
Efficient Min ing of Statistical Dependencies 
T i m Oates, M a t t h e w D. Schmi l l and Paul R- Cohen 

Experimental Knowledge Systems Laboratory 
Department of Computer Science 

Box 34610 LGRC 
University of Massachusetts 
Amherst, MA 01003-4610 

{oates, schmill, cohen}@cs.umass.edu 

Abst rac t 
The Multi-Stream Dependency Detection algo
rithm finds rules that capture statistical depen
dencies between patterns in multivariate time 
series of categorical data [Oates and Cohen, 
1996c]. Rule strength is measured by the G 
statistic [Wickens, 1989], and an upper bound 
on the value of G for the descendants of a node 
allows MSDD'S search space to be pruned. How
ever, in the worst case, the algorithm wil l ex
plore exponentially many rules. This paper 
presents and empirically evaluates two ways of 
addressing this problem. The first is a set of 
three methods for reducing the size of MSDD'S 
search space based on information collected 
during the search process. Second, we discuss 
an implementation of MSDD that distributes its 
computations over multiple machines on a net
work. 

1 In t roduc t ion 
Multi-Stream Dependency Detection (MSDD) is an al
gorithm for finding rules that capture statistical depen
dencies in databases. Past applications of the algorithm 
include finding dependencies in multi-variate time series 
[Oates and Cohen, 1996c], learning probabilistic plan
ning operators [Oates and Cohen, 1996b], and acquiring 
rules for correlating and predicting asynchronous events 
[Oates et a/., 1998]. In this paper, we describe three 
methods for reducing the size of the search space that 
MSDD considers and empirically evaluate their uti l i ty. In 
addition, we present a version of the algorithm, called D-
MSDD, that distributes the search for rules over multiple 
machines on a network. The remainder of this section 
discusses the core MSDD algorithm. Section 2 describes 
the three search space reduction methods and section 3 
summarizes our empirical work with them. Section 4 
presents D-MSDD. Finally, section 5 summarizes. 

Let D be a database containing T records: D = 
Each record is a set of unique tokens 

taken from the alphabet and the number of tokens 
may vary from record to record: 

. Let a pattern be defined in exactly the 

same manner as a record. We say that pattern p occurs 
in record R if = p. A rule (also called a depen
dency) consists of a pair of patterns, p and s, which are 
called the precursor and successor respectively. 

For any given rule, we can construct a 2x2 contingency 
table that describes the frequency of co-occurrence of the 
corresponding patterns in a database. Let COUNT(p, s) 
denote the number of records in D that contain both 
p and «, i.e. for which - I f 
either of the arguments to COUNT is negated, then that 
argument must not appear in the records. For example, 
COUNT(p,s) denotes the number of records in D that 
contain p but do not contain s, i.e. for which 

. The following contingency table describes 
the frequency of co-occurrence of p and s: 

Rule strength is measured by the G statistic. G is a 
statistical measure of association, wi th large values indi
cating that p and s co-occur more or less frequently than 
one would expect by random chance [Wickens, 1989]. G 
is computed for the table above as follows: 

ni is the expected value of ni under the assumption of 
independence, and is computed from the row margins 
and the table total. For example, n1 is the probability 
that p and s wil l co-occur in a database record, given 
that they are independent, times the number of records 
in the database. The probability of an occurrence of 
p is , the probability of an occurrence of s is c 1 /T , 
and the probability of the joint event given independence 
is Therefore, = 

Strong dependencies, as indicated by large G 

794 MACHINE LEARNING 



values, capture structure in the database because they 
tell us that there is a relationship between their con
stituent patterns, that occurrences of those patterns are 
not independent. 

MSDD performs a general-to-specific search in the 
space of all possible pairs of patterns defined over and 
returns the k strongest dependencies found, where k is 
supplied by the user. It is perhaps more correct to say 
that MSDD returns all of the rules associated wi th the 
top k values of G found in the search space. The current 
version of MSDD, in contrast to all other implementations 
reported previously, may return a number of rules much 
larger than k. The reason is that if multiple rules have 
exactly the same G value they are all retained, regardless 
of how different the rules themselves are. 

