
A Fixed-Parameter Tractable Algorithm for
Spatio-Temporal Calendar Management

Bernhard Nebel

Institut für Informatik
Albert-Ludwigs Universität Freiburg

79110 Freiburg, Germany

Jochen Renz

Research School of Information Sciences and Engineering
The Australian National University

Canberra ACT 0200, Australia

Abstract

Calendar management tools assist users with co-
ordinating their daily life. Different tasks have
to be scheduled according to the user preferences.
In many cases, tasks are at different locations
and travel times have to be considered. There-
fore, these kinds of calendar management prob-
lems can be regarded as spatio-temporal optimisa-
tion problems and are often variants of traveling
salesman problems (TSP) or vehicle routing prob-
lems. While standard TSPs require a solution to
include all tasks, prize-collecting TSPs are more
suited for calendar management problems as they
require a solution that optimises the total sum of
“prizes” we assigned to tasks at different locations.
If we now add time windows that limit when tasks
can occur, these prize-collecting TSPs with time
windows (TW-TSP) are excellent abstractions of
spatio-temporal optimisation problems such as cal-
endar management. Due to the inherent complex-
ity of TW-TSPs, the existing literature considers
mainly approximation algorithms or special cases.
We present a novel algorithm for TW-TSPs that en-
ables us to find the optimal solution to TW-TSP
problems occurring in real-world calendar manage-
ment applications efficiently. Our algorithm is a
fixed-parameter tractable algorithm that depends on
the maximal number of tasks that can be revisited
from some other task, a parameter which is small
in the application scenario we consider.

1 Introduction

The motivation for the research described here comes from
the problem of calendar management [Jennings and Jackson,
1995; Modi et al., 2004; Sen and Durfee, 1994], whereby we
consider the situation that we have an over-subscription prob-
lem, i.e., we have more tasks on our agenda than we can pos-
sibly handle. Furthermore, we also take space into account,
which is usually ignored in calendar management. Space be-
comes important when

• tasks have to take place at specific locations,

• there is significant travel time between locations, and

• tasks can be done while travelling, e.g., on the train.

Interestingly, space can in this context be reduced to travel
time between two tasks. If there are different modes of trans-
portation, then costs may also factor in.

A typical scenario, we envisage, is the following. You plan
to find a new apartment. For this purpose, you find out from
the ad section of the local news paper, which apartments are
available, where they are located, and when are the visiting
times. Now, you want to visit as many apartments as possi-
ble. Clearly, there are too many and because of the restricted
visiting times, you will not be able to visit them all. However,
by scheduling your visits carefully, e.g., by not wasting time
going back and forth between different neighbourhoods, you
may be able to visit a large number.

From a formal point, this calendar management problem
can be seen as the prize-collecting travelling salesman prob-
lem with time-windows [Bar-Yehuda et al., 2005], a schedul-
ing problem that takes also space into a account. Since the
problem is a generalisation of the TSP, it is, of course, NP-
hard. While there have been a number of attempts to de-
sign approximation algorithms (e.g. [Zhang and Tang, 2007;
Shi et al., 2008]), exact algorithms that are efficient in real-
world cases have not been considered so far. We provide
the first exact algorithm for the unit-prize case that is fixed-
parameter tractable [Niedermeier, 2006], i.e. polynomial
with degree independent of the parameter, when the parame-
ter is fixed. In our case, the parameter is the maximal number
of jobs that can be revisited from some other job. We further
show that when generalising to non-unit-prizes one can use a
pseudo-polynomial algorithm.

The rest of the paper is structured as follows. The fol-
lowing section introduces terminology and notation around
the prize-collecting travelling salesman problem with time-
windows. After that we discuss approaches to this problem
that have been attempted so far. Then we introduce the no-
tion of fixed-parameter tractability. Based on that, we specify
a dynamic-programming algorithm that solves the problem
exactly and that is fixed parameter tractable. Finally, we dis-
cuss the applicability of our algorithm and conclude.

