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Abstract

To enable ontology reuse, the Web Ontology Lan-
guage (OWL) allows an ontology Kv to import an
ontology Kh. To reason with such a Kv , a reasoner
needs physical access to the axioms of Kh. For
copyright and/or privacy reasons, however, the au-
thors of Kh might not want to publish the axioms of
Kh; instead, they might prefer to provide an oracle
that can answer a (limited) set of queries over Kh,
thus allowing Kv to import Kh “by query.” In this
paper, we study import-by-query algorithms, which
can answer questions about Kv ∪ Kh by accessing
only Kv and the oracle. We show that no such al-
gorithm exists in general, and present restrictions
under which importing by query becomes feasible.

1 Introduction

The Web Ontology Language (OWL) and its revision OWL
2 are widely used ontology languages whose formal under-
pinnings are provided by description logics (DLs) [Baader et
al., 2007]—a family of knowledge representation formalisms
with well-understood formal properties. Ontologies are used,
for example, in several countries to describe electronic pa-
tient records (EPR). In such a system, patients’ data typically
involves ontological descriptions of human anatomy, medi-
cal conditions, drugs and treatments, and so on. The latter
domains have already been described in well-established ref-
erence ontologies such SNOMED-CT and GALEN. In order
to save resources, increase interoperability between applica-
tions, and rely on experts’ knowledge, an EPR application
should preferably reuse these reference ontologies.

For example, assume that some reference ontology Kh de-
scribes concepts such as the “ventricular septum defect.” An
EPR application might reuse the concepts and roles from Kh

to define its own ontology Kv of concepts such as “patients
having a ventricular septum defect.” It is generally accepted
that ontology reuse should be modular—that is, the axioms of
Kv should not affect the meaning of the symbols reused from
Kh [Lutz et al., 2007; Cuenca Grau et al., 2008].

To enable reuse, OWL allows Kv to import Kh. OWL rea-
soners deal with imports by internally merging the axioms
of the two ontologies; thus, to process Kv ∪ Kh, an EPR ap-
plication would require physical access to the axioms of Kh.

The vendor of Kh, however, might be reluctant to distribute
the axioms of Kh, as doing this might allow the competitors
to plagiarize Kh. Moreover, Kh might contain information
that is sensitive from a privacy point of view and should not
be shared. Finally, the vendor of Kh might impose different
costs for reusing parts of Kh. To reflect this situation, we say
that Kh is hidden and, by analogy, Kv is visible.

This problem could be addressed if Kh were made ac-
cessible via an oracle (i.e., a limited query interface), thus
allowing Kv to import Kh “by query.” In this paper, we
study import-by-query algorithms, which can answer ques-
tions about Kv ∪ Kh by accessing only Kv and the oracle. We
focus on schema reasoning problems, such as concept sub-
sumption and satisfiability, which are useful during ontology
development; this is in contrast to the information integration
[Lenzerini, 2002] and peer-to-peer [Calvanese et al., 2004]
scenarios, which focus on the reuse of data.

We proceed as follows. In Section 3 we formalize the
import-by-query problem and fix the appropriate query lan-
guage. Then, in Section 4 we show that no import-by-query
algorithm exists in general even if Kv and Kh are expressed
in the light-weight description logic EL [Baader et al., 2005].
In Section 5, we present such an algorithm for the case when
Kv reuses only atomic concepts from Kh, and this is done
in a modular way. Under certain assumptions, our algorithm
is worst-case optimal; however, it is unlikely to be suitable
for practice. Therefore, for the case when Kh is expressed in
a Horn DL [Hustadt et al., 2005], we present a practical al-
gorithm that extends the state-of-the-art tableaux algorithms
[Kutz et al., 2006]. Finally, in Section 6 we extend our re-
sults to the case when Kv also reuses roles from Kh, but this
is done in a syntactically restricted way. Our results may also
increase the performance of reasoning: if Kv is non-Horn
but Kh is, then Kv ∪ Kh can be reasoned with by applying
a general-purpose tableau algorithm only to Kv and using a
more efficient algorithm for Kh.

