
Programming Resource-Bounded Deliberative Agents 

Michael Fisher and Chiara Ghidini* 

Department of Computing and Mathematics 
Manchester Metropolitan University 

Manchester M1 5GD, United Kingdom 

EMAIL: {M. F i s h e r , C.Ghid in i }@doc .mmu.ac .uk 

Abstract 
This paper is concerned with providing a common 
framework for both the logical specification and ex
ecution of agents. While numerous high-level agent 
theories have been proposed in order to model 
agents, such as theories of intention, these often 
have little formal connection to practical agent-
based systems. On the other hand, many of the 
agent-based programming languages used for im
plementing 'real* agents lack firm logical seman
tics. Our approach is to define a logical framework 
in which agents can be specified, and then show 
how such specifications can be directly executed in 
order to implement the agent's behaviour. 
We here extend this approach to capture an im
portant aspect of practical agents, namely their 
resource-bounded nature. We present a logic in 
which resource-boundedness can be specified, and 
then consider how specifications within this logic 
can be directly executed. The mechanism we use 
to capture finite resources is to replace the standard 
modal logic previously used to represent an agent's 
beliefs, with a multi-context representation of be
lief, thus providing tight control over the agent's 
reasoning capabilities where necessary. 
This logical framework provides the basis for the 
specification and execution of agents comprising 
dynamic (temporal) activity, deliberation concern
ing goals, and resource-bounded reasoning. 

1 Introduction 
The M E T A T E M [Barringer et al, 1995] and Concurrent 
M E T A T E M [Fisher, 1995] languages have been used as high-
level mechanisms for specifying and executing individual 
agents and multi-agent systems, respectively. Both are based 
upon the principle of specifying an agent using temporal 
logic, and then directly executing this specification in order 
to provide the agent's behaviour. This approach provides a 
high-level programming notation, while maintaining a close 
link between the program and its specification. 

* Visiting Research Fellow from University of Trento, Italy, sup
ported by the Italian National Research Council (CNR) 

While this approach has provided a useful basis for experi
mentation with both the logical representation and animation 
of agents, it has become clear that a more refined version of 
the specification language is required if this framework is to 
be used for 'real world' agents. In particular, the M E T A T E M 
family of programming languages originally contained no so
phisticated mechanisms for representing deliberation within 
an agent, i.e. the process that an agent carries out in order to 
decide which goal/action/plan to attempt. 

Thus, inspired by the success of the BDI framework [Rao 
and Georgeff, 1991] in representing deliberation, the basic 
M E T A T E M system was extended, in [Fisher, 1997b], with ex
plicit mechanisms for ordering goals. Goals, corresponding 
to both desires and intentions in the BDI model were, in turn, 
represented by temporal eventualities. This then allowed de
liberation to be represented using user defined functions pro
viding an ordering on the satisfaction of eventualities. 

While this provides a simple and concise mechanism for 
representing and implementing deliberative agents, it does 
not deal with a further important aspect of 'real' agents, 
namely their resource-bounded nature [Bratman et al, 1988], 
In particular, the representation of belief was given by ex
tending the temporal basis with a standard modal logic hav
ing Kripke semantics [Halpern and Moses, 1992]. As is well 
known, this does not match the resource-bounded nature of 
'real' reasoners [Giunchiglia et al, 1993]. Indeed modal 
logics generally model logically omniscent agents which are 
forced to believe (and compute) all the logical consequences 
of their own beliefs. 

Thus, in this paper we modify the logic used in [Fisher, 
1997b] by replacing the standard KD45 modal logic with a 
multi-context representation of belief [Giunchiglia and Ser-
afini, 1994; Benerecetti et al, 1997]. This logic is a modifi
cation of KD45 which permits a simple execution mechanism 
to be employed over belief contexts. Consequently, it allows 
us to tightly control the use of belief contexts within deliber
ative agents and so to represent resource-bounded reasoning. 
In addition, we also investigate the resource-bounded aspects 
of temporal reasoning. Thus, rather than allowing the agent 
to reason about the full underlying temporal logic, we exam
ine how the agent can be restricted so that it reasons with an 
abstraction of the underlying temporal model. 

