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Abstract 

Computer security depends heavily on the strength 
of cryptographic algorithms. Thus, cryptographic 
key search is often THE search problem for many 
governments and corporations. 
In the recent years, Al search techniques have 
achieved notable successes in solving "real world" 
problems. Following a recent result which showed 
that the properties of the U.S. Data Encryption 
Standard can be encoded in propositional logic, 
this paper advocates the use of cryptographic key 
search as a benchmark for propositional reasoning 
and search. Benchmarks based on the encoding of 
cryptographic algorithms optimally share the fea­
tures of "real world" and random problems. 
In this paper, two state-of-the-art Al search algo­
rithms, Walk-SAT by Kautz & Selman and Rel-
SAT by Bayardo & Schrag, have been tested on 
the encoding of the Data Encryption Standard, to 
see whether they are up the task, and we discuss 
what lesson can be learned from the analysis on this 
benchmark to improve SAT solvers. 
New challenges in this field conclude the paper. 

1 Introduction 
Securing one's data and communication from unauthorized 
access in large open networks such as the Internet is of the 
main issues for computer science today [Anderson & Need-
ham, 1996; G10, 1996; OECD, 19981. 

Yet security depends heavily on the strength of crypto­
graphic algorithms: security protocols which have been for­
mally proved correct may be broken by the choice of a bad 
cipher Ryan & Schneider, 1998). Thus, cryptographic key 
search is often the search problem for many government and 
large corporations; and the ability of law enforcement officers 
to perform key search becomes the main concern behind the 
licensing of encryption technology [OECD, 19981. 
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Search, although in different settings, has also been a prob­
lem at the heart of Al research for many years. Recently 
propositional search has received attention for a number of 
factors [Selman et al., 19971: 

Eirst new algorithms were discovered . . . based 
on stochastic local search as well as systematic 
search [...|. Second, improvements in machine 
speed, memory size and implementations extended 
the range of the algorithms. Third, researchers be­
gan to develop and solve propositional encodings 
of interesting, real-world problems [... ] Between 
1991 and 1996 the size of hard satisfiability prob­
lems grew from ones involving less than 100 vari­
ables to ones involving over 10,000 variables. 

Following a seminal proposal from [Cook and Mitchel, 
1997], an application comes to one's mind: can we encode 
cryptographic key search as a SAT-problem so that AI search 
techniques can solve it'! 

A recent result in automated reasoning makes this possi­
ble. In [Marraro & Massacci, 19991 it has been show that, 
by combining clever reverse engineering, advanced CAD 
minimization, and propositional simplification, it is possi­
ble to encode in propositional logic the properties of the 
U.S. Data Encryption Standard, DES for short, [NIST, 1997; 
Schneicr, 1994]. An encoding whose size is within reach 
of current Al search techniques: the encoding of a crypto­
graphic search problem (finding a model is equivalent to find­
ing a key) for the commercial version of DES requires slightly 
more than 10,000 variables and 6 times many clauses. 

Although DES is currently under review, it is still the most 
widely used cryptographic algorithm within banks, financial 
institutions, and governments. It is the algorithm on which 
cryptanalysts tested the final success of their techniques (see 
[Schneicr, 1994] or Sect. 2 for further references). Even par­
tial successes with Al techniques can be relevant. 

In this paper we claim that this problem should be one 
of the reference SAT-benchmarks. In particular, it gives the 
possibility of generating as many random instances as one 
wants and still each instance is as "real-world" as any instance 
that can be met in commercial cryptographic applications. 
It provides a neat answer to the last challenge for proposi­
tional reasoning and search proposed by Selman, Kautz and 
McAllcster [19971 at 1JCAI-97. 
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To check the potential effectiveness of AI techniques on 
this problem, two state-of-the-art SAT solvers have been 
tested for cryptographic key search using the propositional 
encoding. The choices are Walk-SAT, a local search algo­
rithm proposed in [Selman et al, 1994] as an improvement of 
GSAT, and Rel-SAT, a combination of the traditional Davis-
Putnam Algorithm with back-jumping and learning proposed 
in [Bayardo & Schrag, 1997] to solve real-world problems. 

