time series in T ;
4: while n > 1
5: compute the mutual nearest neighbor pairs;
6: for each mutual nearest neighbor pair (S1, S2)
7: merge S1 and S2 into a parent cluster S, n = n− 1;
8: if all time series in S carry the same label then
9: compute the MPL of S;
10: update the MPL for each time series in S;

end if
end for

11: if no new discriminative clusters are generated in this
round then break;

end while

Figure 1: The algorithm of the training phase in ECTS.

Then, we apply single link MLHC [Ding and He, 2005] to
spaceRL, which takes time O(|T |2). For each discriminative
sub-cluster S, using the pre-computed 1NN information in
the prefix spaces, we check the 1NN consistency of S and the
stability of RNN l(S) for l < L in the value l descending
order, until MPL(S) is determined. The complexity of this
step is O(|T |3 · L). The algorithm of the training phase is
shown in Figure 1.

Is learning different MPLs for different time series neces-
sary? Can we just learn a fixed MPL for all time series in a
training set? Let us consider the following simple early clas-
sification method called 1NN fixed. Given a training set T of
full length L, we calculate the 1NN classification accuracy
p in the full space RL. Then, we check the prefix spaces
RL−1,RL−2, . . . until prefix space Rk such that the accura-
cies in spaces RL−1, . . . ,Rk+1 are at least p, and the accu-
racy in spaceRk is lower than p. We use (k + 1) as the MPL
for all time series. That is, in classification, we always read
the length-(k + 1) prefix of a time series s to be classified,
and find the 1NNs of s among the length-(k + 1) prefixes of
the time series in T to classify s.

Interestingly, 1NN fixed is a simplified special case of
ECTS in 2-class situations under the assumption that each
class forms one discriminative cluster in the full length space
RL. However, since 1NN fixed does not consider the dif-
ferent early classification capabilities of the clusters in the
hierarchy, it may use longer prefixes for classifications. Fur-
thermore, when there are multiple classes or multiple large
discriminative clusters, the 1NN fixed method may not work
well since it requires the overall accuracy to be high and can-
not identify clusters which are separated from other clusters
earlier than the overall accuracy is satisfied.

5 Experimental Results

The UCR time series archive [Keogh et al., 2006] provides 23
time series data sets which are widely used to evaluate time
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Dataset ECTS Early 1NN 1NN Fixed Full 1NN SCR

Wafer Accuracy 99.08%(−0.47% ) 99.16%(-0.39 %) 99.32%(-0.23 %) 99.55% 93% (-6.58 %)
2 classes Ave. len. 67.39 (44.34%) 122.05 (80.30%) 110 (72.37%) 152 55.36 (36.42%)
1000 training samples Train. time 152.90 sec 3.22 sec 1.58 sec 0 sec 164.59 sec
6174 testing samples Class. time 0.053 sec 0.103 sec 0.004 sec 0.004 sec 0.204 sec

Gun-Point Accuracy 86.67% (−5.1%) 87.3%(-4.41 %) 91.3%(-0.03 %) 91.33% 62.67%(−31.36%)
2 classes Ave. len. 70.387 (46.92%) 107.24 (71.49%) 140 (92.67%) 150 116.17 (77.45%)
50 training samples Train. time 0.39 sec 0.09 sec <0.01 sec 0 sec 0.86 sec
150 testing samples Class. time 0.002 sec 0.004 sec 0.002 sec 0.002 sec 0.11 sec

Two Patterns Accuracy 86.48% (−4.97%) 87.25%(-4.12 %) 90.72%( -0.8%) 91% 94.75% (+4.12% )
4 classes Ave. len. 111.097 (86.79%) 113.24 (88.5%) 124 (96.88%) 128 86.13(67.29 %)
1000 training samples Train. time 48.76 sec 2.18 sec 1.34 sec 0 sec 65.23 sec
4000 testing samples Class. time 0.101 sec 0.077 sec 0.003 sec 0.003 sec 0.125 sec