2 Problem description

In this section, we formally define the Prize-Collecting Trav-
elling Salesman Problem with Time-Windows (TW-TSP)

879

[Bar-Yehuda et al., 2005]. We first introduce all the com-
ponents we need. For a travelling salesman problem (TSP)
we have given a set V of cities (called jobs in scheduling
terminology and in this paper) at given locations in a met-
ric space (V, �) where � is a metric. This could be a planar
map or the surface of the earth. What is interesting to us is
the non-symmetric travel time �(u,v) it takes to travel from
job u to job v. Note that a metric space satisfies the triangle
inequality, i.e., �(u,v)≤ �(u,w)+�(w,v) for all u,v,w ∈V . In
other papers in the literature, the location of jobs is specified
in terms of coordinates and the distance between jobs is cal-
culated as the shortest distance according to the given metric.
In this paper we consider a TSP simply as a directed graph
G = (V,E) where the jobs are nodes and the edges correspond
to the travel time between nodes. In the prize-collecting TSP,
each job v ∈V has a prize p(v) ∈ N assigned to it that speci-
fies the profit (a natural number) we get when performing job
v. In general, this allows us to give different profits to dif-
ferent jobs or to specify preferences. In this paper, however,
we are mostly dealing with unit prizes, i.e., p(v) = 1 for all
v ∈V . In addition, each job has a processing time h(v) which
is the minimum time we have to spend for job v. For the TSP
with time windows, each job is also assigned a time window
Iv = [r(v),d(v)], which is a time interval with release time
r(v) and deadline d(v) during which a job v has to be started
and finished. We can assume that h(v) ≤ |d(v)− r(v)| and
that r(v) ≤ d(v). A TW-TSP instance over the metric space
(V, �) consists of:

• A subset S ⊆V of jobs.

• Each element s ∈ S is assigned p(s),h(s),r(s), and d(s).

• Origin v0 ∈ S with p(v0) = h(v0) = r(v0) = d(v0) = 0.

A tour is a sequence of points (vi, ti), where ti is the ar-
rival time at point vi and v0 is the origin. A feasible tour
{(vi, ti)}k

i=0 must satisfy the following conditions: t0 = 0 and
ti+1 ≥ ti +h(vi)+ �(vi,vi+1).

A solution to a TW-TSP instance (a TW-tour) is a tour
{(vi, ti)}k

i=0 such that each vi ∈ S, every job occurs at most
once, and for every 0 ≤ i ≤ k, we have that ti ≥ r(vi) and
ti + h(vi) ≤ d(vi). The profit of a TW-tour T = {(vi, ti)}k

i=0
is the sum of the profits of all participating jobs, i.e., p(T) =
∑k

i=0 p(vi). The optimal solution to a TW-TSP instance is a
TW-tour with maximum profit.

3 Background and previous work

There are many variants of the TSP which are similar to TW-
TSPs and which have different optimality criteria. For stan-
dard TSPs, a feasible tour has to visit all cities and the task is
to find the shortest tour that visits all cities. With additional
time-windows, it is clear that some instances cannot be solved
if all cities have to be visited. Given that an instance of a TSP
with time windows has a solution, the most common opti-
misation criteria is again to minimise the arc-traversal cost,
which corresponds to the shortest path [Tsitsiklis, 1992]. An-
other optimality criterion is to minimise the makespan, i.e.,
to minimise the time to return to the origin, which is often
called the depot for vehicle routing problems (VRP). VRPs

are another variant where there are sometimes multiple ve-
hicles available which together have to visit all cities dur-
ing the given time windows [Danzing and Ramster, 1959].
Variants of TSPs with time-windows where not all cities have
to be visited are often called deadline TSPs, or Orienteering
TSPs if all deadlines are the same. In the context of VRPs,
it is common to refer to these TSPs as prize-collecting TSPs
[Balas, 1989], which we are considering in this paper.

All these variants of the TSP are optimisation problems
that are at least NP-hard. It is therefore common to consider
approximation algorithms that provide a fast approximation
to the optimal solution and heuristics. The quality of an ap-
proximation algorithm is usually measured by the approxima-
tion ratio, i.e., the factor by which the approximate solution
differs from the optimal solution. Many approximation al-
gorithms are based on dynamic programming, which gives
solutions very fast, but doesn’t allow to store path informa-
tion about how the intermediate results during the run of the
algorithm are achieved. The major disadvantage of not being
able to consider history of paths is that it is impossible to test
if a job occurs more than once in a path. Bar-Yehuda et al
(2005), introduce a density measure of a TW-TSP problem
instance that limits the number of zig-zags in a tour, i.e., how
often it is possible to go from one job to another and vice-
versa within the time windows of both jobs. Bar-Yehuda et al
define density of a TW-TSP instance Π:

σ(Π) = max
u,v

|Iu|
�(u,v)+ �(v,u)+h(u)+h(v)

.