2 Preliminaries

The formal underpinnings of OWL 2 are provided by the DL
SROIQ [Kutz et al., 2006]. The syntax of SROIQ is de-
fined w.r.t. a signature Σ, which is the union of disjoint count-
able sets of atomic concepts, atomic roles, and individuals. A
role is either an atomic role or an inverse role R− for R an
atomic role. For R and Ri roles, a role inclusion axiom has
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Table 1: Model-Theoretic Semantics of SROIQ
Interpretation of Roles

(R−)I = {〈y, x〉 | 〈x, y〉 ∈ RI}
Interpretation of Concepts

�I = �I

{a}I = {aI}
(C1 � C2)I = CI

1 ∩ CI
2

(∃R.Self)I = {x | 〈x, x〉 ∈ RI}
(∃R.C)I = {x | ∃y : 〈x, y〉 ∈ RI ∧ y ∈ CI}

(�n R.C)I = {x | �{y | 〈x, y〉 ∈ RI ∧ y ∈ CI} ≥ n}
Satisfaction of Axioms in an Interpretation

I |= C  D iff CI ⊆ DI

I |= R1 . . . Rn  R iff RI
1 ◦ . . . ◦ RI

n ⊆ RI

I |= Dis(R1, R2) iff RI
1 ∩ RI

2 = ∅
I |= C(a) iff aI ∈ CI

I |= R(a, b) iff 〈aI , bI〉 ∈ RI

I |= a �≈ b iff aI �= bI

the form R1 . . . Rn  R, and a role disjointness axiom has
the form Dis(R1, R2). The set of concepts is the smallest set
containing �, A, {a}, ¬C, C1 � C2, ∃R.C, ∃R.Self, and
�n R.C, for A an atomic concept, a an individual, C, C1,
and C2 concepts, R a role, and n a nonnegative integer. Con-
cepts of the form {a} are called nominals. Furthermore, ⊥ is
an abbreviation for ¬�, C1 � C2 for ¬(¬C1 � ¬C2), ∀R.C
for ¬(∃R.¬C), and �n R.C for ¬(�n+1R.C). A concept
inclusion axiom has the form C1  C2 for C1 and C2 con-
cepts, and a concept equivalence C1 ≡ C2 is an abbreviation
for C1  C2 and C2  C1. A TBox T is a finite set of con-
cept inclusion, role inclusion, and role disjointness axioms.
An assertion has the form C(a), R(a, b), or a �≈ b, for C a
concept, R a role, and a and b individuals. An ABox A is a
finite set of assertions. A SROIQ knowledge base is a pair
K = 〈T ,A〉 where T is a TBox and A is an ABox. By a suit-
able syntactic test, certain roles in K can be identified as being
simple. To ensure decidability of reasoning, the role axioms
in T must satisfy a syntactic restriction which we omit for
brevity, and simple roles must not occur in �n R.C, ∃R.Self,
and role disjointness axioms. The definition of SROIQ by
[Kutz et al., 2006] provides other constructs, all of which are
expressible by the ones presented above.

A interpretation I = (�I , ·I) consists of a nonempty do-
main set �I and a function ·I that assigns an object aI ∈ �I

to each individual a, a set AI ⊆ �I to each atomic concept
A, and a relation RI ⊆ �I ×�I to each atomic role R. Ta-
ble 1 defines the extension of ·I to roles and concepts, and
the satisfaction of axioms in I . An interpretation I is a model
of K, written I |= K, if I satisfies all axioms in K; if such I
exists, then K is satisfiable. A concept C is satisfiable w.r.t.
K if a model I of K exists such that CI �= ∅. A nonempty
set of interpretations S is compatible if for each I1, I2 ∈ S
we have �I1 = �I2 and aI1 = aI2 for each individual a; the
intersection of such S is defined in the obvious way.

SRIQ is obtained from SROIQ by disallowing nomi-
nals. EL [Baader et al., 2005] supports only concepts of the
form �, ⊥, A, C1 � C2, and ∃R.C for A an atomic concept

Table 2: Example Knowledge Bases
Hidden Knowledge Base Kh

γ1 CHD Heart ≡ Heart � ∃cond.CHD
γ2 VSD Heart ≡ Heart � ∃cond.VSD
γ3 VSD  CHD
γ4 AS  CHD

Visible Knowledge Base Kv

δ1 CHD Pat ≡ Pat � ∃hasOrgan.CHD Heart
δ2 VSD Pat ≡ Pat � ∃hasOrgan.VSD Heart
δ3 AS Pat ≡ Pat � ∃hasOrgan.(Heart � ∃cond.AS)
δ4 EA Pat ≡ Pat � ∃hasOrgan.(Heart � ∃cond.EA)
δ5 EA  CHD

and R an atomic role, and it supports no axioms about roles.
Significant effort has been devoted to the development of DL
languages with good computational properties, such as EL,
DL-Lite [Calvanese et al., 2007], and Horn-SHIQ [Hustadt
et al., 2005]. Each knowledge base K expressed in one of
these languages is Horn in the sense that the intersection of
every compatible set of models of K is also a model of K.

