
Goal-Driven Learning in the GILA Integrated Intelligence Architecture

Jainarayan Radhakrishnan and Santiago Ontañón and Ashwin Ram
CCL, Cognitive Computing Lab
Georgia Institute of Technology

Atlanta, GA 303322/0280
{jai,santi,ashwin}@cc.gatech.edu

Abstract
Goal Driven Learning (GDL) focuses on systems
that determine by themselves what has to be learnt
and how to learn it. Typically GDL systems use
meta-reasoning capabilities over a base reasoner,
identifying learning goals and devising strategies.
In this paper we present a novel GDL technique
to deal with complex AI systems where the meta-
reasoning module has to analyze the reasoning
trace of multiple components with potentially dif-
ferent learning paradigms. Our approach works
by distributing the generation of learning strategies
among the different modules instead of centraliz-
ing it in the meta-reasoner. We implemented our
technique in the GILA system, that works in the
airspace task orders domain, showing an increase
in performance.

1 Introduction
Traditional Machine Learning systems are “canned”: a hu-
man decides the target concept or function that the system
needs to learn, the learning algorithm to be used, and provides
the training corpus. Goal Driven Learning (GDL) [Ram and
Leake, 1995] focuses on how artificial intelligence (AI) sys-
tems decide on what is to be learnt and the learning strategies
to be used. This kind of reasoning requires meta-reasoning
(also called reflexion or introspection) mechanisms. The cen-
tral idea underlying GDL is that the value of learning depends
on how well learning contributes to the learner’s goals, and
thus the learning process should be guided by those goals.

GDL systems traditionally consist of a reasoner or base
system that has some performance goals to achieve in some
domain. When the reasoner executes a performance task, its
reasoning process is captured in a reasoning trace. When
the reasoning results in a failure (where “failure” is defined
according to the performance goals of the reasoner), a meta-
reasoner module analyzes the reasoning trace looking for rea-
soning failures, and generates learning goals. For each learn-
ing goal, a learning strategy is devised (typically using some
form of planning over a set of primitive learning or informa-
tion gathering operators) and then executed, resulting in the
solution of learning goals, hopefully improving the satisfac-
tion of the performance goals of the reasoner in the future.

Classic GDL systems (e.g. [Cox and Ram, 1999]) are tai-
lored to specific reasoners. There is a central planner that
processes the learning goals and decides “how to learn” in a
centralized way, having access to the set of learning operators
that the reasoner is able to execute. However, this procedure
is problematic when dealing with complex reasoning archi-
tectures composed of heterogeneous reasoning components,
using potentially different representations and learning strate-
gies. If a central planner was to plan for the achievement of
learning goals of each component in a system, then the inter-
nals of these modules (at least its knowledge representation
and learning capabilities) have to be exposed to the meta rea-
soner, thus increasing the coupling among components.

In this paper we propose a new GDL approach for complex
and heterogeneous AI architectures where the meta-reasoner
is decoupled from the base reasoners. Meta-reasoning is a
service provided to the base modules, capable of analyzing
reasoning traces and generating learning goals. Learning
goals are then handed to the base reasoning modules, and
each module is responsible for deciding whether to address
each learning goal, and how to address it. Thus, planning
how to address learning goals is performed in a decentralized
fashion by each one of the reasoners.

We have implemented our approach in the GILA (Gener-
alized Integrated Learning Architecture) system. GILA was
developed under the Integrated Learning DARPA project by
a team composed of 8 universities and 5 private research
labs coordinated by Lockheed Martin. In the remainder of
this paper we will provide some background in GDL. Then,
we present an overview of the GILA system. After that we
present our GDL approach focusing on how learning goals
are generated and how individual reasoners devise their own
learning strategies individually. Finally we present related
work and an empirical evaluation of the behavior of GILA
with and without our GDL module.

2 Goal Driven Learning
Understanding the processes of learning and providing com-
puters with learning capabilities is one of the main goals
of artificial intelligence. However, most of the research
in machine learning focuses on the reconstruction of some
unknown target function from a collection of examples
[Mitchell, 1997]. This is too simple a formulation of the
learning problem to model the surprising learning skills ex-

1205



Reasoner Meta-Reasoner

Task goals Learning
Strategies

Learning
Strategy
Selection

Performance
System Learning goalsSystem

R i

g g

TPerformance Reasoning
Trace

Trace
Evaluation

Figure 1: Main components of a GDL system.

hibited by humans. One of the simplifications is that classical
machine learning omits any reference to the learner’s goals.
Humans tend to focus their learning towards those directions
relevant to their goals, thus being able to focus and oppor-
tunistically exploit the available sources of knowledge.