If the density of an instance is below 1, i.e., if it is not pos-
sible to visit a job twice within the same time-window, then
the dynamic programming algorithm they present computes
the optimal solution of Π. In general, the approximation ra-
tio of their algorithm is �σ(Π)�+1 for the TW-TSP problem
without processing times.

We are not interested in approximation algorithms, but in
algorithms that compute the optimal solution to the TW-TSP
problem as efficient as possible. Since it is an NP-hard prob-
lem, our algorithm cannot be tractable (given P �= NP), but
we will present a fixed-parameter tractable algorithm instead.

For this purpose, we use the standard definition of fixed-
parameter-tractable problem [?]. A parameterised prob-
lem (over the alphabet Σ) is a pair (Q,κ) consisting of a
set Q ∈ Σ∗ of strings over Σ and an arbitrary function κ :
Σ∗ → N, the parameterisation. x ∈ Σ∗ is called an instance
of Q and κ(x) is the corresponding parameter. This means,
a parameterised problem consists of a problem in the usual
complexity-theoretic sense together with a parameterisation.

As an example, κ may be the function on strings that selects
the number of different propositional atoms of a propositional
formula, provided the string represents a propositional for-
mula. Otherwise κ returns 0. Then the parameterised problem
p-SAT is the problem (Q,κ), where Q is the set of satisfiable
propositional formulae and κ : Σ∗ → N.

A parameterised problem (Q,κ) is called fixed-parameter
tractable, if there exists an algorithm deciding Q for each in-
stance x in runtime O(f (κ(x))× |x|c)| for some function κ,
and constant c.

880

The usefulness of an FPT algorithm depends on the value
of f (κ(x)). If f (κ(x)) is small for all interesting problem
instances, then the FPT algorithm is as good as a tractable
algorithm. For instances where it gets large, the algorithm
is most likely not better than an exponential algorithm. An
example for a parameter that depends on the problem in-
stance would be the density as defined by Bar-Yehuda et al.
However, the runtime of their dynamic programming algo-
rithm does not depend on this parameter, only the quality of
their solution does. Another example is by Tsitsiklis (1992)
who sketches a dynamic programming algorithm for TSPs
with time-windows that is exponential in the maximal num-
ber of simultaneous time-windows. Since Tsitsiklis consid-
ers only the problem where all jobs must be part of a feasible
tour, these algorithms are not applicable to our case of prize-
collecting problems where only a subset of all jobs can be
part of a tour.

In the next section we present a new algorithm that identi-
fies an optimal solution of a given TW-TSP instance. We will
then show that our algorithm is fixed-parameter tractable in a
parameter which is very small in many real-world instances.

4 A fixed-parameter tractable algorithm

For a given set of jobs S, the number of different tours is
very large. Provided that all jobs participate in a tour, all
permutations of S are possible, which gives a number of |S|!
different tours. If not all jobs have to participate in a tour, then
we have n! different tours for each n-element subset of S, of
which there are

(|S|
n

)
many. So the total number of possible

tours is
|S|
∑
i=1

(|S|
i

)
× i! =

|S|
∑
i=1

|S|
∏
j=i

j,

which lies between |S|! and (|S|+ 1)!. The number of TW-
tours is much smaller, since the time-windows assigned to
each job make some permutations impossible. The number
of TW-tours depends on the time-windows and the distances
of a given instance and cannot be specified in general.