In the experiments on the Data Encryption Standard, one 
shouldn't expect to be immediately competitive with twenty 
years of advanced cryptanalysis techniques, especially be­
cause Al Labs are not equally well funded to afford a spe­
cialized hardware machine of 250.000 USD or the exclusive 
use of a network of workstations for 50 days which have been 
used to break DES in the last years. Still, general purpose 
search algorithm using off-the-shelf hardware (Spares and 
Pentium II) can crack limited versions of DES without be­
ing told any problem-dependent information. Ad-hoc crypto­
graphic techniques arc still better since the first success with 
the limited version of DES we can solve was obtained in 1982 
[Andleman & Reeds, 19821 and modern cryptographic ap­
proaches [Biham & Shamir, 1991; Matsui, 1994a] obtain the 
same results with better scaling properties. Still, the result 
is promising and points out at weaknesses of AI search algo­
rithms that we need tackle to solve hard problems. 

In the next section we introduce some basic prelim­
inaries on cryptography and the Data Encryption Standard. 
Then we discuss the features of the encoding . This is 
followed by the experimental analysis with Walk-SAT 
and Rel-SAT . Pew lessons for SAT solvers we can learn 
(§6) and new challenges ) conclude the paper. 

2 Cryptography and DES 
To make the paper self-contained for the non-security expert 
we sketch some preliminaries about cryptography and DES 
(for an introduction see [Schneier, 1994]). 

Following ISchneicr, 1994], we denote vector of bits by 
P (the plaintext), C (the ciphertext), and K (the secret key). 
At an abstract level, a cryptographic algorithm is simply a 
function that transforms a sequence of bits (the 
plaintext) into another sequence of bits (the ciphertext) with 
certain (desirable) properties by using some additional (pos­
sibly secret) bits K. To decrypt we use another function that 
maps back C into P using K (or its inverse). 

The important property of the encryption algorithm is that 
security of the algorithm must reside in the (secret) key. If 
one does not know K, it must be difficult to recover P from 
C, even if the algorithm has been public for years. In the 
ideal case, the only way to recover the plaintext must be by 
brute force "generate-and-test": try out all possible keys and 
see which yields an acceptable plaintext. The need to hinder 
brute force attacks has therefore generated hot debates on the 
minimum size of a key ISchneicr, 1994]. 

Exhaustive search is not so impossible as it seems if one 
can use (and pay for) specialized hardware: last year a ma­
chine costing 250.000 USD broke the Data Encryption Stan­
dard finding a 56 bits key in 56 hours I DES Search, 1998a]. 

Search can be cut down if the cryptanalyst knows a suf­

ficient number of blocks of plaintext with the corresponding 
ciphertext (known plaintext attack). This is a reasonable hy­
pothesis: almost all messages and files have fixed parts. Us­
ing a network of 12 workstation and 247 (randomly gener­
ated) plaintexts, Matsui [1994a] broke DES in 50 days. 

As the reader might now want to know how DES works, 
we start by saying that DES is a block cipher, which encipher 
blocks (sequences) of 64 bits into blocks of 64 bits using a 
key of 56 bits'. DES and almost all symmetric ciphers are 
built following an architecture which is due to Feistel and his 
group [Feistel et al., 1975]. After some initial preprocessing, 
the following operations are executed: 

1. break the plaintext in two halves, 

2. combine one half with the key using a clever function, 

3. XOR the combination with the other half 

4. swap the two parts. 

These 4 operations constitutes a round and are repeated a suit­
able number of times. Figure 1 exemplifies the idea. 

DES has 16 rounds which are almost identical except for 
the way in which the key is fed into the / function (Fig. 1): for 
each round a different subset of the 56 keybits is selected and 
combined with the input of the previous round. The strength 
of the cipher depends on the number of rounds and on /. Its 
design is, to quote Ron Rivest, "part art, part science". 

As we have mentioned already, the basic way to break DES 
is by exhaustive search but there are other techniques. 