The root of MSDD'S search tree contains two empty 
patterns, and all rules at depth n have the 
property that = n. The children of a node are 
generated by adding a token from to either the pre* 
cursor or the successor of that node. Despite the fact 
that the current implementation of MSDD is highly opti
mized C code which is capable of processing more than 
100,000 rules per second (on some databases), the size of 
the search space is exponential in and simply cannot 
be explored exhaustively. However, because MSDD re
turns a list of the k strongest dependencies, it is possible 
to use an upper bound on the value of G for a rule's de
scendants to prune the search. If none of the descendants 
of a rule can have a G value higher than that of any of 
the current k best rules, then that rule can be pruned. 
In previous work we derived such an upper bound on 
G, making it possible for MSDD to find the k strongest 
dependencies in an exponential space [Oates and Cohen, 
1996c]. 

To ensure that good rules are found early in the search, 
and thus that pruning becomes effective early as well, 
MSDD performs iterative deepening. This also causes the 
algorithm's memory requirements to be relatively mea
ger. 

2 Improv ing Search Efficiency 
The first method for reducing the number of rules that 
MSDD searches is based on the observation that the size 
of the fringe as a function of search depth often has the 
shape shown in Figure 1. For this dataset (the vote 
dataset taken from the UC Irvine collection), the number 
of fringe nodes initially rises sharply, reaching a peak of 
7,304,048 nodes at depth nine, and then falls off just as 
sharply. There are two competing forces at work causing 
this behavior: the size of the search space and MSDD'S 
ability to prune. As search depth increases, the size of 
the search space grows dramatically. At shallow depths 
few good rules are found and MSDD'S pruning cannot stop 
this growth. Eventually, though, a depth is reached at 
which most of the k best rules have been found, and the 
vast majority of the rules at subsequent depths have low 
G values due to the presence of extraneous tokens and 
can be pruned. To take advantage of this phenomenon, 

MSDD stops performing iterative deepening when the size 
of the fringe falls below a user-specified fraction of its 
maximum size and instead performs a single depth-first 
search with no depth l imitation. For the search shown in 
Figure 1, the fact that the size of the fringe has peaked 
can be determined at the end of the search to depth ten; 
resulting in one final iteration of depth first search rather 
than the five iterations required by iterative deepening 
to terminate at depth fifteen. 

Figure 1: The number of fringe nodes as a function of 
search depth on the vote dataset. 

The second method for reducing the number of rules 
that MSDD considers involves reordering the elements of 

at each new depth. As with most implementations of 
depth-first search, search operators are applied in a fixed 
order to generate the children of a node. In the case of 
MSDD, search operators add an element of to a rule to 
generate a child, and operators are ordered so that the 
operator that adds o% is applied before the one that adds 
cij for i < j. The result is that children for which the last 
token added has a lower index in are expanded before 
children for which that index is higher. If the tokens in 

are ordered so that the ones wi th low indices are the 
ones that appear in rules with high G values, then those 
rules wil l be generated early and pruning becomes more 
effective early. Under the assumption that tokens that 
appeared in the k best rules at depth d wil l continue 
to be the most useful tokens at depth , we reorder 
the tokens in after each search depth so that the most 
frequently used tokens have the lowest indices in 

The final performance enhancement takes advantage 
of the fact that the size of MSDD'S search space is expo
nential in . Let # be the set of tokens that appear at 
least once in the final set of the k best rules. If could be 
determined a priori, then the other tokens could be elim
inated from leading to a potentially large reduction 
in the size of the search space. Although it is impossible 
to determine prior to searching, it is often possible to 
identify that set by iteratively looking at subsets of 
Even when is very large, exhaustive search to a shal
low depth is feasible. The tokens that appear in the k 
best rules found during that search serve as an init ial ap
proximation to , which we wi l l denote . Hereafter, all 
searches are performed using as the token set rather 

OATES, SCHMILL. AND COHEN 795 



than After the init ial shallow search, the following 
procedure is repeated some fixed number of times: 

1. Perform a depth-unlimited run of the standard iter
ative deepening search (using ). 

2. Remove all variables in _ that do not appear in any 
of the k best rules. 

3. Add some small number of randomly selected vari
ables in 

The search in step 1 is very fast because is typically 
much smaller than , making it possible to perform 
many iterations of this procedure in the time normally 
required to perform one search cm the space defined by 