Using a dynamic programming algorithm, it is possible to
systematically extend partial tours and to get the optimal tour.
Following an idea by Bar-Yehuda et al (2005), one could set
up a table, where the columns are indexed by nodes and the
rows are indexed by the number of already visited nodes.
Row one is initialised with the release times of all nodes.
Now one proceeds, starting at row 2 and fills in the earliest
possible arrival time in each row i (iterating from 2 to |S|) for
each node v. This can be easily computed by iterating over
all nodes u in level i− 1 adding the duration time of u and
the travel time from u to v. Now one has to minimise over
all nodes we can come from and take the maximum of the
release time of v and the earliest arrival time. If it is not pos-
sible to arrive at a job in time, no matter from which other
job we come from, then this job can be deleted at level i. The
highest level we reach is equal to the longest tour that can be
obtained respecting all time windows.

The problem with this simple algorithm is that we do not
record the partial tour that leads us to each level and hence
it is not possible to guarantee that every job is visited only

once in our tour. Therefore, the result of this algorithm is not
necessarily a proper TW-tour. A simple example that demon-
strates this are two close-by jobs that have very long over-
lapping time-windows. The basic algorithm would alternate
between these two jobs during the whole period of overlap-
ping time-windows, leading to a very long but useless tour.
One could of course delete double nodes, however, one would
loose quality. For this reason, the algorithm can only give an
approximation [Bar-Yehuda et al., 2005].

In the following we add some modifications to the basic dy-
namic programming algorithm that allow us to record which
jobs are not allowed to be visited in the next step since they
have been visited already. We will not keep track of all jobs
of partial paths, but only of jobs that have been visited already
and that can be visited again without violating any temporal
constraints. These jobs form a list of prohibited jobs.
Definition 1 (prohibited jobs) Given a tour T =
{(vi, ti)}k

i=0. The prohibited jobs of T , denoted as P(T), is
the set of all jobs of T that satisfy the following property:

P(T) = {vi ∈ S| 1 ≤ i ≤ k,
tk +h(vk)+ �(vk,vi)+h(vi) ≤ d(vi)}.

It is clear that there are possibly many different tours of length
k that lead to a job v and that these tours have different arrival
times and different prohibited jobs. In order to keep track of
these different possibilities, we introduce tour constraints for
a job v at a certain level k.
Definition 2 (tour constraints) Given a job v at a level k.
The tour constraints Ck

v of a job v at level k consist of the
following set:

Ck
v = {(t1,P1),(t2,P2), . . .},

where ti is the arrival time of the i-th tour Ti of length k to job
v and Pi the set of prohibited jobs of Ti.

Under certain conditions it is possible to remove tuples
from the tour constraints. This can be done if a tour is not
necessary because another tour with similar conditions has
an earlier arrival time.
Lemma 1 Given two tours T = {(vi, ti)}k

i=0 and T ′ =
{(v′i, t ′i)}k

i=0 with the same last job vk = v′k and prohibited jobs
P and P′, respectively. If P ⊆ P′ and tk ≤ t ′k, then T ′ cannot
lead to a better overall tour than T .
Proof. Let D be the set of jobs that are part of T ∪T ′ but
not part of P′. No job of D can be used in an extension of T ′,
since their deadlines cannot be reached from t ′k anymore. This
is a consequence of the definition of prohibited jobs. There-
fore, the jobs that can still be used to extend T ′ are a subset
of the jobs that can still be used to extend T . Since tk ≤ t ′k,
extending T ′ cannot lead to a better tour than extending T .

Since we are only interested in finding the optimal TW-
tour, we can delete any tour which cannot lead to a better tour
than another one we have already. This leads to the following
corollary:
Corollary 1 Let Π be a TW-TSP instance. Given a job v of Π
at a level k and its tour constraints Ck

v . If (t,P),(t ′,P′) ∈Ck
v ,

P⊆P′ and t ≤ t ′, then (t ′,P′) can be removed from Ck
v without

losing the optimal solution of Π.