There are four main questions that a GDL system has to
address: whether to learn , what to learn, when to learn, and
how to learn. Typically, the meta-reasoner takes charge of all
of them. In the approach presented in this paper, the meta-
reasoner is in charge of what’s to be learnt, and delegates the
rest of questions to the individual base reasoners.

Figure 1 shows a typical architecture of a GDL system,
composed of both a reasoner and a meta-reasoner. The rea-
soner, or base system, has certain tasks or performance goals
to achieve in some particular domain. The results of the
reasoning process of the reasoner are captured in reasoning
traces, handed to the meta-reasoner. The meta-reasoner will
perform two basic steps: trace evaluation and learning strat-
egy selection. Trace evaluation consists on identifying rea-
soning failures in the trace, and formulating learning goals
that address such failures. After a set of learning goals have
been identified, the next step involves constructing learning
strategies for them. Once found, those strategies are typically
handed back to the reasoner, which will execute them in or-
der to address its performance failures. Additionally, some
systems (e.g. [Fox, 2000]) allow the meta-reasoner to reflect
on itself by also representing the reasoning processes of the
meta-reasoner as reasoning traces.

3 GILA
GILA (Generalized Integrated Learning Architecture) is a
complex heterogeneous learning system that tries to address
the problem of learning a complex task from a very small set
of examples (in fact, from a single example) and some lim-
ited amount of domain knowledge. In order to achieve this
task, GILA contains several Integrated Learners / Reasoners
(ILRs), each one of them based on a different machine learn-
ing paradigm. The ILRs learn as much of knowledge as they
can from the small training set, and during performance, an
overall Meta-Reasoning Executive (MRE) coordinates all of
them to exploit their individual strengths.

The domain that GILA operates is in the airspace orders
deconfliction domain: given a plan to execute some opera-
tions (represented as a set of airspaces associated with mis-

Meta�Reasoning
E ti

Decision�Maker�
Coordination
I i t

Meta�Learner
Introspection
C dit/BlExecutive

Data GoalsIntegrated Learners and Reasoners

Inconsistency
Cost/benefit

Credit/Blame
Learning�goals

Data�
Blackboard

• Workflow�
Description�
L

Goals
Blackboard

• Goal�
Language

Integrated�Learners�and�Reasoners

Learning Reasoning

I/O

Knowledge

Language

• Plan�
Language

• Explanation Learning ReasoningKnowledgeExplanation�
Language

Execution Workflow

I/O

Execution
Trace

Workflow
Executor

TBMCS

Figure 2: The GILA architecture.

sions and air units over space and time), and a set of mod-
ification requests, GILA’s task is to accommodate the mod-
ifications into the plan while taking care of all the conflicts
that might arise. For example, if two airplanes have a con-
flict (they occupy the same space and time in the current
plan), GILA has to identify which one has to be modified, and
come up with a plan to modify the airspace assigned to that
airplane. Moreover, if an airspace is changed, other related
airspaces might have to be changed too, since they might be
related. Thus, GILA has to make sure that the goals of the
mission are still satisfied after the deconfliction process. One
important feature of the domain is that there is no annotation
provided on the association dependencies between airspaces.
GILA has to learn that on its own (also from a single example
and some domain knowledge).

The architecture of GILA can be seen in Figure 2. The
ILRs are shown in the center of the architecture. Each ILR
is composed of several internal modules: a learner, that can
extract knowledge from examples and store it in a knowledge
base, a reasoner that can solve problems using that knowl-
edge, and an I/O module that can translate from the internal
representation used by the ILR to the common language used
in the GILA architecture. On the top of Figure 2 we see the
MRE, divided in two modules: the Decision Maker (MRE-
DM) and the Meta Learner (MRE-ML). The MRE-DM is
in charge of coordinating the different ILRs during perfor-
mance (i.e. during problem solving), while the MRE-ML
coordinates the learning processes. The MRE and the ILRs
communicate through two blackboards: The Goals Black-
board, where the MRE posts goals (both performance goals
and learning goals) and the Data Blackboard, where the ILRs
post the solutions found to the goals. Finally, in the lower part
of the figure we can see TBMCS (Theater Battle Management
Control System), which is the interface to the domain where
GILA operates.