The paper is structured as follows. In §2, we define the 
syntax and semantics of the particular logic used to represent 

200 AUTOMATED REASONING 



agents. This wi l l combine a simple temporal logic [Emer
son, 1990] with a multi-context logic of belief [Benerecetti 
et al., 1997], In order to provide the basis for the direct exe
cution of this logic, we introduce, in a particular normal 
form, that extends the Separated Normal Form used in the 
M E T A T E M [Fisher, 1997a]. An algorithm which can be used 
to directly execute formulae in this normal form is defined in 

while an example of such execution is given in The 
correctness of the execution algorithm is considered in . In 

we consider the effects of restricting both the hypothet
ical doxastic and temporal reasoning that can be carried out 
by an agent. Finally, in we provide conclusions from this 
research and consider future work. 

2 Temporal Logic of Bounded Belief 
In this section, we give the syntax and semantics of our 
base logic (called a Temporal Logic of Bounded Belief or 
TLBB for short) which combines propositional linear tem
poral logic, with a multi-context belief logic. While temporal 
reasoning is essentially infinite, reasoning about beliefs can 
be bounded. In this sense, the logic allows the representation 
of bounded reasoning. 

Syntax We are considering a situation with an agent, a, ob
serving and representing beliefs about a set 
of agents. Formulae of TLBB are constructed using the fol
lowing connectives and proposition symbols. 

• A set, of propositional symbols. 

• Propositional connectives, true, false, and =>. 

• Temporal connectives, and 

• A set, of belief operators. 

Let be the set the set of (possibly empty) strings of the 
form w i t h W e call any a view. 
Intuitively, each view in represents a possible nesting of 
the belief operators. The empty string represents the view 
of the external agent a. The views1 that a can build can be 
organized in a structure such as that presented in Figure 1. 

Figure 1: The structure of views 

We associate a logical language with each view. The set of 
well-formed formulae of denoted by is inductively 
defined as the smallest set satisfying: 

'A more detailed description of the structure of views we are 
using can be found in [Benerecetti et a/., 1997]. 

• Any element of is in WFFα 

• If and are in WFFα then so are 

• [for all 1 i s a n atomic formula i n 
if, and only if, is in 

The set of well-formed formulae of TLBB comprises the sets 
of well-formed formulae contained in each 

Semantics The semantics of the TLBB language is 
based on the semantics for contextual reasoning proposed 
in [Giunchiglia and Ghidini, 1998; Benerecetti et al, 1997]. 
Following this approach, the semantics of every formula is 
local to the view where we consider it. Therefore, we asso
ciate to each view a discrete linear temporal model of time 
mα with finite past and infinite future, e.g. , in order to 
interpret the temporal component of each language . Each 
of these moments in time, represented by a temporal index 

provides also a valuation for the propositional part 
of the language and for (atomic) formulae of the form 
As usual, we define the semantics of each via the satisfia
bility relation: 

Satisfiability and validity are defined in the usual way. 
The second step in defining the semantics for TLBB is to 

formalize the relation existing among different views. Indeed 
only a certain combinations of temporal models are compati
ble and provide a model for TLBB. A model M for TLBB is 

M satisfies a formula satisfies it. 
Let us write to mean that is a formula in . Each 

model M for TLBB satisfies the formulae 

They are the TLBB versions of modal axioms K, 4, and 5, re
spectively, and are obtained from conditions 1-4 in the defini
tion of M. Moreover M satisfies the formulae 

and . These are a consequence of the 
fact that M associates a unique temporal model to each 

FISHER AND GHIDINI 201 



view and ensures that are equivalent. While 
the fact that each view has exactly one Bi-accessible view en
forces that each agent must either believe, or disbelieve, every 
atom, it does simplify the model structure, and hence the ex
ecution, required. As we will see in , typical examples of 
agent reasoning are not affected by this addition. 

3 Normal Form for TLBB 
Formulae in TLBB can be transformed into a normal form 
SNFBB (Separated Normal Form for temporal logics of 
bounded belief). Separated Normal Form (SNF) is used as 
the basic normal form for linear-time temporal logics [Fisher, 
1997a] and has been extended, for example to temporal log
ics of knowledge in [Dixon et al, 1998]. The translation to 
SNFBB uses the renaming technique [Plaisted and Green-
baum, 1986] where complex subformulae are replaced by 
new propositions and then the truth value of these proposi
tions are linked, in all states, to the formulae they replaced. 
In linear time temporal logic this is achieved by ensuring that 
such formulae are in the scope of a ' operator, i.e. they 
hold at all reachable states. For TLBB we introduce the 
operator, which allows arbitrary nesting of Bi and oper
ators to achieve the same effect. As in the case of temporal 
logics of knowledge, the operator can be defined using 
fixpoints [Dixon et al., 1998]. 