881

Algorithm: FPT-TW-TSP(Π)
Input: A TW-TSP instance Π consisting of a set S of n jobs
with time-windows Iv = [r(v),d(v)], processing times h(v),
unit prizes p(v) = 1 and travel times �(u,v) for all u,v ∈ S; v0
is the origin.
Output: The maximal prize that can be collected from Π.
1. done = false; prize = 1;
2. allocate C1

v = {(r(v),{v})} for all v ∈ S;
3. for k = 1 to n do % (different levels)
4. if done==true then break;
5. allocate Ck+1

v for all v ∈ S;
6. for i = 1 to n do % (jobs at current level)
7. done = true;
8. for all (t,P) ∈Ck

vi
do % (tour constraints)

9. for j = 1 to n do % (jobs at next level)
10. if j ∈ P then continue;
11. t j = t +h(vi)+ �(vi,v j)+h(v j);
12. newP = {v j};
13. if t j > d(v j) then continue
14. for all p ∈ P do % (prohibited jobs)
15. if t j + �(v j, p)+h(p) < d(p)
16. then newP = newP∪{p};
17. done=false; prize=k+1;
18. newt = max(t +h(vi)+ �(vi,v j),r(v j));
19. if there is a (t ′,P′) ∈Ck+1

v j
20. with newP ⊆ P′ and newt ≤ t ′
21. then remove (t ′,P′) from Ck+1

v j
;

22. add (newt,newP) to Ck+1
v j

;
23. return prize;
Figure 1: A fixed-parameter tractable algorithm for TW-TSP

We can now modify the basic dynamic programming algo-
rithm in a way that for every job at every level we keep track
of the tour constraints for this job. In the basic algorithm we
extend the tours from level k to level k+1 by going from each
job at level k to every other job that can be performed next. In
the modified version, we have to do this for every tuple in the
tour constraints, since they can all lead to the optimal tour.
When doing so, we have to make sure that we do not extend
a tour by any of its prohibited jobs. The tour constraints at
level k can be propagated to level k + 1 by updating the jobs
that remain prohibited at the next level, i.e., keeping those
jobs that can still be reached and removing those that cannot
be reached anymore. The modified algorithm is given in Fig-
ure 1. Note that the algorithm does not assume a given start
time, and therefore the time we arrive at the first job is always
the release time of the first job. This can be easily changed by
modifying line 2 of the algorithm.

By adding information about the previous job to the tour
constraints, it is easily possible to reconstruct the optimal
TW-tour and the start time and duration of the optimal TW-
tour. We leave this as an exercise to the reader and will now
focus on analysing the worst-case complexity of our algo-
rithm. This will demonstrate that the algorithm is indeed a
fixed-parameter tractable algorithm.

The complexity of our algorithm depends on the maximum
number or tour constraints we can have for a job and also on
the maximum number of prohibited jobs we can have in a

Figure 2: The TW-tour T = {(v1, t1),(v2, t2),(v3, t3),(v4, t4}
has an in-between sequence length of sl(v4) = 2, since it can
revisit the two jobs v1 and v2. These two jobs are in the pro-
hibited jobs list P(T) and, therefore, the only feasible exten-
sion of T is job v5.

single tour constraint. In order to quantify them, we define
some parameters of specific TW-TSP instances.
Definition 3 (revisitable job, in-between job) Given a TW-
TSP instance Π. A revisitable job u of Π is a job for which
there exists a job v in Π such that it is possible to visit u
before v and then visit u again. Formally, this means that the
following conditions are satisfied for tv = max(r(u)+h(u)+
�(u,v),r(v))+h(v):

1. tv ≤ d(v),
2. tv + �(v,u)+h(u) ≤ d(u).

A job v that can be used in this way is called an in-between
job of u. We write u � v to specify that u is a revisitable job
with v as its in-between job.
A revisitable job u must have a time-window which is at least
as long as the minimum duration 2×h(u)+�(u,v)+�(v,u)+
h(v) for all in-between jobs v of u. A job v can be in-between
job of multiple other jobs. It is possible that u � v and v � u
both hold.
Definition 4 (in-between number) Given a TW-TSP in-
stance Π. The in-between number ib(v) of a job v of Π is
equivalent to the number of revisitable jobs u in Π that can
use v as an in-between job. The in-between number IB(Π) of
a TW-TSP instance Π is the maximal in-between number of
any job of Π, i.e., IB(Π) = maxv ∈Π(ib(v)).