A typical execution of GILA works as follows. A single
demonstration showing the steps involved to deconflict a par-

1206



MRE�ML

D t G l

Reasoning
Trace

Construction

Failure
Pattern
Matcher

Learning
Goal

GeneratorData�
Blackboard

Goals
Blackboard

Failure

Construction Matcher Generator

a u e
Patterns

Figure 3: MRE-ML Architecture

ticular problem is provided to GILA (the problem might be
composed of multiple airspaces and thus may have multiple
conflicts). Each ILR individually learns from the trace. When
a new problem arrives, the MRE-DM requests for conflicts to
be identified in the current problem. GILA has a specific ILR
that knows how to solve this goal, which returns the results to
the MRE. Those conflicts define the next set of subgoals that
the ILRs will have to solve. But first, the MRE-DM asks the
ILRs to provide an ordering on these subgoals, some ILRs
respond, and the MRE-DM composes the responses in a fi-
nal ordering of subgoals. Then, each one of these conflicts
is handed one by one to the ILRs. Each ILR that is capable
of solving conflicts proposes solutions based on their learned
knowledge. The MRE-DM composes each of the individual
solutions into a global one, opening a search tree. Some ILRs
know how to evaluate the similarity between a solution and a
solution obtained from the expert demonstration. The MRE-
DM uses this as the search heuristic. Moreover, other ILRs
can learn whether some airspace modifications are dangerous
(the Safety Checker ILR can do this), and thus the MRE-DM
also uses feedback from these ILRs as a guide. The MRE-
DM keeps exploring the search space until a valid solution is
found. This solution is then considered the final solution. In
the next section we see how GILA’s performance is enhanced
thanks to the MRE-ML.

4 Meta Learning in GILA
Figure 3 illustrates the architecture of the MRE-ML, as com-
posed of four modules: a collection of failure patterns, a rea-
soning trace construction module, a failure pattern matcher,
and a learning goal generator. The MRE-ML is constantly
monitoring the blackboards to construct the GILA reasoning
trace, based on which it searches for failure patterns and gen-
erates learning goals. Let us briefly explain how the MRE-
ML is integrated with the GILA system.

GILA’s execution has 3 distinguished phases: learning,
practice, and performance. During learning, GILA is handed
a demonstration and the ILRs learn. During practice, GILA
is handed a practice problems (for which the solution is not
known), and GILA attempts to solve it, allowing both the
ILRs and the MRE to learn during the process. Finally, during
performance, learning is disabled, and GILA just attempts to
solve a target problem. It is thanks to the practice phase, that
the MRE-ML can help GILA.

During practice, the MRE-ML records GILA’s reasoning
trace. Once the MRE-DM determines practice is over (ei-

MRE-DM

{c1,…,cn}Context 0

P0: ca

ILR1 ILRm

Problem
solving

episodes

0
1S 0

mS

{c1,…,cl}Context 1

MRE-DM

P1: cb

Unexplored
paths

1 b

ILR1 ILRm

0
1S 1S1S mS

{ }{c1,…,cp}Context k

0
mS 1

mS w
uS

GILA 
solution

Figure 4: GILA search tree

ther after finding a valid solution or after reaching a timeout),
the MRE-ML kicks into action and analyzes the trace search-
ing for failures by using failure patterns. If it identifies any
failure, it generates learning goals targeted at preventing the
problem that gave rise to the detected failure. The other GILA
modules would then try to satisfy these learning goals so as
to perform better next time.

4.1 Reasoning trace of GILA
The reasoning trace is a data structure that is comprised of
all the steps the system considers to reach a solution. This
involves the information flow amongst the individual GILA
components (ILRs and MRE), but not the internals of any of
the components. Since GILA solves problems by creating a
search tree, the reasoning trace of GILA consists of the pro-
cess by which such a tree is constructed.

