Multimode Control Attacks on Elections

In 1992, Bartholdi, Tovey, and Trick opened the study of control attacks on elections attempts to improve the election outcome by such actions as adding/deleting candidates or voters. That work has led to many results on how algorithms can be used to find attacks on elections and how complexity-theoretic hardness results can be used as shields against attacks. However, all the work in this line has assumed that the attacker employs just a single type of attack. In this paper, we model and study the case in which the attacker launches a multipronged (i.e., multimode) attack. We do so to more realistically capture the richness of real-life settings. For example, an attacker might simultaneously try to suppress some voters, attract new voters into the election, and introduce a spoiler candidate. Our model provides a unified framework for such varied attacks, and by constructing polynomial-time multiprong attack algorithms we prove that for various election systems even such concerted, flexible attacks can be perfectly planned in deterministic polynomial time.

Piotr Faliszewski, Edith Hemaspaandra, Lane A. Hemaspaandra