The in-between number of a job is independent of how the
different revisitable jobs relate to each other and doesn’t spec-
ify whether multiple jobs can be revisited. For the analysis of
our algorithm, it is important whether it is possible that a job
v can be an in-between job of multiple revisitable jobs u and
w where u is an in-between job of w. This is specified in the
following definition (see Figure 2).
Definition 5 (in-between sequence length) Given a TW-
TSP instance Π. The jobs u1, . . . ,uk,v of Π form an in-
between sequence of length k, if there is a TW-tour using the
nodes {u1, . . . ,uk,v} that can be extended by any of the k jobs
u1, . . . ,uk. The in-between sequence length sl(v) of a job v in
Π is the maximal length of all in-between sequences with v as
the last job. The in-between sequence length SL(Π) of a TW-
TSP instance Π is the maximal in-between sequence length of
all of its jobs.
Note that the conditions for k jobs u1, . . . ,uk,v to form an in-
between sequence of length k are stronger than just assuming

882

ui �u j and ui �v for all i < j. The above defined concepts are
independent from the density parameter used by Bar-Yehuda
et al. (2005). They are also independent from the maximal
number of simultaneous time windows, a parameter used by
Tsitsiklis (1992). Both parameters could be large while at the
same time parameters based on our concepts are small. We
can now prove some important properties of the algorithm.
Lemma 2 Given a TW-TSP instance Π. Let P(v) be the max-
imal number of prohibited jobs of a TW-tour T of Π that ends
in a job v. Then P(v) ≤ sl(v).
Proof. A prohibited job of a TW-tour T is defined as a job
that is part of T and which can be performed again after vis-
iting v. If P(v) were larger than sl(v), then the jobs of P(v)
form an in-between sequence of v which is longer than sl(v).
This contradicts the definition of sl(v) as being the longest
such tour.

Lemma 3 Given a TW-TSP instance Π. Let maxCk
v be the

maximal number of tour constraints of a job v of Π at level k.
Then

maxCk
v ≤

(
ib(v)
sl(v)

)
.

Proof. From lemma 1 it follows that every tour constraint
(t,P) ∈ Ck

v must have a different P. Therefore, maxCk
v is re-

stricted by the number of different sets of prohibited jobs P.
From Lemma 2 it follows that the length of P is at most sl(v).
The number of jobs that can occur in any P is limited to those
jobs u for which v can be an in-between job of u. This num-
ber is restricted by ib(v), and the number of different sets of
prohibited jobs is consequently restricted by the number of
possibilities of choosing sl(v) jobs of ib(v) available ones.

We call maxC(Π) = maxv,k maxCk
v the maximal number of

tour constraints of any job v ∈ Π at any level k. We can now
estimate the worst case complexity of our algorithm.
Lemma 4 The worst-case complexity of FPT-TW-TSP(Π) is

O(SL(Π) ·maxC(Π)2 ·n3).

Proof. The algorithm has three nested loops from 1 to n (lines
3,6,9). The loop in line 14 is over the number of prohibited
jobs, which is equal to sl(v) for each job v (see Lemma 2),
and smaller than SL(Π). There is one loop (line 8) over the
number of tour constraints. By Lemma 3, this is restricted to(ib(v)

sl(v)

)
for each job v and is at most maxC(Π). The test in line

19 is in the worst-case also applied to the maximal number
of tour constraints. Therefore, we need maxC(Π) again as a
factor.

This leads us to the main result of our paper.
Theorem 1 FPT-TW-TSP(Π) is a fixed-parameter tractable
algorithm that finds the optimal solution of a TW-TSP in-
stance Π.
Proof. sl(v) and ib(v) for any node v ∈ Π and therefore
maxC(Π), IB(Π) and SL(Π) are parameters of Π that are in-
dependent of the size n of Π. SL(Π) is smaller than IB(Π) and
maxC(Π) is smaller than

(IB(Π
�IB(Π)/2�

)
, which is smaller than

(2e)IB(Π)/2 (e is Euler’s number). So if we set our parameter

κ to IB, then the worst-case complexity of our algorithm is
O(κ(Π) · (2e)κ(Π) ·n3), which is of the form O(f (κ(Π)) ·nc),
and therefore our algorithm is fixed-parameter tractable.