For α a concept, a role, an axiom, or a knowledge base,
sig(α) is the signature of α—that is, the set of atomic con-
cepts, atomic roles, and individuals occurring in α. A po-
sition p is a finite sequence of integers. The empty posi-
tion is denoted with ε. If a position p1 is a proper prefix
of a position p2, then and p1 is above p2, and p2 is below
p1. The subterm α|p of a concept or axiom α at a position
p is defined as follows: α|ε = α; (C1 �� C2)|ip = Ci|p for
��∈ {�,} and i ∈ {1, 2}; and α|1p = C|p for α of the form
¬C, ∃R.C, �n R.C, or C(a). The concept closure cls(K) of
K = 〈T ,A〉 is the smallest set that contains all subterms of
¬C � D for each C  D ∈ T and of C for each C(a) ∈ A.

3 Importing Ontologies by Query

To illustrate the notion of import-by-query, Table 2 shows a
reference knowledge base Kh whose axioms are to be kept
hidden, but that is reused in a visible knowledge base Kv .
The hidden knowledge base Kh provides concepts describing
organs such as Heart, and medical conditions such as CHD
(congenital heart defect), VSD (ventricular septum defect),
and AS (aortic stenosis). Furthermore, the role cond re-
lates organs to medical conditions and is used to define con-
cepts such as CHD Heart (a heart with a congenital heart
disorder) and VSD Heart (a heart with a ventricular sep-
tal defect). The shared symbols of Kh are written in bold
font. In addition to these, Kh might contain nonshared sym-
bols; however, for the sake of brevity, we do not show any
axioms involving such symbols. The visible knowledge base
Kv provides the concept Pat representing patients, and it de-
fines various types of patients by relating the organs from Kh

with the patients using the hasOrgan role. In addition, Kv

extends the list of defects in Kh by EA (Ebstein’s anomaly).
The symbols private to Kv are written in italic font.

When reusing ontologies, it is commonly accepted that Kv

should not affect the meaning of the symbols reused from
Kh—that is, Kv ∪ Kh |= α should imply Kh |= α for each
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axiom α containing only the reused symbols [Lutz et al.,
2007; Cuenca Grau et al., 2008]. This is guaranteed if the
TBox Tv of Kv is local w.r.t. the set Γ of concepts and roles
imported from Kh—that is, if I |= Tv for each interpretation
I in which, for each concept or role X �∈ Γ, we have XI = ∅.
For example, δ1 is local w.r.t. {CHD Heart} because δ1

is satisfied in any interpretation that interprets the nonshared
symbols as ∅. [Cuenca Grau et al., 2008] have shown how to
check this condition using a DL reasoner.

To formalize the notion of import-by-query, we introduce
the notion of a Γ-oracle, which is responsible for advertising
the shared signature Γ of Kh and answering satisfiability of
(not necessarily atomic) concepts w.r.t. Kh. Concept satisfia-
bility is available in all DL reasoners known to us, so it pro-
vides us with a natural query language for Γ-oracles; we leave
the investigation of richer query languages to future work.
Definition 1. Let K be a KB and Γ ⊆ sig(K) a signature. The
Γ-oracle for K is the function ΩK defined for each concept C
(in the same DL as K) with sig(C) ⊆ Γ such that ΩK(C) = t
if C is satisfiable w.r.t. K, and ΩK(C) = f otherwise.

An import-by-query algorithm checks whether Kv ∪ Kh is
satisfiable; other relevant reasoning problems, such as con-
cept subsumption, can be solved using the well-known trans-
formations. The notion of an algorithm in the following defi-
nition can be made precise using a formal computation model
such as Turing machines in the obvious way.
Definition 2. An import-by-query algorithm takes a Γ-oracle
ΩKh

and a KB Kv with sig(Kv) ∩ sig(Kh) ⊆ Γ as input, and
it terminates after a finite number of computation steps re-
turning t iff Kv ∪ Kh is satisfiable.

4 The Limits of Import-by-Query Reasoning

We next show that no import-by-query algorithm exists even
for a light-weight DL such as EL.
Theorem 1. No import-by-query algorithm exists if Kv and
Kh are in EL, Γ is allowed to contain at least one atomic
role, and the TBox of Kv is local in Γ.