Figure 4 is an illustration of the GILA search tree. The
trace is made up of problem solving episodes. In each episode
we see that there is: a context (the current state of the prob-
lem state), a problem (in the case of GILA this is always a
performance goal sent by the MRE-DM to the ILRs), a set of
proposed solutions by the ILRs, and a selected solution (the
solution that the MRE-DM decided to expand). When ana-
lyzed at a higher level, the search tree of GILA can be seen
as the result of a set of modules that produce and consume in-
formation. This is the level at which the MRE-ML analyzes
data.

Such a search tree is actually never explicitly present any-
where in GILA. The MRE-ML constantly listens to the two
blackboards for important events (performance goals, solu-
tions, and selected solutions) and constructs an abstract ver-
sion of this search tree, which is considered to be the reason-
ing trace. For the MRE-ML, the reasoning trace is a graph
consisting of problem nodes and solution nodes. The solu-
tion nodes correspond to proposed solutions and selected so-

1207



lutions. Each node in this graph contains information cor-
responding to the module that generated the corresponding
solution or problem, and the context for the same. In GILA,
the problems can be of several kinds: find conflicts, resolve
conflicts, prioritize conflicts, assess safety, assess cost, etc.
Solutions can also have several types. The failure patterns in
the MRE-ML analyze all of this information in the reasoning
trace to identify potential problems to be fixed or to identify
further scope for learning.

4.2 Failure Patterns
Failure patterns in the MRE-ML consist of small graphs. In
the graph that represents a failure pattern, each node can be
annotated with some restrictions (e.g. that “a node represents
a solution”, or that “two solutions nodes must refer to the
same solution”, etc.). These patterns are matched against the
full reasoning trace graph, and if there is any subgraph of the
reasoning trace that matches with this pattern, it means that
the reasoning trace contains a failure. It is important to note
that such a matching has a high computational cost. However,
it is performed off-line, and thus it does not affect GILA’s
performance. The high computational cost is due to the gen-
erality of the failure pattern definition language. However,
specialized efficient failure detection routines for each pattern
could be implemented.

Failure patterns are targeted at identifying potentially
faulty areas or modules. For example, one of the defined fail-
ure patterns recognizes if an ILR produced an unsafe situa-
tion. The way it is detected is as follows: there is an ILR
in GILA called the “Safety Checker” that is able to learn
constrains and then check wether other ILRs satisfy them.
Each time an ILR proposes a deconfliction strategy, the safety
checker is asked to produce a safety violation score. If this
score is above a threshold, the solution is considered unsafe.
This pattern can be defined by defining a graph pattern with
two solution nodes, one for a deconfliction strategy and an-
other one for a safety validation score, and specifying the two
restrictions: the safety validation score has to correspond to
the deconfliction strategy solution and that the safety viola-
tion score has to be above a threshold.

In our experiments, the MRE-ML contained several failure
patterns, some of them were domain independent, and some
of them were specific to GILA:

• Expert mismatch: Given a problem, if the solution pro-
vided by an ILR does not exactly match the solution pro-
vided by the expert for the same problem. The ILR is at
fault as it failed to generate the solution that the expert
had provided it with, for the same problem.

• Introduced conflict: A conflict introduced by an ILR at
some earlier point in the graph is also present in the final
solution. This happens when an ILR proposes a solu-
tion that contains a conflict, and this solution was one of
the solutions selected by the MRE-DM, and eventually
the final solution also contains the same conflict. In this
case, both the ILR and the MRE-DM are at fault.

• Horizon push: When provided with a proposed set of so-
lutions for a given problem, the MRE-DM selects a so-
lution whose confidence level is lower than a pre-defined

threshold. The MRE-DM could have done better in this
case in selecting a solution that had a better confidence
value, and thus pushing the Horizon.

• Weakest link: When provided with a proposed set of so-
lutions for a given problem, the MRE-DM selects a solu-
tion whose confidence value is lower than a pre-defined
threshold. The MRE-DM could have done better in this
case in selecting a solution that had a better confidence
value. This selected solution, thus forms the weakest
link in the solution tree.

• Backtrack solution: The MRE-DM selects a solu-
tion from the proposed set of solutions that eventually
doesn’t yield an acceptable Final solution forcing the
MRE-DM to retrace its steps and backtrack up the tree
searching for another brach to expand.