Unless the true k best rules individually contain 
very large numbers of tokens and rules containing sub
sets of those tokens all have low G scores, the procedure 
outlined above wil l eventually converge on $. There is 
no guarantee of such convergence in practice, especially 
when the number of iterations through the procedure is 
small. However, empirical results show that it performs 
quite well both in terms of CPU requirements and ability 
to find a good approximation to the set of rules found 
when searching over 

3 Exper iments 
To evaluate the uti l i ty of the performance enhancements 
described above, we ran MSDD on several datasets taken 
from the UC Irvine collection. For each dataset, we ran 
MSDD five times in each of the conditions below, with 
each iteration using a different random ordering of the 
variables: 

STANDARD - no performance enhancements turned 
on 
FRINGE - switching from iterative deepening to 
depth-unlimited DFS when the fringe falls below 
75% of its maximum size 
ORDER - reordering after each search 
SAMPLE - five iterations of random sampling of five 
tokens in 
A L L - applying each of FRINGE, ORDER and SAMPLE 
at the same time 

A l l experiments were run on a 500MHz DEC Alpha, and 
in each case k = 10. 

Results for six different datasets taken from the UC 
Irvine repository are shown below. Table 1 lists those 
datasets along with the number of records and the num
ber of unique tokens they contain. For each dataset, 
Table 2 shows the mean number of CPU seconds and 
search nodes required to find the k best rules. In addi
t ion, the number of rules returned and their mean length 
(as measured by the sum of the number of tokens in their 
constituent patterns) is reported. Finally, the disparity 
between the true k best rules and the actual rules found 
is shown, where disparity is the mean number of tokens 
by which each rule in the true rule set differs from its 
best match in the actual rule set returned. Note that the 
STANDARD, ORDER and FRINGE conditions are all guar
anteed to find the optimal rule set, and thus always have 
a disparity of zero. 

Table 1: Datasets and their features that are relevant to 
MSDD'S run time. 

On the vo te dataset, STANDARD expanded nearly one 
quarter of a billion nodes on average, requiring a l i t t le 
over one hour of CPU time. Interestingly, the amount of 
search required by ORDER and STANDARD were virtually 
identical on this dataset. However, compared to STAN
D A R D , FRINGE was more efficient by a factor of two, and 
both SAMPLE and A L L were more efficient by an order of 
magnitude, t tests comparing mean CPU seconds and 
mean nodes expanded confirm these results, wi th all dif
ferences being highly significant. Despite the fact that 
SAMPLE and ALL are not guaranteed to find the same 
rule set as the other conditions, they did so unfailingly 
(i.e. had a disparity of zero). 

On the promoters dataset, STANDARD expanded al
most 300 mill ion nodes on average, requiring a l i t t le un
der 23 minutes of CPU time. Each of ORDER, FRINGE, 
SAMPLE and ALL were significantly more efficient (as in
dicated by t tests) than STANDARD. Again, A L L was the 
least expensive condition, requiring 1/6 the amount of 
search required by STANDARD. Although the rules found 
in the SAMPLE and A L L conditions differed from the rules 
found in the other conditions on this dataset, there was 
substantial overlap. The mean G of the rules returned 
in the former two conditions was 63.09 and 64.37 respec
tively, whereas the mean G of the true k best rules was 
68.25. On average, the rules returned in the SAMPLE and 
ALL conditions differed from the optimal rule set by 2.5 
and 3.23 tokens respectively. 

Results for the lymphography dataset show similar re
sults, wi th significant speedups and low disparity (less 
than one token per rule). However, the results are rather 
different for f l a r e , mushroom and t i c - t a c - t o e . In each 
of these datasets, the ORDER condition was virtually 
identical to the STANDARD condition, wi th FRINGE per
forming significantly better. In each case, though, both 
SAMPLE and ALL performed significantly worse. The rea
son for this is made obvious by inspecting the final rule 
sets. Almost every token in appears in the list of rules 
returned. Therefore, rapidly approaches , causing 
each iteration of the sampling procedure to be almost as 
costly as a single run of STANDARD. Future work wil l 
include attempting to detect this condition as the search 
proceeds so as to stop iterating through the sampling 
procedure. 