Proof. Consider an application of an import-by-query algo-
rithm to Kv given in (1) and Γ = {R}. Clearly, the TBox of
Kv is local in Γ. Since the algorithm terminates on all inputs,
the number of questions posed to any Γ-oracle is bounded
by some integer m and, consequently, the quantifier depth of
each concept C passed to the Γ-oracle is bounded by an inte-
ger n, where both m and n depend only on Γ and Kv . Let K1

h
and K2

h be as in (2) and (3), respectively.
Kv = {A(a), A  ∃R.A} (1)

K1
h = ∅ (2)

K2
h = { ∃R. . . .∃R︸ ︷︷ ︸ .�  ⊥ }

n + 1 times
(3)

For each EL concept C of quantifier depth at most n with
sig(C) ⊆ Γ, we have K1

h |= C  ⊥ iff K2
h |= C  ⊥, so

ΩK1
h
(C) = ΩK2

h
(C). Thus, when applied to Kv and ΩK1

h
,

the algorithm returns the same value as when it is applied to
Kv and ΩK2

h
. Since Kv ∪ K1

h is satisfiable but Kv ∪ K2
h is

not, the algorithm does not satisfy Definition 2.

5 Importing Atomic Concepts

The proof of Theorem 1 relies on the fact that Kv reuses a role
from Kh. We now present an import-by-query algorithm for
the case when no role is reused. In our example, this allows
one to express axioms δ1, δ2, and δ5, which, together with
Kh, allow us to conclude VSD Pat  CHD Pat .

5.1 Interfacing Models Point-Wise

The following definition identifies valid inputs for our algo-
rithm. In particular, we allow Kv to be any OWL 2 ontology
that reuses the symbols of Kh in a local way; however, we
disallow the usage of nominals in Kh for technical reasons.
Definition 3. Let Kv = 〈Tv,Av〉 and Kh = 〈Th,Ah〉 be KBs
such that Γ = sig(Kv) ∩ sig(Kh) contains only atomic con-
cepts. Then, Kh is safe for import-by-query into Kv if Kv is
in SROIQ, Kh is in SRIQ, and Tv is local w.r.t. Γ.

Our core observation is that a model of Kv ∪ Kh can be
obtained by taking a model I of Kv and extending it at each
point x ∈ �I with a fresh model Jx of Kh that contains a
point y ∈ �Jx such that x and y coincide on the interpre-
tation of the concepts in Γ. This is a consequence of the
fact that (i) Kv uses the concepts from Γ in a local way, and
(ii) Kh does not contain nominals, so the union of all models
Jx is also a model of Kh. To formalize this idea, we use the
following notion: for S = {D1, . . . , Dn} a nonempty finite
set of concepts, a selection w.r.t. S is a concept of the form
L1 � . . . � Ln where each Li is either Di or ¬Di; further-
more, � is the only selection w.r.t. S = ∅.
Lemma 1. Let Kh be safe for import-by-query into Kv , and
let Γ = sig(Kv) ∩ sig(Kh). Then, Kv ∪ Kh is satisfiable iff a
model I of Kv exists such that ΩKh

(C) = t for each selection
C w.r.t. Γ such that CI �= ∅.

Proof. (⇒) If I is a model of Kv ∪ Kh, then clearly I |= Kv ,
and ΩKh

(C) = t for each selection C w.r.t. Γ with CI �= ∅.
(⇐) Let I = (�I , ·I) be a model of Kv and consider each

x ∈ �I and the selection C w.r.t. Γ such that x ∈ CI . Since
ΩKh

(C) = t, an interpretation Jx = (�Jx , ·Jx) exists such
that Jx |= Kh and y ∈ CJx for some y ∈ �Jx . W.l.o.g.
we assume that y = x; �Jx ∩�I = {x}; �Jx1 ∩�Jx2 = ∅
for each x1, x2 ∈ �I with x1 �= x2; and XJx = ∅ for each
X ∈ sig(Kv) \ Γ. Let M = (�M , ·M ) be such that

�M =
⋃

x∈�I

�Jx ,

XM =
⋃

x∈�I

XJx for each atomic concept or role X, and

aM = aJx for each individual a and some (arbitrarily
chosen) interpretation Jx.

SRIQ does not allow for nominals, so it is invariant under
disjoint unions—that is, the union of any number of disjoint
models of Kh is also a model of Kh [Baader et al., 2002];
thus, M |= Kh. Furthermore, since Tv is local in Γ, we have
M |= Tv ∪ Kh. Finally, let N = (�N , ·N ) be an interpreta-
tion defined by �N = �M and

XN =
{

XI for each X ∈ sig(Kv) \ Γ
XM for each X ∈ sig(Kh) .
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Algorithm 1 Import-by-Query Algorithm
Algorithm: ibq(Kv,ΩKh , S)
Inputs: a knowledge base Kv , a Γ-oracle ΩKh , and a set of con-

cepts S over the signature Γ

1 Compute the set N of all axioms of the form C � ⊥ such that C
is a selection w.r.t. S with ΩKh(C) = f.

2 Return t iff the SROIQ knowledge base Kv ∪ N is satisfiable.

N and M have the same domains and they coincide on
the interpretation of the symbols in sig(Kh), so N |= Kh. To
show that N |= Kv , we first prove the following claim (	): for
each C ∈ cls(Kv), we have CN = CI ∪ (CM \ �I). The
proof of (	) is by induction on the structure of concepts, so
consider each C ∈ cls(Kv).