Assume that the TW-tour found by our algorithm is worse
than the optimal TW-tour T = {(vi, ti)}k

i=0, where all times ti
are the earliest possible times of starting the job. Then there
must be a layer k′ where our algorithm arrives at vk′ at time
tk′ but does not extend the TW-tour T ′ = {(vi, ti)}k′

i=0 to vk′+1
on layer k′ + 1. According to the algorithm, this can happen
for the following reasons:

1. vk′+1 is a prohibited job (line 10),

2. vk′+1 cannot be reached in time from vk′ (line 13),

3. there is another tour arriving at vk′+1 whose set of pro-
hibited jobs is a subset of that of T ′ and whose arrival
time is earlier or equal (line 21).

The first and second possibilities are a contradiction to T be-
ing a TW-tour. If the third possibility is responsible, then by
Corollary 1 there must be a TW-tour going through vk′+1 that
is identified by our algorithm and that is at least as good as
T . This contradicts the assumption that T is better than the
TW-tour identified by our algorithm.

5 Applicability of the algorithm

In the previous section we have presented a fixed-parameter
tractable algorithm that computes the optimal solution of a
TW-TSP instance. In this section we discuss the usefulness of
our algorithm for real-world problems. The main motivation
of our work is the management of spatially distributed jobs,
i.e., jobs where the travel time plays a considerable role. This
can be jobs that are distributed over different parts of a large
campus, a city or in different cities, but typically not jobs in
the same office building. Another assumption we make is that
jobs have a non-negligible processing time. Appointments
for calendar management are typically at least 10 minutes to
half an hour and not only one minute. We can also assume
that time-windows are usually not huge, but typically thirty
minutes to maybe a few hours, and often proportional to the
processing times of jobs. Under these assumptions we can
now estimate the size of the parameters of realistic TW-TSP
instances. We give some examples in the following table.

process travel minimum length of time-window for
time time sl=1 sl=2 sl=3 sl=5 sl=10
10 10 50 70 90 130 230
5 10 35 50 65 95 170
10 5 40 55 70 100 175
5 20 55 80 105 155 280
20 5 70 95 120 170 295

If we have an in-between sequence length of, say, sl = 5
then the time windows of the 5 participating jobs must have
at least the value for sl = 5 for one job, the value for sl = 4
for the second job, the value for sl = 3 for the third job and
so on. Therefore the time-windows of all participating jobs
must be quite long. This demonstrates that for many real-
world applications that fit our intended scenario, sl is usually
around 2 or 3, often only 1 and very rarely larger.

883

For the motivating example in the Introduction it is usually
the case – looking into newspapers or real-estate websites –
that the visiting time for apartments is a fixed 15-30 minutes
interval if a real-estate agency is involved, and a similar in-
terval by appointment if it is a private inspection. When we
assume that it takes at least 5 minutes to inspect an apart-
ment and at least 5 minutes to travel between apartments, one
would expect an sl-value of 1 on average. If the travel time is
smaller, sl could become 2.

In some rare cases, such as new developments with many
available apartments or private inspections where the owner
has less time constraints, inspection time-windows can be
longer. In these cases, a set of prohibited jobs can become
larger, but it will always include some of the rare cases if
larger than 2. Therefore, the actual number of different sets
of prohibited jobs will not become much larger.

The worst case complexity of our algorithm is O(SL(Π) ·
maxC(Π)2 ·n3). This is smaller than O(IB(Π)2·SL(Π) ·n3). So
if SL(Π) is small and since IB(Π) is much smaller than n
in real-world settings, we effectively get an efficient O(n3)
algorithm for identifying the optimal solution to many real-
world TW-TSP instances. This is the same complexity as the
approximation algorithm given by Bar-Yehuda et al [2005]
but is guaranteed to find the optimal solution.

6 Extensions and future work

So far, we have only considered unit prizes. However, one can
extend our framework. One possible application of having
non-unit prizes is to be able to specify preferences. In order to
say that some jobs are preferred over other jobs, we can assign
a higher prize, say 2, to the more preferred jobs. However, in
order to deal with non-unit prizes, the algorithm has to be
modified substantially.