Differential cryptanalysis was introduced by Biham and 
Shamir [1991]. It assumes that the cryptanalyst can choose 
ciphertext and plaintext pairs presenting particular fixed dif­
ferences. Then, it analyzes the evolution of these differences 
through the rounds of DES. Using the differences resulting 
from ciphertexts, different probabilities are assigned to dif­
ferent keys. By analyzing a large number of ciphertext and 
plaintext pairs (247 for the commercial version), a key wil l 
emerge as the most probable. This attack is only practical for 
less than 12 rounds. After that, it requires too many resources. 

'The key is usually expressed as a 64 bits number, in which every 
eighth bit is a parity bit ignored by the algorithm. 
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Matsui's linear cryptanalysis [Matsui, 1994a; 1994b] 
works better. This method uses linear approximations (xor) 
to describe the behavior of the round function / (Fig. 1). By 
xoring together some plaintext bits with some ciphertext bits, 
one can get a bit that is the xor of some key bits. This is a lin­
ear approximation of a round that is true with a certain proba­
bility. Again, by analyzing a large number of plain/ciphertext 
pairs (243 are needed for DES at 16 rounds), it is possible to 
guess the value of some key bits with 80% success rate. A re­
finement of this method approximates the internal 14-round 
and then guesses the results of the first and last round. It can 
find 26 keybits and uses exhaustive search for the rest. 

A key aspect of cryptanalytic attacks (beside brute force) is 
that they are probabilistic. No deterministic method is known. 

3 DES as a SAT Problem 
Recently, an encoding of the U.S. Data Encryption Standard 
in propositional logic has been proposed in [Marraro & Mas-
sacci, 1999]. Before discussing how the encoding can be used 
to generate random problems, we sketch its functioning: 

• each bit of the ciphertext, the plaintext, and the key is 
encoded as a propositional variable; 

• the operations corresponding to the round function / 
(Fig. 1) are transformed into boolean formulae and min­
imized off-line with CAD tools; 

• then the encoding algorithm "runs" DES at the meta-
level, and generates formulae corresponding to each 
DES operation on the way; 

• since the straightforward application of this method 
would generate a huge formula, clever optimizations are 
used so that some operations are encoded as formulae 
and some operations are computed. 

For instance, operations corresponding to permutations of 
bits are not encoded as formulae; rather the propositional 
variables describing the inputs are permuted. Further details 
can be found in (Marraro & Massacci, 1999). 

The outcome" of the algorithm is a formula ( P , K , C ) 
which represent the logical relations between the key bits K, 
the plaintext bits P and the ciphertext bits C. 

In a traditional plaintext attack we know the value of some 
plaintext and ciphertext bits so, if we replace the variables 
by the corresponding truth value, we have a formula whose 
structure is shown in Fig. 2. The K{ are the key bits while 
the other variables are introduced to denote in­
termediate results and make the formula simpler. We use the 
superscripts r to denote the results produced at the r-th round 
and the subscript i to the denote the i-th bit produced at corre­
sponding intermediate stage (i ranges from 1 to 64). Loosely 
speaking, and looking at Fig. I, we may say that each X 
represents an output of the r-th round and thus an input of 
the r + 1-th round of the algorithm. The value lastr is the 
number of rounds of DES for which the encoding has been 
done. The actual formulae have more definitions to ease the 
subsequent (polynomial) translation into CNF. 

2The algorithm in (Marraro & Massacci, 19991 takes less than 1 
sec (3rounds) up to 25 seconds (16 rounds) to generate the encoding. 
Memory requires a peak of 135M for the full 16 rounds. 

Table 1, taken from (Marraro & Massacci, 1999], shows 
some quantitative data for the encoding of a single pair con­
stituted by a known block of plaintext and a block of cipher 
text, for an increasing number of rounds (R). 

For random formulae, the ratio of c/v is an indicator of 
the hardness of the formula. In this case, it is not so. For 
instance, using the data of Table 1 for 3 rounds or more, we 
can sec that if we use one block or an "infinite" number of 
blocks, the value of c/v changes by less than 4%. This would 
seem to imply that adding more blocks should not make the 
problem neither much easier nor much harder. As we shall 
see, the experimental results contradict this hypothesis. 