If C is an atomic concept with C ∈ Γ, then by the defini-
tion of M we have CI = CM ∩�I , so CI ∪ (CM \ �I) =
(CM ∩�I) ∪ (CM \ �I) = CM ; by the definition of N ,
we have CM = CN , which implies (	).

If C is a nominal or an atomic concept with C �∈ Γ, then
CM = ∅ and CN = CI , which trivially imply (	).

If C = ¬D, then CN = (�I ∪ (�M \ �I)) \ DN =
(�I \ DN ) ∪ ((�M \ �I) \ DN ). By applying the in-
duction hypothesis, the first disjunct reduces to �I \ DI ,
and, since, �M \ DN = �M \ (DI ∪ (DM \ �I)) =
(�M \ DI) \ (DM \ �I) = �M \ DM , the second one re-
duces to (�M \ DM ) \ �I . But then, (	) holds.

If C = D1 � D2, then CN = DN
1 ∩ DN

2 , which is equal to
(DI

1 ∪ (DM
1 \ �I)) ∩ (DI

2 ∪ (DM
2 \ �I)) by the induction

hypothesis; but (DM
1 \ �I) ∩ DI

2 = (DM
2 \ �I) ∩ DI

1 = ∅,
so CN = (DI

1 ∩ DI
2) ∪ ((DM

1 \ �I) ∩ (DM
2 \ �I)); finally,

(DM
1 \ �I) ∩ (DM

2 \ �I) = (DM
1 ∩ DM

2 ) \ �I .
If C = � n R.D or C = ∃R.Self, since R �∈ sig(Kh), we

have RM = ∅ and CM = ∅; furthermore, RN = RI and
DI ⊆ DN by the induction hypothesis, so CN = CI . This
completes the proof of (	).

Consider now each axiom α in Kv . For α a concept inclu-
sion axiom, we assume w.l.o.g. that it is of the form �  C.
By (	), CN = CI ∪ (CM \ �I). Since I |= α, we have
CI = �I ; furthermore, since Tv is local w.r.t. Γ, we have
M |= α, so CM = �M ; thus, CN = �N , so N |= α. For α
a role assertion, a role inclusion, or a role disjointness axiom,
we have N |= α because N coincides with I on the inter-
pretation of all roles from sig(Kv). For α = C(a), we have
aN ∈ CN by (	) and a �∈ Γ. Finally, for α = a �≈ b, we have
aN �= bN because {a, b} ∩ Γ = ∅. Thus, N |= Kv .

Lemma 1 motivates Algorithm 1.

Theorem 2. Let Kh be safe for import-by-query into Kv ,
Γ = sig(Kv) ∩ sig(Kh), and ΩKh

the Γ-oracle for Kh. Then,
ibq(Kv,ΩKh

,Γ) is an import-by-query algorithm, and it can
be implemented such that it runs in N2EXPTIME with an ex-
ponential number of calls to ΩKh

.

Proof. That ibq(Kv,ΩKh
,Γ) is an import-by-query algo-

rithm is a direct consequence of Lemma 1. Furthermore,
the number of selections w.r.t. Γ is exponential in the size
of Γ, so N can be computed by an exponential number of

calls to ΩKh
. Let ria(·) be the transformation by [Kazakov,

2008] for eliminating role inclusion axioms from SROIQ
KBs. Then, ria(Kv) is equisatisfiable with and exponentially
larger than Kv [Kazakov, 2008]. Furthermore, N contains
the same concepts as ria(Kv) and no role inclusions axioms,
so ria(Kv ∪ N) = ria(Kv) ∪ N = K′. Thus, K′ is equisatis-
fiable with and exponentially larger than Kv . We can check
satisfiability of K′ by transforming K′ polynomially into an
equisatisfiable formula ϕ of the two-variable fragment with
counting, and deciding the satisfiability of ϕ in NEXPTIME
[Pratt-Hartmann, 2005]. Clearly, the overall algorithm runs
in N2EXPTIME with exponentially many calls to ΩKh

.