• Safety violation: This failure pattern is triggered when
a safety violation constraint was violated by an ILR at
some point in the graph.

When any of these failure patterns is triggered, learning
goals are generated. These learning goals are to be incorpo-
rated by the ILRs and provide a means for the ILRs to learn
better. It is not in the scope of the MRE-ML to learn for the
ILRs and hence the action must come from the ILRs them-
selves. Thus, learning goals are addressed within the ILRs.
For each match of a failure pattern in the reasoning trace, a
learning goal is generated, as explained in next section.

4.3 Learning Goals
We consider three different learning goal types:
• Solved Problem: If the MRE-ML has enough informa-

tion about a failure, it can generate a solved problem ex-
ample to be sent to the ILRs. This would include infor-
mation about the failure along with the correct solution
for the problem. This could be a learning goal informing
about a conflict and the solution to resolve the same, but
is not restricted to cases concerning conflicts alone. It
could include cases wherein there was a failure detected
in the priority of the solutions, or even cases wherein
the solution selected works but is not the same as pro-
vided by the expert. ILRs should remember these kinds
of learning goals and learn from them.

• Negative Feedback: This learning goal is generated
when the MRE-ML does not have enough information
about the failure so as to generate a solved problem ex-
ample, but knows that something is wrong. In order to
address this learning goal, an ILR has to try to avoid
generating the same solution in the future.

• Constrained Problem: When the MRE-ML does not
have information about which is the correct solution for
a problem, but at least has some information about it, it
can generate a constrained problem. For instance, it can
generate a learning goal saying that a proposed solution
is incorrect, and that the correct solution should not vio-
late a particular constraint. In order to solve this learning
goal, an ILR has to try to find an alternative solution for
the problem specified in the learning goal that does not
violate the specified constraint.

1208



Each failure pattern has a specific routine to be able to gen-
erate one or more of these three kinds of learning goals for
each match generated by the failure patterns. Once learn-
ing goals are generated, they are sent to the goals blackboard
so that any ILR can pick them up. Notice that other GDL
systems generate more refined learning goals. However, in
the context of GILA, learning goals have to be kept at this
level of generality, since each one of the ILRs uses a different
learning paradigm, and thus the MRE-ML cannot make any
assumption about the kind of concepts they understand.

4.4 Addressing Learning Goals
To better understand how learning goals are addressed, we
look at how one of the ILRs handles them, namely the Case-
Based Learner/Reasoner (CBLR). The CBLR uses case-
based reasoning [Aamodt and Plaza, 1994] to solve the dif-
ferent performance goals that the MRE-DM posts in the goal
blackboard. In particular, the CBLR knows how to solve
deconfliction problems (given two airspaces that overlap in
space or time, it finds a sequence of steps to deconflict them),
and prioritization problems (given a list of conflicts, it can
sort them by relevance).

To solve those two sets of problems, the CBLR has two
knowledge bases: a case-base of deconfliction cases learnt
from an expert trace, and a set of constraints also learnt from
the expert trace. Deconfliction cases associate particular con-
flicts with the particular sequence of steps that the expert used
to solve them, and also with the order in which the expert
solved them (to assess priority). Constraints represent ranges
of the different variables in the domain. For instance, if the
CBLR observes that the expert never moves, say, a helicopter
higher than 50000 feet, and never lower than 100 feet, it will
create a constraint for the altitude of helicopters to that range.
To solve a deconfliction problem, the CBLR retrieves a set
of cases from the case-base and then adapts them using a set
of adaptation rules making sure that as many constraints as
possible are satisfied.

The CBLR only handles two kinds of learning goals (the
rest are ignored): solved problem ones and negative feedback
ones. When the CBLR receives a solved problem learning
goal, such a learning goal actually contains all the informa-
tion required to create a new case. So, the CBLR creates a
new case and stores it in its case-base for future reference.

When the CBLR receives a negative feedback learning goal
g, it first checks whether the negative feedback applies to it-
self. The learning goal g specifies that a particular solution S
is incorrect for a particular problem P . So, the CBLR tries
to solve P to see if the solution obtained would be S. If it
is, then the CBLR needs to modify its knowledge so that the
solution generated for P is not S. In order to do that, it cre-
ates a negative case. The CBLR determines the case c from
the case-base that has been retrieved to solve P and that led
to the solution S. It then creates a negative case saying that
for the problem P contained in the learning goal, case c is not
the right case to retrieve. Negative cases are used during re-
trieval, and locally distort the similarity calculations in order
to satisfy the learning goals.