In the introduction, it has been claimed that this encod­
ing can be used to combine the contrasting needs of using 
"real-world" problems (possibly with lot of structure) and 
of generating a huge number of instances which can only 
be (pseudo)randomly generated. It might solve the dilemma 
pointed out in (Bayardo & Schrag, 1997]: 

Care must be taken when experimenting with real 
world instances because the number of instances 
available for experimentation is often limited 

whereas [Crawford & Auton, 1996] noted that 

[... ] random problems are readily available in 
any given size and virtually inexhaustible numbers. 
For example, . . . [their experiments] required sev­
eral million problems and it is hard to imagine col­
lecting that many problems any other way. 
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How do we generate a random SAT problem based on 
cryptography? At first we generate a random key and 
a plaintext block vp (just vectors of 0/1). Then we use the 
cryptographic algorithm itself to get (vp). Finally 
we substitute in the corresponding boolean val­
ues vp and vc that we have so far generated. Then the pair 

is a solved instance of the SAT problem. 
Notice that might contain other variables than 
K but the latter are the only independent variables. If we 
have n blocks of plaintext (and the corresponding ciphertext) 
we can constrain the search further by conjoining the corre­
sponding formulae 

So we have encoded cryptographic key search, a known 
plaintext attack to DES, as a SAT problem. Since ciphers are 
designed to be hard to break, this wi l l provide us with the hard 
solved instances asked for in [Cook and Mitchel, 1997]. We 
can generate generic instances by randomly generating both 
the plaintext and the ciphertext. 

The main point here is that by changing the plaintext and 
the key we can generate an endless stream of different solved 
instances either with the same solution or with different solu­
tions. At 16 rounds, it would be exactly identical to an actual 
plaintext and ciphertext used by a bank, financial institution 
or government department. 

4 Walk-SAT on DES 
The first tested algorithm is a local search one: Walk-SAT 
[Selman et a/., 1994]. It is only briefly recalled: 

• the algorithm starts from a random assignment; 

• then it flips the value of some propositional variables 
(usually one) trying to increase the value of an objective 
function (here the number of satisfied clauses); 

• when a local minimum is reached, the algorithm restart 
the search with another random assignment. 

Variants of this basic approach include the possibility of mak­
ing random moves from time to time and of continuing the 
search after a local minimum by using a tabu-list4. For more 
details see [Selman et al. , 1994; 1997]. 

Experiments were run on a Pentium II running Linux (with 
64MB) and a Sun Sparc running Solaris (with 64M) with 
qualitatively and quantitatively similar results. To generate 
an instance we simply follow the recipe above: generate ran­
domly a key (discarding weak keys [Schneier, 1994]) and 
then some hundred blocks of plaintext. For each plaintext 
block we generate the corresponding ciphertext and then sub­
stitute the value of the pair in the formula. An instance is 
finally created by conjoining the formulae corresponding to 
the desired number of plain/ciphertext pairs (or blocks). 

The initial settings of Walk-SAT were the recommend 
standard: hill-climbing with some random perturbations. The 
performance improved by using a random flip every 16 moves 

3For DES we have instances if we consider the encryp­
tion of binary data. If we restrict ourselves to ASCII plaintexts, the 
number of different plaintexts only shifts from 

4 A tabu-list is a list of variables which have just been flipped and 
which cannot be immediately re-flipped 

Table 2: Performance of Walk-SAT 

and the final result is reported in Table 2. R denotes the num­
ber of rounds on which DES has been limited and B the num­
ber of blocks which have been conjoined to produce the in­
stance (to get the size of an instance, multiply the values of 
Table 1 for the number of blocks). Sec. is the average running 
time and Kbits tells on average how many bits of the solution 
found by Walk-SAT coincided with the known solution. For 
unsuccessful attempts we also report the lowest number of 
unsatisfied clauses found. 

Walk-SAT can crack DES up to 2 rounds, and compares 
favorably with the results of SATO and TABLEAU reported 
in [Marraro & Massacci, 1999]. At three rounds Walk-SAT 
cannot crack any instance, even with a number of flips hun­
dreds times the number of clauses and a few hundreds tries. 
Moreover, adding more constraints (blocks) makes the search 
harder and not easier. 