5.2 Importing Horn Ontologies

Algorithm 1 is unlikely to be suitable for practice because
Step 1 is exponential in the size of Γ. In this section, we
present a practical algorithm for the case when Kh is Horn.1
This algorithm calls the Γ-oracle “on demand,” which makes
it “more goal-oriented.” The correctness of the algorithm is
based on the following observation about Horn KBs.
Proposition 1. Let K be a Horn knowledge base, C a con-
junction of atomic concepts, and A1, . . . , An atomic concepts
such that C � ¬Ai is satisfiable w.r.t. K for each 1 ≤ i ≤ n.
Then, C � ¬A1 � . . . � ¬An is satisfiable w.r.t. K as well.

Proof. Let Ki = K ∪ {C(a),¬Ai(a)} for 1 ≤ i ≤ n and a
an individual not occurring in K. Let Ii be a model of each
Ki; w.l.o.g. we assume that the set S = {Ii | 1 ≤ i ≤ n} is
compatible (e.g., we can select Ii to be Herbrand models of
Ki). Let J be the intersection of S. Since K is Horn, we
have J |= K. Furthermore, aJ ∈ CJ and aJ �∈ AJ

i for each
1 ≤ i ≤ n; therefore, aJ ∈ (C � ¬A1 � . . . � ¬An)J .

We extend the tableau algorithms used in many state-of-
the-art DL reasoners. Our extension, however, is largely in-
dependent from the intricacies of these algorithms, so we
introduce an abstraction of a tableau algorithm as a tuple
T = 〈C, R〉 with the following structure.
• C assigns to each ABox A a value from {t, f} such that

C(A) = t only if A is unsatisfiable. A contains a clash
if C(A) = t; otherwise, A is clash-free.

• R is a set of derivation rules, where each ρ ∈ R assigns
to each pair (T ,A) a set of n-tuples of ABoxes (tuples
in this set can vary in arity). A rule ρ is applicable to T
and A if ρ(T ,A) �= ∅.

A derivation for K = 〈T ,A〉 by T = 〈C, R〉 is a pair
〈Θ, σ〉 where Θ is a finitely branching tree and σ labels each
node v of Θ with an ABox σ(v) such that (i) σ(v) = A
for v the root of Θ; (ii) if C(σ(v)) = t or no derivation
rule in R is applicable to (T , σ(v)), then v is a leaf of Θ;
(iii) if C(σ(v)) = f and a derivation rule in R is applica-
ble to (T , σ(v)), then v has children v1, . . . , vn such that
〈σ(v1), . . . , σ(vn)〉 ∈ ρ(T , σ(v)) for some (arbitrarily cho-
sen) derivation rule ρ ∈ R.

T is terminating if, for each K, each derivation for K by
T can be constructed using finitely many steps. T is sound

1From the infrastructure point of view, the Γ-oracle for Kh

should indicate to clients if Kh is (known to be) Horn.
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if, for each model I of each 〈T ,A〉, each derivation rule
ρ ∈ R, and each 〈A1, . . . ,An〉 ∈ ρ(T ,A), an interpretation
I ′ exists such that XI = XI′

for each X �∈ sig(Ai) \ sig(A),
and I ′ |= 〈T ,Ai〉 for some 1 ≤ i ≤ n. T is complete if a
partial function M mapping ABoxes to interpretations ex-
ists such that, in each derivation (Θ, σ) for K by T, and for
each leaf v of (Θ, σ) such that A′ = σ(v) is clash-free, the
value of M(A′) is defined and M(A′) |= K. Furthermore,
we assume that M(A′) = (�I , ·I) always satisfies the fol-
lowing property (♦): for each conjunction of atomic concepts
C = A1 � . . . � An such that CI �= ∅ and (C � B)I = ∅ for
each atomic concept B not occurring in C, an individual s ex-
ists such that Ai(s) ∈ A′ for each 1 ≤ i ≤ n, and B(s) �∈ A′
for each atomic concept B not occurring in C. Intuitively, (♦)
ensures that conjunctive concepts are interpreted in M(A′) in
accordance with their instantiations in A′. Most tableau algo-
rithms used in practice are sound, complete, and terminating;
furthermore, all such algorithms known to us satisfy (♦).

We now show how to extend T to an import-by-query al-
gorithm for the case when Kh is Horn.

Definition 4. Let T = 〈C, R〉 be a sound, complete, and ter-
minating tableau algorithm, Γ a set of atomic concepts, and
ΩKh

a Γ-oracle. The tableau algorithm TΓ,ΩKh
is obtained

by extending T with the ask-rule as follows: ask(T ,A) is de-
fined for each (T ,A) as the smallest set such that, for each
individual s in A, the concept C obtained as the conjunction
of all Ai ∈ Γ with Ai(s) ∈ A, and each B ∈ Γ ∪ {⊥} with
ΩKh

(C � ¬B) = f, we have

〈A ∪ {B(s)}〉 ∈ ask(T ,A).