4 D is t r i bu ted Search 
Expansion of a node by MSDD requires knowledge of 
the node itself (to determine which search operators are 

786 MACHINE LEARNING 



Table 2: Performance of MSDD and its various enhancements on several datasets. 

valid), (the list of all search operators), the dataset (to 
build contingency tables), and the current list of the k 
best nodes (to prune). Only the list of the k best nodes 
changes dynamically during the search, making it possi
ble to distribute the search space over multiple machines 
on a network as long as those machines have access to 
the same k best list. However, an out-of-date k best list 
will only result in underestimates of the priming thresh
old, so the algorithm wil l not suffer a loss of admissibility 
if local copies of the k-best list are updated lazily. 

D-MSDD uses a centralized model of communication to 
coordinate its distributed search. A single server acts as 
a hub for communication and user control, wi th one or 
more clients connecting via TCP/ IP to offer their com
putational resources to the search. 

The distributed search begins with the server initiat
ing the distribution of data. Once complete, the server 
expands the root of the search space to generate a sin
gle ply of the search space, and distributes it among the 
connected clients. Work can begin at a searching ma
chine as soon as there are nodes to be evaluated, and 
continues unti l all participating searchers report that 
they have processed their entire workloads. During the 
search, should a participant decide to add a rule to it 's 
k-best list, the rule and its rating are broadcast to all of 
the other participants. 

The major advantage of distributing the search for 
dependencies across multiple computing resources is ob
vious: in the ideal case, a computation requiring mil
liseconds of computing time would take milliseconds 
to complete on n machines. Due to message passing 
and other overhead, this idealized speedup is difficult to 

obtain, but it is the goal of parallel and distributed com
putation to come as close to it as possible. The key to re
alizing this goal is to keep all of the distributed resources 
as busy as possible while reducing message passing and 
other overhead to a minimum. 

4.1 Load Balanc ing 
Some studies have been made of provably optimal load-
balancing policies. Most, if not all such studies, such 
as [Gao et a/., 1995], require a priori knowledge about 
the structure of the search space. The MSDD search space 
can indeed be enumerated and reasoned about, but due 
to pruning, the effective search space (that space which 
is actually searched) cannot be determined a priori. For 
this reason, optimality results based on tree sweep pro
cedures do not directly apply to D-MSDD. 

Many solutions to the load balancing problem have 
been proposed for problems for which optimality re
sults do not apply, such as IDA* search [Cook, 1996]. 
In general, these load balancing algorithms can be dis
tinguished in two ways. The first distinction can be 
made based on what is partitioned (and subsequently 
distributed): the computational space, or the data. In 
functioned decomposition, distinct portions of the com
putational space are distributed among processing de
ments. In data decomposition, the data is distributed. 
Wi th MSDD, the systematic nature of the search space 
allows disjoint sets of nodes to be evaluated indepen
dently. The same process if the data were partitioned 
would not allow the searchers to operate independently; 
every result generated by a host would need to be syn-
chronized with every other host. As such, the logical 

OATES, SCHMILL, AND COHEN 797 



approach to partitioning (and the one we take) with D-
MSDD is functional decomposition. 

The second distinction among distributed algorithms 
is made between static load .balancing and dynamic load 
balancing. Static load balancing attempts to divide the 
data prior to the beginning of the distributed compu-
tation. For D-MSDD, static load balancing equates to 
dividing the first ply of the search space among the dis
tributed processing elements. Dynamic load balancing 
takes place while the search is in progress. An example 
of dynamic load balancing in D-MSDD would be a pro
cessor with a large agenda offloading some of its work to 
a processor with few nodes on its agenda. Good static 
analysis can make dynamic load balancing unnecessary, 
reducing communication overhead and idle CPU cycles. 