Why doesn't Walk-SAT solve the problem well? 
The first problem has been already pointed out in I Selman 

et al, 1997]: the difficulty of local search algorithms to run 
around dependent variables. Recall that here almost all vari­
ables are dependent. The dagsat approach proposed in (Kautz 
et al, 1997] might prove to be more successful. 

The second problem is the presence of wide "rugged" 
plateaus at the bottom of the search space: the number of 
unsatisfied clauses goes quickly down from thousands to few 
tens per block and stays there, with Walk-SAT flipping (in 
vain) a lot of dependent variables and moving from a local 
minima to the next. The lowest number of bad clauses was 
decreased by re-engineering Walk-SAT as follows: 

• the first time a local minimum is reached, its value is 
stored as a reference value and the search continues; 

• after the search visited n local minima with value higher 
than the reference value, all keybits were randomly 
flipped (with a probability 1/n- all variables were flipped); 

• each time a lower minimum was reached, n was reset 
and that minimum considered the new reference value; 

The idea was to escape the plateaus by exploiting the domain 
knowledge that the keybits were the only independent vari­
ables. In this way, the search converges to a much lower value 
of bad clauses (usually from 40-100 bad clauses per block to 
less than 10), but we are still stuck there. 
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5 Rel-SAT on DES 
The second algorithm is a systematic one: Rel-SAT from 
[Bayardo & Schrag, 19971. It is a variant of the Davis-Putnam 
algorithm, enhanced with conflict directed back-jumping and 
learning. It works as follows: 

• unit propagation is applied to the clause set; 

• if no contradiction is found a new literal is selected and 
added either positively or negatively to the clause set; 

• if a contradiction is found then the algorithm backtracks 
to the literal that caused the contradiction; 

• the clause responsible for the contradiction is resolved 
with a clause representing the temporary assignment; the 
resolvent is thus learned as a reason to avoid the corre­
sponding assignment; 

• the procedure is iterated until all literals have been as­
signed (SAT) or no backtrack is possible (UNSAT). 

For more details see [Bayardo & Schrag, 1997]. 
The instance generation method, the architecture, and oper­

ating systems were the same used for Walk-SAT. Also in this 
case, the experiment started with the recommend standard: a 
small learning factor (4), using relevance-based learning. 

Up to 2 rounds, Rel-SAT cracks DES only slightly faster 
than SATO and TABLEAU (see I Marram & Massaeci, 1999]) 
or Walk-SAT. However, it is the c ly algorithm which cracks 
three round of DES in less than ten minutes. Its performance 
is reported in Table 3. The success rate is omitted since either 
all instances could be solved or none could (-). 

Other settings were tried: no learning at all and learning 
factors larger than 4. The analysis shows that learning is 
essential if we have few constraints but it might be skipped 
if enough constraints are around (Table 3). An intuitive ex­
planation could be that with few blocks the algorithm might 
split on dependent variables and then discover that this was 
not necessary. With many constraints, standard heuristics se­
lect almost only independent variables and therefore learning 
contribution to performance is diminished. 

Note that the performance of the algorithm improves with 
the number of blocks composing the instance. Adding more 

constraints makes the search for the only (?) existing solu­
tion easier. This behavior is consistent with standard crypto­
graphic techniques [Biham & Shamir, 1991; Matsui, 1994a] 
where having more data improves the chances of success. 

Given this promising results, the algorithm has been en­
gineered to accept larger formulae with more variables and 
tried on the full 16-round DES, also using 1, 2, and 4 blocks. 
The algorithm didn't return within 12 hours. 

A small re-engineering of the algorithm was carried to ex­
ploit in a limited manner the knowledge of the domain. After 
a first selection of potential branching variables, a threshold 
is used in the original algorithm to reduce their number. The 
modified algorithm didn't check the threshold if the selected 
variable was a keybit. In this way the algorithm gives pref­
erences to dependent variable with very good properties or 
independent variables with medium properties. However, the 
running time of the algorithm didn't improved substantially. 

6 Lessons for SAT Solvers 
It is a promising result that SAT solvers can crack a limited 
version of DES without using any problem-dependent heuris­
tics but this is not enough. We want to solve the full DES. 