Intuitively, the ask-rule deterministically adds B(s) to each
ABox that contains assertions A1(s) . . . , An(s) such that
Kh |= A1 � . . . � An |= B.

Theorem 3. Let Kh = 〈Th,Ah〉 be a Horn knowledge base
that is safe for import-by-query into Kv = 〈Tv,Av〉, let
Γ = sig(Kv) ∩ sig(Kh), let ΩKh

be the Γ-oracle for Kh, and
let T be a sound, complete, and terminating tableau algo-
rithm. Then, TΓ,ΩKh

satisfies the following two claims:

1. if Kv ∪ Kh is satisfiable, then each derivation for Kv by
TΓ,ΩKh

contains a branch on which all nodes are la-
beled with clash-free ABoxes; and

2. if a derivation for Kv by TΓ,ΩKh
contains a leaf labeled

with a clash-free ABox, then Kv ∪ Kh is satisfiable.

Proof. (Claim 1) Assume that I is a model of Kv ∪ Kh, and
consider each derivation for Kv by TΓ,ΩKh

. We assume
w.l.o.g. that the derivation rules of TΓ,ΩKh

do not introduce
assertions involving symbols from sig(Kh) \ Γ. Consider
now the tuple 〈A1, . . . ,An〉 obtained from Av by an appli-
cation of a derivation rule of TΓ,ΩKh

. If the derivation rule
is from T, since T is sound, I can be extended to a model
I ′ of some 〈Tv,Ai〉; since this extension does not involve
the symbols in sig(Kh), we have I ′ |= Kh as well. For the
ask-rule, n = 1 and sI ∈ CI , so ΩKh

(C � ¬B) = f implies
sI ∈ BI and I |= 〈Tv,A1〉 ∪ Kh. By repeating this claim in-
ductively, we conclude that the derivation contains a branch

on which each node is labeled with an ABox A′ such that
〈Tv,A′〉 ∪ Kh is satisfiable; thus, each A′ is clash-free.

(Claim 2) Let A′ be a clash-free ABox labeling a leaf of
a derivation for Kv by TΓ,ΩKh

, and let M(A′) = (�I , ·I).
Furthermore, let C be a selection w.r.t. Γ such that CI �= ∅,
and let D be the conjunction of all atomic concepts that occur
positively in C. By (♦) and the fact that C is maximal, an
individual s in A exists such that Ai(s) ∈ A′ for each Ai in
D, and Bj(s) �∈ A′ for each atomic concept Bj , 1 ≤ j ≤ n
that occurs negatively in C. Since the ask-rule is not appli-
cable to A′, then D � ¬Bj is satisfiable w.r.t. Kh for each
1 ≤ j ≤ n. Since Kh is Horn, by Proposition 1 we have that
D � ¬B1 � . . . � ¬Bn = C is satisfiable w.r.t. Kh as well.
But then, Kv ∪ Kh is satisfiable by Lemma 1.

Each derivation for Kv by TΓ,ΩKh
is clearly finite. Further-

more, the value of ask(T ,A) can be determined by asking
ΩKh

(C) for each selection C w.r.t. Γ occurring in A. There-
fore, a derivation for Kv by TΓ,ΩKh

can be constructed by a
finite number of steps, which provides us with an import-by-
query algorithm. Such an algorithm may, in the worst case,
make an exponential number of calls to the oracle; however,
such calls are made as needed, which makes this algorithm
more amenable to implementation than Algorithm 1.

6 Importing Atomic Roles

We now extend the results from Section 5 and allow the reuse
of roles under the following syntactic restriction.
Definition 5. For Γ a set of atomic concepts and roles, we say
that a concept is Γ-modal if it is of the form ∃R.Self, ∃R.C,
or �n R.C, for R ∈ Γ.

Let Kv and Kh be KBs such that Γ = sig(Kv) ∩ sig(Kh)
contains both concepts and roles. Then, Kh is safe for import-
by-query into Kv if, in addition to the conditions from Defi-
nition 3, roles from Γ do not occur in role inclusion and dis-
jointness axioms in Kv; for each ∃R.Self or �n R.C in Kv ,
if R ∈ Γ then R is simple in Kh; and sig(C) ⊆ Γ for each
Γ-modal concept C ∈ cls(Kv).

For satisfiability of Kv ∪ Kh to be decidable, only simple
roles from Kh can occur in certain concepts in Kv [Horrocks
et al., 2000]. Thus, the Γ-oracle for Kv should also advertise
to clients which roles in Γ are simple. This is a syntactic
check that is provided by most DL reasoners.