We explored the uti l i ty of two static load balancing 
policies in D-MSDD. A capacity sensitive policy ensures 
that each searcher receives a number of nodes propor
tional to its processing capacity by consulting a database 
of known clients and architectures containing estimates 
of their processing capacity. The capacity estimates in 
the database reflect the mean number of nodes expanded 
per second over a fixed reference tr ial . A potential im
provement on this policy is to take into account the num
ber of children a search node can parent. We wil l call 
the number of search operators that apply at a rule its 
rank. Rank can be used to compute the size of the un-
pruned search space parented by rule r. Let spacesize be 
the maximum number of nodes a searcher wil l have to 
expand if it is given rule r as its workload. Certainly, the 
maximum amount of work a searcher could have to do 
is much greater than the work a search will do on most 
datasets. Rank and spacesize, however, are statistics 
that can be computed a priori, while effective spacesize 
is not. D~MSDD's rank-based policy attempts to balance, 
in a capacity sensitive manner, the total spacesize it al
locates to different searchers. 

Dynamic load balancing schemes are a class of algo-
rithms that perform load balancing after work begins. 
For D-MSDD, dynamic load balancing is initiated when a 
client detects that its agenda is about to become empty. 
In such a situation, the client sends a message to the 
server indicating that it can take on more work. This 
is referred to as receiver initiated load balancing, as the 
eventual recipient initiates the transfer of work. 

When the server receives the work request, it first 
checks its own agenda to see if there is enough work there 
to offload some minimum number of nodes. If there is, 
the server invokes a static load balancing policy to rebal
ance its load with respect to the client. If the server does 
not have enough nodes to offload to a waiting client, or 
its own agenda becomes empty, it broadcasts a request 
for work to all connected clients, who themselves invoke 
the static load balancing algorithm when possible. 

The message passing associated with dynamic rebal
ancing also provides an opportunity to obtain more up-
to-date information for use in load balancing. In par
ticular, by the time a searcher has expended its agenda, 
it wil l have more recent estimates of its own processing 

Figure 2: Results for the solar flares data after adding 
dynamic load balancing to D-MSDD. (a) the effect on the 
time to completion for unloaded machines (b ) the effect 
on mean CPU utilization. 

Figure 3: Results for the chess data after adding dynamic 
load balancing to D-MSDD. (a) the effect on the time to 
completion for unloaded machines (b) the effect on mean 
CPU utilization. 

capacity. Updates to the capacity lookup table are sent 
to the server along with each request for more work. 

4.2 E v a l u a t i o n 

The basic MSDD algorithm has been shown to be effective 
in terms of the quality of the rules it discovers [Oates and 
Cohen, 1996a] and efficient in its search of very large 
spaces. Our goal in evaluating D-MSDD is to test the 
hypothesis that efficiency increases proportionally to the 
computing resources that are added to the search. 

We measure performance gain (or loss) through four 
variables: the total number of nodes expanded, CPU 
time, CPU utilization, and the number of messages gen-
erated. The number of nodes considered in the search 
is a raw measure of computational expense. CPU time 
is measured in milliseconds as the sum of system and 
user time spent on behalf of M S D D . A l l results reported 
here are for machines in which D-MSDD is the primary 
load. CPU utilization measures the percentage of real 
time that the open list of a machine is non-empty. In 
our experiments, we record the mean CPU utilization 
across the nodes in a search as well as the minimum ut i 
lization. Finally, the number of messages generated is 
simply a tally of the TCP/ IP messages sent from any 
searcher to another during the search. 

The datasets used for evaluation of D-MSDD ware the 
solar flare dataset and the chess endgame dataset, both 
from the UC Irvine repository. In all cases, k was set 
to 20. The number of machines involved in the search 
varied from one to five, and included one 500MHz Alpha, 
three 175MHz Alphas, and one 40MHz SparclO. 

798 MACHINE LEARNING 



Figure 4: The number of network messages generated 
during search wi th dynamic load balancing turned on. 
(a) the solar flare dataset (b) the chess dataset. 

It should be noted that D-MSDD was built on an old 
version of MSDD that was implemented in Lisp. There
fore, direct comparisons of running times and numbers of 
nodes expanded between D-MSDD and the current imple
mentation of MSDD are impossible. However, we believe 
that the results in this section wil l be qualitatively the 
same when D-MSDD is re-implemented on the C version 
of MSDD. 