The first temptation is then to dismiss the SAT solvers 
themselves: this problem has a non-clausal structure, so it 
has to be expected that CNF provers perform badly; the right 
tool should have been BDDs [Bryant, 1986]. Surprisingly, an 
extensive experimentation reported in I Ascione, 1999] shows 
that the BDDs cannot solve key search problems any better 
than SAT-based approaches. 

The second conclusion might be that the problem is too 
constrained: at three rounds there is almost only one solu­
tion. This makes the problem harder for local search, but 
should make it easier for complete algorithms. Indeed, the 
very characteristics of DES with its avalanche effect (all key-
bits should affect all ciphertext bits, and a flip in the plain­
text should affect all ciphertext bits, etc.) should make this 
problem easy: if the value of few keybits is wrongly chosen, 
a cascade of unit propagations should immediately generate 
an inconsistency. This would implies that formulae encoding 
more rounds (and more defined variables) should be easier 
and not harder. Since this is not the case, it seems that with 
more rounds unit propagation is somehow hindered. 

Finding an explanation (and a workaround) for this diffi­
culty is important because the structure of the encoding is 
common in many hard real problems: the natural formula­
tion of a problem is usually structured in layers, makes use 
of abbreviations and definitions, and often contains modulo-
2 arithmetics (xors). For instance see the parity bit problem 
mentioned in [Selman et al, 1997] and the IFIP benchmark 
for hardware verification. 

If we look again at the structure of the encoding, we may 
notice that each round is separated by the next round by a 
level of xors and that most constraints are in form of xors: 
a large subpart of the problem is an affine problem, which 
should be polynomially solvable by Schaefcr's theorem. It is 
precisely this affine subproblem that make the problem hard 
for current AI techniques. Look again at table 1: the problem 
becomes difficult as soon as xors start to appear. 

294 CHALLENGE PAPERS 



In contrast, cryptographic techniques exploits this affine 
subproblem and even approximate the whole problem into an 
affine problem [Matsui, 1994a]. Therefore, to crack DBS or 
similar real-word problem a SAT solver needs the ability to 
solve affine subproblems. 

7 Conclusions and Future Challenges 
In this paper we have seen an application of propositional 
reasoning and search to a key security problem of industrial 
relevance. We have also discussed how this approach can op­
timally provide "real-world" problems where many instances 
can be randomly generated. 

Thus we believe that the whole approach on encoding cryp­
tographic key search as propositional search can be a good an­
swer to the final challenge proposed in [Selman et al, 1997]: 

Develop a generator for problem instances that 
have computational properties that are more simi­
lar to real world instances. 

Moreover, the preliminary tests on using SAT-solvers to 
crack the Data Encryption Standard are promising, although 
SAT-solvers must be improved to meet the full challenge pro­
vided by this benchmark. Thus, a good conclusion of this pa­
per may just be the indication of the future challenges. They 
are listed in order of feasibility. 

The first challenge is to find a key for the commercial 16 
rounds Data Encryption Standard in less than 56 hours using 
off-the-shelf h/w and s/w but specialized search heuristics. 
This might be the simplest and immediately rewarding chal­
lenge, assuming that the 10,000 USD prize of RSA Security 
for breaking its DBS challenges wi l l be there in the year 2000. 

Then we may wish to design SAT-solvers that work with 
every Feistel-type cipher with data independent rounds like 
DBS. If we were able to cope with affine subproblems this 
would not be a big extension. Since the operations are data 
independent, a certain amount of preprocessing for the inter­
nal rounds could be done off-line. 

The third challenge is to find efficient encodings into SAT 
of data-dependent Feistel-type ciphers like RC5 [Schneicr, 
19941. A straightforward encoding is always possible: just 
translate the cipher into a circuit and this into propositional 
logic. Unfortunately this is already unworkable for DBS. 

Last but not least, we may wish to find efficient encod­
ings into propositional (or any) logic of public-key algorithms 
such as RSA. This challenge, firstly proposed in I Cook and 
Mitchel, 19971, might prove to be the hardest since number 
theory is fairly remote from propositional logic. 

As for all real problems, there might also be a darker side: 
the final measure of success might well be the "privilege" (!?) 
of successful SAT algorithms being denied export licenses as 
dangerous weapons. 
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