Notice that the way the CBLR handles learning goals in-
volves CBR concepts such as “cases”, that the MRE-ML does

Table 1: Number of times the CBLR was selected with and
without the MRE-ML.

Without MRE-ML With MRE-ML
CBLR SPLR DTLR CBLR SPLR DTLR

ABC 1 7 1 3 4 12
ACB 1 7 2 4 6 0
BAC 2 9 1 2 8 2
BCA 4 5 3 4 7 2
CAB 1 7 2 3 5 2
CBA 0 8 1 3 8 0

CBLR: 14.51% CBLR: 26.98%

not have to have knowledge about. Other ILRs address learn-
ing goals using their own learning formalisms. They might
for instance learn rules or modify weights instead of learning
new cases.

5 Empirical Evaluation
Evaluating the quality of a solution provided by GILA is a
complex process, that is done by hand by an expert in the
domain (since simple comparison with a solution provided by
an expert does not suffice). For that reason, in this evaluation
we didn’t evaluate the overall improvement of GILA due to
the MRE-ML (which is still the subject of our future work).
In order to evaluate the effect of the MRE-ML, we set up
GILA in such a way that only one component (the CBLR)
handled learning goals. We evaluated the performance of the
CBLR with and without the MRE-ML.

In particular, we measure how many times a deconflic-
tion solution provided by the CBLR is chosen by the MRE-
DM. Solutions are chosen by the MRE-DM based on their
quality (two ILRs learn respectively how to measure qual-
ity of solutions and how safe the solution is). There-
fore, if a component’s solutions are selected more often, it
means that the particular component is providing better so-
lutions. The number of times deconfliction solutions of the
CBLR are chosen has to be compared with those of the
SPLR (Symbolic-Planner Learner/Reasoner) and the DTLR
(Decision-Theoretic Learner/Reasoner). Moreover, in order
to perform our experiments we had three different demon-
strations (A, B and C) (each demonstration is expensive to
obtain), so we tested every possible combination, by using
them for learning, practice and performance.

Table 1 shows the obtained results. Each row corresponds
to a different experiment, e.g. ABC means that the system
learnt in A, practiced in B and performed in C. For each ex-
periment, we ran GILA twice: first without the MRE-ML and
then with the MRE-ML. The number of times deconfliction
solutions by each of the ILRs were selected was logged. The
first thing we see is that when the MRE-ML is present the
CBLR’s solutions are selected more often, from a 14.51%
of the times to a 26.98% of the times. This shows that the
CBLR significantly improves the quality of its solutions and
thus, they are selected more often.

A closer analysis of the learning goals generated and the
improvement of the CBLR reveals that the CBLR’s solutions
were mostly not considered since their safety violation score

1209



was too high. Thus, most of the learning goals are targeted at
this effect. After the CBLR addressed the learning goals, the
safety violation score of its solutions reduced drastically, and
thus its solutions were selected more often. Moreover, the
most often generated learning goal is the “negative example”
kind.

6 Related Work
Our work is related to goal-driven learning and introspection.
Cox and Ram [Cox and Ram, 1999] argue that in traditional
AI systems, the system designer is the one who sequences the
available learning algorithms for particular situations. They
propose to use introspection to automatically detect reasoning
failures using failure patterns. The main difference between
Cox and Ram’s MetaAQUA system and the technique pre-
sented in this paper is that their meta-reasoner is tailored to a
particular system, and thus it can plan the sequence of learn-
ing operators required to satisfy each of the learning goals.
However, in our system, the meta-reasoner only produces
learning goals to a collection of individual base reasoners,
and they are responsible for planning on how to satisfy the
learning goals.

Zang et al. [Zang et al., 2007] propose a similar architec-
ture to MetaAQUA where instead of learning goals, failure
patterns cause direct modification of the system’s behavior.
Their system works on the domain of believable characters,
where each character has a certain personality defined. When
characters do not behave according to their personality, their
stress level increases. When stress goes beyond some thresh-
old, the cause of the failure is determined by trying to match a
collection of failure patterns against the execution trace. Each
failure pattern has associated with it a collection of modifica-
tion operators that can modify the behaviors of the characters.
The system attempts different modification operators until the
stress level of the characters goes down.