Formulae in S N F B B are of the general form 

where each Ti known as a rule, must be in one of the varieties 
described in Figure 2. Note that ka, lb, and / are all literals, 

Figure 2: Rules in SNFBB 

and the outer operator that surrounds the conjunction 
of rules is usually omitted. 
Example 3.1 Consider the TLBB formula 

. (1) 

We can go through the following stages to transform this into 
S N F B B : 

a) rename 

b ) rename above b y q and a d d ; 
c) rename. in (1) by r and add 
d) r e n a m e . i n (1) by s and add 

e) rename in the above formula by t and add 

The original formula is now which can be 
split giving the final set of rules in SNFBB as: 

The key properties of the translation to SNFBB, characterised 
by the function V are as in the temporal case [Fisher, 1997a]. 
Theorem 1 // TLBB formula is satisfiable, then is 
satisfiable. 
Theorem 2IfM is a model for then M is also a model 
for 
Consequently, as execution is essentially model building in 
our framework, then we can execute in place of 

4 Execution of SNFBB 
In this section we give an algorithm for executing a set of 
SNFBB rules. Since lack of space precludes us from pro
viding the algorithm in full detail, we will first present an 
outline of the execution mechanism for temporal logic, based 
on [Barringer et al, 1995] and [Fishcr, 1997b], and will fol
low this with a more detailed account of the execution of the 
belief element of the logic. 

4.1 Executing Temporal Logic 
The basic idea underlying METATEM [Barringer et al, 1995] 
is to directly execute a temporal formula, by attempting to 
build a model for the formula in a simple forward-chaining 
fashion. This is extended, in [Fisher, 1997b], whereby the 
choice of which formulae to satisfy is provided by user de
fined deliberation functions, rather than by a fixed ordering 
heuristic. An outline of the basic approach, assuming that we 
are executing the set of rules, i?,, is given below. 

1. By examining the initial rules, constraints on the possi
ble start states for the temporal model can be generated. 
We choose one of these possible start states, deriving its 
valuation from the initial rules. 
If all the possible start states have been explored, then we 
terminate stating that the set of rules, R, is unsatishable. 

2. Generate constraints on next states, Cn, and constraints 
on future states, C/, by checking applicability in current 
state of step and sometime rules, respectively. 
Cn represents all the possible choices of valuations for 
the next state, while Cf provides the set of eventualities 
that must be satisfied at some time in the future. 

202 AUTOMATED REASONING 



3. Make a choice from Cn and check that the chosen val
uation is consistent. If there are no unexplored choices, 
return to a choice point in a previous state. 
The choice mechanism takes into account a combination 
of Cf, the outstanding eventualities, and the deliberation 
ordering functions [Fisher, 1997b]. 

4. Generate a new state, s, from the choice made in (3). 
Note that, by default, if propositions are not constrained 
we choose to leave them unsatisfied. 
Define s as being a successor to the current state and 
record the eventualities that are still outstanding (i.e. 
previously generated eventualities that were not satisfied 
in s); call this set of eventualities Evs. 
If any member of Evs has been continuously outstand
ing for more than states, then return to a previous 
choice point and select a different alternative. 

5. With current state, s, and the set of outstanding eventu
alities, Evs, go to (2). 

The key result here is that, under certain constraints on the 
choice mechanism within (3), this execution algorithm rep
resents a decision procedure (previously presented in [Bar-
ringer et al., 1995]). 
Theorem 3 If a set of SNF rules, R, is executed using the 
above algorithm, with the proviso that the choice in (3) en
sures that the oldest outstanding eventualities are attempted 
first at each step, then a model for R will be generated if and 
only if R is satisfiable. 
The above proviso ensures that, if an eventuality is outstand
ing for an infinite number of steps, then it will be attempted an 
infinite number of times. Once the choice mechanism is ex
tended to include arbitrary ordering functions, as in [Fisher, 
1997b], then a more general version of the above theorem 
can be given wherein we only require a form of fairness on 
the choice mechanism. While the above proviso effectively 
means that we can potentially explore every possibility, the 
incorporation in the algorithm of a bound on the number of 
states that eventualities can remain outstanding, together with 
the finite model property of the logic, ensures that all of the 
possible states in the model will be explored if necessary. 