In our example, Definition 5 allows us to express δ3: the
role cond from Kh occurs in a Γ-modal concept ∃cond.AS,
but AS is from Kh as well. This is in contrast to δ4, in which
∃cond.EA contains EA that is not from Kh. Note that δ1,
δ3, and Kh allow us to conclude AS Pat  CHD Pat .

By using the appropriate set S, Algorithm 1 is an import-
by-query algorithm for the case of shared roles as well. In
the following theorem, we say that position p in a concept or
axiom α is Γ-outermost if α|p is a Γ-modal concept, and α|q
is not a Γ-modal concept for each position q above p.
Theorem 4. Let Kv , Γ, and ΩKh

be as in Theorem 2 with the
difference that Γ can also contain atomic roles, and let

S = {A ∈ Γ | A is an atomic concept} ∪
{α|p | α ∈ Kv and p is Γ-outermost in α}.
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Then, ibq(Kv,ΩKh
, S) is an import-by-query algorithm, and

it can be implemented such that it runs in N2EXPTIME with
an exponential number of calls to ΩKh

.

Proof. Let QD be a fresh atomic concept uniquely associ-
ated with each D ∈ S. Furthermore, let K′v be the knowl-
edge base obtained from Kv by replacing in each axiom
α ∈ Kv the concept α|p with Qα|p for each Γ-outermost
position p in α. Also, let K′h be obtained from Kh by
adding the axiom QC ≡ C for each C in S. Finally, let
Γ′ = sig(K′v) ∩ sig(K′h), and let ΩK′

h
be the Γ′-oracle such

that ΩK′
h
(C1) = ΩKh

(C2) for each C1 and C2 where C2

is obtained from C1 by replacing all QD with D. Since
Kv satisfies the condition from Definition 5 and Γ′ contains
only atomic concepts, K′h, K′v , and ΩK′

h
satisfy the pre-

conditions of Theorem 2. Furthermore, it is obvious that
ibq(K′v,ΩK′

h
,Γ′) = ibq(Kv,ΩKh

, S), so the latter is an
import-by-query algorithm. The proof for the algorithm’s
running time is the same as in Theorem 2.

When each Γ-modal concept C occurring in Kv is Horn
[Hustadt et al., 2005], the tableau algorithm from Definition
4 can be extended to the case when Γ contains roles by using
the set S from Theorem 4 instead of Γ in the ask-rule.

Finally, the results from this section can be extended to
the case when Kv contains concepts of the form �n R.D
with R ∈ Γ and sig(D) �⊆ Γ, provided that the unfolding
of D in Kv and results in a concept containing only sym-
bols from Γ. In our example, the nonshared symbol EA
in δ4 can be unfolded with its definition in δ5, resulting
in EA Pat ≡ Pat � ∃hasOrgan.(Heart � ∃cond.CHD);
after this preprocessing step, we can use the import-by-query
algorithm to conclude EA Pat  CHD Pat .

7 Related Work

In a peer-to-peer setting, [Calvanese et al., 2004] consider
the problem of answering a query q over two KBs Kv and Kh

with disjoint signatures and a set M of mappings of the form
qh � qv by reformulating q as queries that can be evaluated
over Kv and Kh in isolation. The query reformulation algo-
rithm accesses only Kv and M; thus, q can be answered by
means of an oracle for Kh. In such a setting, however, a sat-
isfiable Kh cannot affect the subsumption of concepts in Kv .
Consider the following example:

Kh = {Bh  Ah} M = { Ah(x) � Av(x),
Kv = {Cv  Bv} Bh(x) � Bv(x) } (4)

Now Kh ∪ Kv ∪M �|= Cv  Av , since the mappings in M
are unidirectional. Thus, whereas [Calvanese et al., 2004]
consider simple schemas (i.e., both Kh and Kv must be in
DL-Lite) and conjunctive query answering, we focus on rich
TBoxes and schema reasoning.

[Baader et al., 2002] study the transfer of decidability re-
sults when combining decidable logics. In particular, they
show how to integrate algorithms that decide satisfiability of
Kv and Kh independently into an algorithm that decides sat-
isfiability of Kv ∪ Kh, provided that the two KBs do not share
roles and do not contain nominals. This situation is similar to
the one in Section 5, with the difference that we allow Kv to
contain nominals but require it to be local in Γ.

8 Conclusion

In this paper, we have studied the problem of importing an on-
tology without knowing its axioms. We have shown that this
problem does not have a general solution. Furthermore, we
have identified solvable cases, for which we have presented
two algorithms. In future work, one might consider relaxing
the syntactic restrictions on the usage of roles, particularly if
one were to extend the query language of the oracle.
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