RILS [Fox, 2000] is an introspective system for route plan-
ning. Each module in the architecture has a set of defined
“assertions” that define the expected behavior of the module,
when one fails, introspection kicks in. Assertions in RILS can
be compared to failure patterns in our technique. RILS con-
tains repair cases, and for each assertion violation, it retrieves
a repair case and applies the corresponding repair strategy. In
that sense, RILS is more similar to the system presented by
Zang et al. [Zang et al., 2007]. Moreover, RILS can also
introspect over the introspective reasoning layer.

Introspection has also been used for other tasks than learn-
ing, such as explanation generation [Goel and Murdock,
1996], and also for a variety of base reasoners, such as
planners [Kuokka, 1991], rule-based systems [Puyol-Gruart,
1995], case-based reasoning systems [Fox, 2000] or even re-
inforcement learning [Ulam et al., 2008].

7 Conclusions and Future Work
In this paper we have presented an approach for goal driven
learning in complex AI architectures, and presented a partic-
ular implementation in the GILA architecture. Our approach
is based on several key ideas: 1) in heterogeneous architec-
tures the meta-reasoner should just generate learning goals

and not construct learning strategies, 2) the planning process
needed to generate learning strategies is performed in a dis-
tributed way inside of each of the base reasoners, 3) learning
goals have to be kept at a high level of description, since the
meta-reasoner cannot make any assumptions about the repre-
sentation formalism of the base reasoners, and 4) failure pat-
terns offer us a uniform case-based method to perform blame
assignment.

Currently the MRE-ML module in GILA can only analyze
the global reasoning trace of GILA. However, in the future we
plan to expand this so that if any component (including the
MRE-ML itself) can represent its own reasoning processes
as a reasoning trace, this trace can be sent to the MRE-ML,
which will offer a generic service of failure detection and
learning-goal generation. Also part of our future work is to
evaluate which components of GILA (that represent different
learning paradigms) benefit more from meta-learning. A fi-
nal line of future research is to see if failure patterns can be
learnt from experience, since currently they are provided by
the author to the system.

References
[Aamodt and Plaza, 1994] Agnar Aamodt and Enric Plaza.

Case-based reasoning: Foundational issues, methodolog-
ical variations, and system approaches. Artificial Intelli-
gence Communications, 7(1):39–59, 1994.

[Cox and Ram, 1999] Michael T. Cox and Ashwin Ram.
Introspective learning: On the construction of learning
strategies. Artificial intelligence, 1–55(112), 1999.

[Fox, 2000] Susan E. Fox. Reflective intrispective reasoning
through CBR. In Twenty-Second annual meeting of the
Cognitive Science Society, 2000.

[Goel and Murdock, 1996] Ashok K. Goel and J. William
Murdock. Meta-cases: Explaining case-based reason-
ing. In Third European Workshop on Case-Based Reason-
ing EWCBR-96, Lecture Notes in Artificial Intelligence.
Springer Verlag, 1996.

[Kuokka, 1991] Daniel R. Kuokka. Max: a meta-reasoning
architecture for “x”. SIGART Bull., 2(4):93–97, 1991.

[Mitchell, 1997] Tom Mitchell. Machine Learning.
McGraw-Hill, 1997.

[Puyol-Gruart, 1995] Josep Puyol-Gruart. MILORD II: A
Language for Knowledge–Based Systems, volume 1 of
Monografies del IIIA. IIIA–CSIC, 1995.

[Ram and Leake, 1995] Ashwin Ram and David B. Leake.
Goal-Driven Learning. MIT Press, 1995.

[Ulam et al., 2008] Patrick Ulam, Joshua Jones, and
Ashok K. Goel. Combining model-based meta-reasoning
and reinforcement learning for adapting game-playing
agents. In Christian Darken and Michael Mateas, editors,
AIIDE. The AAAI Press, 2008.

[Zang et al., 2007] Peng Zang, Manish Mehta, Michael
Mateas, and Ashwin Ram. Towards runtime behavior
adaptation for embodied characters. In IJCAI-2007, pages
1557–1562, 2007.

1210