4.2 Extending Execution 
We now extend the above algorithm to handle the execution 
of SNFBB- The two main elements of the algorithm affected 
by this are that the execution process now builds a labelled 
tree, rather than a sequence, and that once a new belief state 
is built it must be checked for equivalence with previously 
generated states. Thus, rather than just generating a set of 
choices based upon temporal rules, we must now consider 
both temporal and belief rules. This will (often) lead to the 
construction of a number of belief contexts and (simulated) 
temporal sequences in order to derive these choices. For ex
ample, in Figure 3 the basic temporal sequence (labelled by 
'TL') is being constructed. However, at certain points, belief 
contexts (e.g. Bl and B2) must be explored in order to de
cide how to proceed. In addition, within these belief contexts, 
temporal execution itself can be simulated, e.g. B2(TL). Note 

Figure 3: Typical Model Exploration 

that exploration of everything within a belief context will be 
carried out within a finite amount of time. 
In order to incorporate the execution of belief operators into 
the algorithm described in §4.1, we add the following to the 
end of step (4). 

For all belief operators, , if expand\ 
returns false, then return to a previous choice point 
and select a different alternative. 

The function 'expand' explores belief contexts and attempts 
to build a model for the multi-context beliefs as follows. 
expand(Bi R, s, D) : Boolean 

1 . Let w h e r e a n d 
if there are no such rules return true. 
Let C'B be DNF version of CBi., and remove all incon
sistent disjuncts from C'B.. 

2. Choose a disjunct, d, from CB. if no unexplored dis
juncts are available then immediately return false. 

3. If D then conjoin the formulae in D with d to 
give d' otherwise, let d' = d. Note that D contains the 
belief constraints from the last state and this operation 
corresponds to the persistence of beliefs given by axioms 
4 and 5, e.g. 

4. Generate a new state, t, with valuation based on d!. If a 
state equivalent to t has occurred previously within this 
exploration from a basic temporal state, then make a Bi 
edge from s to this previous state and return true. 
If no such equivalent state exists, then make a Bi edge 
from s to t 

5. For all belief operators, Bi, if any of 
expand returns false, then return to 
(2) and select a different alternative. 

6. If tl _expand returns false, then return to choice 
point (2) and select a different alternative. 

7. Return true. 
The function tLexpand(Rides, State, Eventualities) ef
fectively carries out temporal reasoning in a belief context. 
However, rather than continuing indefinitely, as the base-level 
algorithm does, it uses a tableau-like produce to ensure that a 
finite structure is constructed if the formula is satisfiable. 

FISHER AND GHIDINI 203 



Rather than giving the detail of tLexpand, we note that it 
is very similar to the base-level temporal execution algorithm, 
although it does try to recognise repeated temporal states and 
so construct a finite graph rather than an infinite sequence. We 
will consider this temporal reasoning aspect further in 

5 Example 
Consider the following example of an agent acting as a travel 
information provider (note that, for reasons of space, the ex-
ample is represented in predicate logic where variables range 
over finite domains). 
A) 

i.e., "if you ask for information about destination x, then 
I believe that you will holiday in x in the future" 

B) 
i.e., 4tI believe that, if you will holiday in x in the future, 
then you will buy a holiday for x in the future" 

C) 
i.e., "if I believe that you will buy a holiday for x in the 
future, I will send you information about holidays at J" : 

D) ask(you,x) 
i.e., "you ask for information on destination :r": 

These translate to the following SNFBB rules. 

Execution begins by ensuring that ask(you,x) is true in the 
initial temporal state and then exploring other choices. Thus, 
if we choose b to be false here, then we get a contradiction in 
the Dme(TL) simulation with (effectively) 
(from rules B5-B8) and (from rule A2). 

Similarly, if we choose e to be false, we get a 
contradiction in the (TL) simulation with (effec-
tively) ~ (from rules C'10-Cf13) and 

buy (you, holx) (from rule B4). 
Thus, we eventually choose to satisfy ask(you, x), b and c 

together in the initial state, which in turn leads to the execu
tion of sendJnfo(you, x) in the next state. 

The model eventually produced is given in Figure 4. 

6 Correctness 
As in the case with the basic METATEM system, we can show 
that the extended system can be used as a decision procedure 
for TLBB if necessary. 

Figure 4: Example Execution 

Theorem 4 If a set of SNFBB rules, R, is executed using 
the above algorithm, and the choices made by the temporal 
component ensure that the oldest outstanding eventualities 
are attempted first at each step, then a model for R will be 
generated if and only if, R is satisfiable. 

The proof follows by showing that the above execution mech
anism will (eventually) explore all the tableau structure for 
TLBB [Ghidini, 1998; Wooldndge et aL 1998]. In particu
lar, the execution within belief contexts explores potential lin
ear sequences of such contexts until either a model is found, 
or until no unexplored possibilities remain and so the belief 
formula is unsatisfiable. 

