Increasing the expressiveness of qualitative spatial calculi is an essential step towards meeting the requirements of applications. This can be achieved by combining existing calculi in a way that we can express spatial information using relations from both calculi. The great challenge is to develop reasoning algorithms that are correct and complete when reasoning over the combined information. Previous work has mainly studied cases where the interaction between the combined calculi was small, or where one of the two calculi was very simple. In this paper we tackle the important combination of topological and directional information for extended spatial objects. We combine some of the best known calculi in qualitative spatial reasoning (QSR), the RCC8 algebra for representing topological information, and the Rectangle Algebra (RA) and the Cardinal Direction Calculus (CDC) for directional information. Although CDC is more expressive than RA, reasoning with CDC is of the same order as reasoning with RA. We show that reasoning with basic RCC8 and basic RA relations is in P, but reasoning with basic RCC8 and basic CDC relations is NP-Complete.

Weiming Liu, Li Sanjiang, Renz Jochen