Performance results with dynamic load balancing 
working in conjunction with both the capacity and rank 
static load balancing algorithms are shown in Figures 2 
and 3. The graphs of mean CPU utilization show the 
effect that we had hoped for. For both the solar flares 
and chess datasets, mean CPU utilization show only 
slight decreases as processors are added, and are gen
erally within the 90-95% range. The minimum CPU uti
lization, not shown, exhibited similar behavior, in most 
cases between 80-95%. As a result, the mean completion 
time decreases in an apparently linear fashion as proces
sors are added to the search. Recall that the machine 
in the single processor case is an Alpha approximately 
4.75 times faster than the machines added in the 2 and 
4 processor cases. In the ideal case, then, the perfor
mance increase would be around 163%. With the rank 
based load policy, the mean speedup in our trials was 
162% for the solar flares and 143% on the chess data. 
The dynamic load balancing scheme achieves high levels 
of CPU utilization despite the relatively poor scheduling 
information available to the static policies. 

Figure 4 shows the number of network messages gen
erated under the dynamic load balancing scheme. The 
number of messages generated while searching the solar 
flare and chess datasets appears linear with respect to 
the number of searchers and in the thousands. 

5 Discussion 
Although the core MSDD algorithm is capable of finding 
complex dependencies in exponential search spaces, we 
demonstrated the uti l i ty of three methods for further re
ducing the number of rules that MSDD considers. The 
impact of the methods depends to a large extent on the 
nature of the database, but in ail cases at least one of 
the methods resulted in significant reductions in running 
time. If one is willing to forgo MSDD'S optimaiity guar
antees (with respect to the G values of the final rule set), 

then reductions in CPU time and nodes expanded of up 
to an order of magnitude are possible while sti l l finding 
high quality rules. In addition, we demonstrated that it 
is possible to distribute MSDD'S search for structure over 
multiple networked machines and achieve an almost l in-
ear speedup in the number of machines used. 

Acknowledgements 
This research is supported by DARPA/AFOSR under 
contract number F49620-97-1-0485. The U.S. Govern
ment is authorized to reproduce and distribute reprints 
for governmental purposes notwithstanding any copy
right notation hereon. The views and conclusions con
tained herein are those of the authors and should not be 
interpreted as necessarily representing the official poli
cies or endorsements, either expressed or implied, of the 
Defense Advanced Research Projects Agency, Air Force 
Office of Scientific Research or the U.S. Government. 

References 
[Cook, 1996] Diane J. Cook. A hybrid approach to 

improving the performance of parallel search. In 
J. Geller, editor, Parallel Processing for Artificial In
telligence. Elsevier Science Publishers, 1996. 

[Gao et a/., 1995] Li-Xin Gao, Arnold L. Rosenberg, 
and Ramesh K. Sitaraman. Optimal architecture-
independent scheduling of fine-grain tree-sweep com
putations. In 7th IEEE Symposium on Parallel and 
Distributed Processing, pages 620-629,1995. 

[Oates and Cohen, 1996a] T im Oates and Paul R. Co
hen. Learning planning operators with conditional 
and probabilistic effects. In Proceedings of the AAAI 
Spring Symposium on Planning with Incomplete In-
formation for Robot Problems, pages 86-94,1996. 

[Oates and Cohen, 1996b] T im Oates and Paul R. Co
hen. Searching for planning operators with context-
dependent and probabilistic effects. 1996. 

[Oates and Cohen, 1996c] T im Oates and Paul R. Co
hen. Searching for structure in multiple streams 
of data. In Proceedings of the Thirteenth Interna
tional Conference on Machine Learning, pages 346-
354. Morgan Kaufmann Publishers, Inc., 1996. 

[Oates et al., 1998] T im Oates, David Jensen, and 
Paul R. Cohen. Correlating and predicting asyn
chronous events. In Working Notes of the AAAI-98 
workshop on Predicting the Future: AI Approaches to 
Time-Series Analysis, pages 73-79, 1998. 

[Wickens, 1989] Thomas D. Wickens. Multiway Con-
tingency Tables Analysis for the Social Sciences. 
Lawrence Erlbaum Associates, 1989. 

OATES, SCHMILL, AND COHEN 799 