One way to deal with non-unit prizes is to extend the tour
constraints by the prize achieved so far, i.e., a tour constraint
is now a triple (ti,Pi, pri). The removal rule spelled out in
Corollary 1 must also be refined. A constraint (ti,Pi, pri) can
only be removed if there is another constraint (t j,Pj, pr j) if
t j ≤ ti,Pj ⊆ Pi and pri ≤ pr j. Let now Pr(Π) = ∑v∈S p(s).
This means that in the worst case we may have as many tour
constraints for one set of prohibted jobs P as there are differ-
ent prize values possible, i.e., Pr(Π) many. Obviously, this
gives us a pseudo-polynomial FPT-algorithm. For the exam-
ple above, where we only have jobs with prizes 1 and 2, this
seems very reasonable.

If the values of prizes are relatively high, this may result
in too many tour constraints. In order to deal with this prob-
lem, one could employ a fully polynomial time approxima-
tion scheme (FPTAS) in order to get an approximative answer
similar to what one does in order to arrive at a FPTAS for the
knapsack problem (see e.g. [Papadimitriou, 1994, p. 306].

There are different possible extensions to our work that can
make the problems we solve more realistic or might help to
solve them more efficiently. One extension is to introduce
“soft jobs” and “hard jobs”, similar to soft and hard con-
straints, where hard jobs are jobs that must be processed in
any feasible tour. This is another way of enforcing prefer-
ences. It would also be interesting to consider time-windows

that consist of different parts, for example, between 10am
and 11am or between 2pm and 4pm. However, if we allow
to express constraints between time windows using Interval
Algebra relations [Allen, 1983], then algorithms of the type
presented in this paper might not be applicable anymore, as
we have no information about the duration of time windows.

7 Conclusion

We have presented a dynamic-programming algorithm to
solve the prize-collecting travelling salesman problem with
time-windows exactly. This algorithm is fixed-parameter
tractable in the maximal number of jobs that can be revis-
ited from some other job if we consider only unit prizes, and
also in the maximal attainable sum of prizes if we consider
non-unit prizes. As we have argued, both parameters often
lead to reasonably low constant factors for the calendar man-
agement applications we consider. Therefore, the algorithm
can be used in practice to find optimal solutions efficiently.

References

[Allen, 1983] J. F. Allen. Maintaining knowledge about tem-
poral intervals. Comm. ACM, 26(11):832–843, 1983.

[Balas, 1989] E. Balas. The prize collecting traveling sales-
man problem. Networks, 19:621–636, 1989.

[Bar-Yehuda et al., 2005] R. Bar-Yehuda, G. Even, and
S. Shahar. On approximating a geometric prize-collecting
traveling salesman problem with time windows. Journal
of Algorithms, 55:76–92, 2005.

[Danzing and Ramster, 1959] G. Danzing and R. Ramster.
The truck dispatching problem. Management Science, 80–
91, 1959.

[Flum and Grohe, 2006] J. Flum and M. Grohe. Parameter-
ized complexity theory. Springer, 2006.

[Jennings and Jackson, 1995] N. R. Jennings and A. J. Jack-
son. Agent based meeting scheduling: A design and im-
plementation. IEE Electronics Letters, 31(5), 1995.

[Modi et al., 2004] J. Modi, M. Veloso, S. F. Smith, and
J. Oh. CMRADAR: A personal assistant agent for cal-
endar management. In Proc. AOIS-2004, 2004.

[Niedermeier, 2006] R. Niedermeier. Invitation to Fixed-
Parameter Algorithms. Oxford University Press, 2006.

[Papadimitriou, 1994] C. H. Papadimitriou. Computational
Complexity. Addison-Wesley, Reading, MA, 1994.

[Sen and Durfee, 1994] S. Sen and E. H. Durfee. On the de-
sign of an adative meeting scheduler. In Proc. 10th IEEE
Conference on AI for Applications , 40–46, 1994.

[Shi et al., 2008] X. Shi, L. Wang, Y. Zhou, and Y. Liang.
An ant colony optimization method for prize-collecting
traveling salesman problem with time windows. In
Proc. ICNC’08, 480–484, 2008.

[Tsitsiklis, 1992] J. N. Tsitsiklis. Special cases of travel-
ing salesman and repairman problems with time windows.
Networks, 22:263–282, 1992.

[Zhang and Tang, 2007] Y. Zhang and L. Tang. Solving
prize-collecting traveling salesman problem with time
windows by chaotic neural network. In Proc. ISNN’07,
63–71, 2007.

884