ECG Accuracy 89% (+1.17%) 89%(+1.17 %) 89%(+1.17 %) 88% 73%(−17.05%)
2 classes Ave. len. 74.04 (77.13%) 83.12 (86.58%) 92 (92.71%) 96 37.5 (39.06%)
100 training samples Train. time 0.83 sec 0.1 sec 0.02 sec 0 sec 4.22 sec
100 testing samples Class. time 0.004 sec 0.004 sec 0.001 sec 0.001 sec 0.062 sec

Synthetic Control Accuracy 89% (+1.17%) 88.33%(+0.38 %) 88%(+0 %) 88% 58.33%(−33.72%)
6 classes Ave. len. 53.98 (89.97%) 55.09 (91.82%) 60 (100%) 60 29.39 (50%)
300 training samples Train. time 4.64 sec 0.12 sec 0.06 sec 0 sec 21.09 sec
300 testing samples Class. time 0.004 sec 0.004 sec 0.001 sec 0.001 sec 0.02 sec

OliveOil Accuracy 90% (+3.8%) 90%(+3.8 %) 83.33%(-3.92%) 86.7% 36.7%(−57.68%)
4 classes Ave. len. 497.83 (82%) 526 (92.28%) 406 (71.23%) 570 500 (87.72%)
30 training samples Train. time 0.22 sec 0.08 sec 0.02 sec 0 sec 2.03 sec
30 testing samples Class. time 0.058 sec 0.043 sec 0.006 sec 0.006 sec 0.016 sec

CBF Accuracy 85.2% (+0%) 86.89%(+1.98 %) 83.2%(-2.35%) 85.2% 55.22% (-35.18%)
3 classes Ave. len. 91.73 (71.5%) 103.20 (80.63%) 54 (42.19%) 128 46 (35.93 %)
30 training samples Train. time 0.09 sec 0.02 sec <0.01 sec 0 sec 0.24 sec
900 testing samples Class. time 0.001 sec 0.001 sec 0.001 sec 0.001 sec 0.015 sec

Table 3: Results on seven datasets from UCR Time Series Archive

series clustering and classification algorithms. In each data
set, the time series have a fixed length. Each data set con-
tains a training set and a testing set. The 1NN classification
accuracies using the Euclidean distance on the testing sets are
provided as well [Keogh et al., 2006].

Table 3 lists the results on all the 7 data sets in the archive
where the full-length 1NN classifier using Euclidean distance
achieves an accuracy of at least 85%. The 1NN classifier can
be regarded effective on those data sets. The seven data sets
cover cases of 2-class and more-than-two-class cases.

Table 3 compares 5 methods. We use the 1NN classifier
using the full length (denoted by full 1NN) as the baseline. In
addition to ETCS, we also report the results of the 1NN early
classification method (Section 3, denoted by 1NN Early), the
1NN fixed method introduced at the end of Section 4, and
the SCR method [Xing et al., 2008]. ECTS uses only an
optional parameter, minimum support, to avoid overfitting.
The results of ECTS in Table 3 are obtained by setting mini-
mum support= 0. All the experiments were conducted using
a PC computer with an AMD 2.2GHz CPU and 1GB main
memory. The algorithms were implemented in C++ using
Microsoft Visual Studio 2005.

On data sets Wafer and Gun-point, the average predic-
tion lengths (Cost(C, T ′) defined in Section 2) of ECTS are
shorter than half of the full lengths. On the other five data
sets, the average prediction lengths of ECTS are from 71% to
89% of the full lengths.

Except for data sets Gun-point and Two-patterns, ECTS

0 0.2 0.4 0.6 0.8 1
40%

50%

60%

70%

80%

90%

100%

Minimal Support

Classification accuracy
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Figure 2: Accuracy and ave. length vs. minimum support.

has an accuracy almost the same or even slightly better than
that obtained by the full-length 1NN method. On Gun-point
and Two-patterns, ECTS is about 5% lower in accuracy. As
explained before, when minimal support= 0, ECTS may over
fit a training set and thus may slightly lose accuracy.

By increasing minimum support, overfitting can be re-
duced. Figure 2 shows the effect on the Gun-point data set.
When minimum support increases, the accuracy of ECTS
approaches the accuracy of the full length 1NN classifier
quickly. As the tradeoff, the average prediction length in-
creases, too. Similar results are observed on the Two-patterns
data set. Limited by space, we omit the details here.

The above results clearly show that ECTS can achieve early
classification and can retain an accuracy comparable to that
of the full length 1NN classifier. Using parameter minimum
support, ECTS can reduce overfitting effectively.
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On all the 7 data sets, ECTS and the early 1NN method
achieve very similar accuracies. ECTS always achieves a
shorter average prediction length. This result confirms that
finding MPLs through clusters helps to obtain shorter MPLs.

On data sets Wafer, ECG and Synthetic-control, ECTS us-
ing minimum support= 0 achieves a shorter average predic-
tion length than the 1NN fixed method. The two methods
have similar accuracies. Especially, for the 6 classes syn-
thetic control data set, the 1NN fixed method has to use the
full length. ECTS uses a shorter prediction length. The sav-
ing mainly comes from the class cyclic, which is classified
using an average length of 45. To handle multi-class situa-
tions, the 1NN fixed method cannot classify one class earlier
if the other classes are mixed together in the prefix spaces.

On data set Gun-point, by setting minimum support= 15%
to reduce overfitting, ECTS obtains an accuracy comparable
to the 1NN fixed method, but uses a remarkably shorter av-
erage prediction length. Similar results are observed on data
set Two-patterns.

On data sets OliveOil and CBF, interestingly, the 1NN
fixed method is less accurate than ECTS but can obtain
shorter average prediction length. For example, on data set
OliveOil, ECTS obtains an accuracy of 90% and 1NN fixed
method makes only 83.33%. The 1NN fixed method obtains
an average prediction length of 406 and ECTS gives a length
of 497.63. By analyzing the training set of 30 time series,
we find that, training samples 7 and 9 are the cause of the
dropping accuracy in the 1NN fixed method, which means
the MPLs (406) of those two samples learned by the 1NN
fixed method are not long enough to make accurate classifi-
cation. In ECTS, the learned MPLs vary from 117 to 570 for
the training samples. For samples 7 and 9, the learned MPLs
are 567 and 570, respectively. Why does ECTS learn longer
MPLs for samples 7 and 9? In the full length space, training
sample 9 has an empty RNN set. The RNN set of training
sample 7 consists of samples from two classes. Those RNN
sets suggest that samples 7 and 9 are likely on the decision
boundary. In contrast to the 1NN fixed method, ECTS can
find longer MPLs for samples likely on the decision boundary
to reduce the possible misclassification led by such a sample.

We also compare ECTS with our previous symbolic
method SCR [Xing et al., 2008]. Since SCR can only han-
dle discrete values, k-means (k = 3) is used to discretize
values in the time series into 3 values. SCR requires a param-
eter, expected classification accuracy, which is set to the full
length 1NN accuracy. The other parameter of SCR, minimal
support, is set to 0. Although SCR sometimes uses a shorter
average prediction length, the accuracies are far away from
the expected values. Comparing to SCR, ECTS makes early
classification reliable in accuracy.

In terms of efficiency, ECTS is faster than SCR in training.
The early 1NN method, the 1NN fixed method and the full
1NN method are substantially faster than ECTS and SCR in
training due to their very simple model construction tasks.
All the methods have very fast classification runtime.

6 Conclusions

In this paper, we develop ECTS, a method for early classifica-
tion on time series data. ECTS makes early classification and

retains an accuracy comparable to that of the full length 1NN
method. As future work, it is interesting to extend ECTS for
streaming data.
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