In general, the mechanisation of such a logic is relatively 
easy since there are no axioms defining interactions between 
the different belief/temporal operators. Thus, the sub-logics 
within TLBB can effectively be treated separately, and decid
ability of TLBB is retained [Blackburn and de Rijke, 1997]. 

7 Resource-Bounded Reasoning 
In §4.2, we considered the execution of the temporal logic 
of bounded belief with (effectively) infinite bounds on belief 
reasoning capabilities. Now we will examine how the effect 
that introducing resource bounds of various kinds will have 
on this execution mechanism. 

7.1 Bounded Reasoning 

The most obvious thing to do (and indeed this was the main 
motivation for this work) is to set an explicit bound on the 
depth of belief reasoning allowed. In order to modify the ex
ecution mechanism, we just need to add an extra argument 
to the expand and tl_expand functions. This argument will 
represent the depth of nesting of belief contexts. Thus, in the 
first call to expand (from the basic temporal execution), the 
depth is 0. In the definition of the expand function itself, 
the depth is incremented when the function is invoked recur
sively. Finally, we require an additional condition in expand 
stating that backtracking will occur if the depth bound reaches 
its limit (i.e. the maximum depth of nested beliefs allowed). 

Given that we can bound the agent's ability to reason about 
belief, then can we do the same with temporal reasoning? In 
principle, yes. However, a bounded multi-context semantics 
for the type of temporal logic we use is quite complex, and 
we have not yet considered restricting the logic in this way. 

204 AUTOMATED REASONING 



7.2 Abstract Temporal Reasoning 
From a practical point of view, carrying out hypothetical 
reasoning within propositional linear-time temporal logic is 
quite expensive. While the logic is decidable, the decision 
problem is PSPACE-complete [Emerson, 1990). Also, al
though the execution mechanism for M E T A T E M is complete, 
and thus could be used as a (naive) theorem-prover for the 
logic, the execution mechanism is not at all efficient in this 
respect. We propose a modified logical framework which 
consists of three elements: (full) propositional linear tem
poral logic for the agent's basic execution; bounded (multi-
context) belief; and 'simulated' temporal logic, comprising 
only 4 0 \ hut no ' O ' operator (this logic is only used within 
belief contexts and is equivalent to KDT4 modal logic). The 
tLexpand function described in §4.2 now executes the KDT4 
logic, rather than temporal logic. 

While the restriction of the capability of an agent to reason 
only about 'abstract' elements of time in a belief context may 
seem too extreme, it does significantly reduce the complex
ity of the execution mechanism. In addition, it is debatable 
whether an agent should be able to reason about the exact 
detail of the time structure in which it is situated. Further, 
if an agent wishes to reason about the temporal behaviour of 
another agent, then the asynchronous nature of agent execu
tion means that a step in one agent will not necessarily match 
a step in the other. Thus, perhaps an agent should only be 
able to reason about another agent reaching a certain state at 
some point in the future. Hence the use, within hypothetical 
temporal reasoning, of just the operator. 

8 Conclusions and Future Work 
We have considered the extension of basic executable tem
poral logic (of the M E T A T E M style) with bounded reasoning 
about belief and time. In particular, we have proposed the ver
sion of the logic in as a practical basis for the high-level 
logic-based programming of resource-bounded agents. 

It is important to note that we are not interested in generat
ing alternative mechanisms for undertaking temporal/modal 
proof. The main element we are concerned with is the exe
cution of temporal formulae in order to generate an infinite 
sequence. However, at certain points hypothetical reason
ing needs to be carried out and belief contexts must be ex
plored. We could have used standard proof mechanisms for 
non-interacting temporal and doxastic logics [Wooldridge et 
aL, 1998] at this point (and, indeed, our intention is to provide 
this possibility within the full implementation). However, (a) 
we would like to retain the common execution mechanism 
throughout, (b) by representing belief exploration in terms 
of execution the whole process should be more amenable to 
meta-level control, and (c) while belief exploration is neither 
very common nor very complex, it makes sense to keep the 
execution mechanism simple. 

Finally, the execution mechanism described in this pa
per provides a way to execute multi-context logics of this 
form [Giunchiglia and Serafini, 1994] using the Imperative 
Future [Barringer et a/., 1996] style of executable logics. 

Future work includes testing a full implementation on 
larger examples, incorporating belief revision and persis
tence, and investigating the addition of real-time aspects. 

References 
[Barringer etal, 1995] H. Barringer, M. Fisher, D. Gabbay, 

G. Gough, and R. Owens. METATI-M: An Introduction. Formal 
Aspects of Computing, 7(5):533-549, 1995. 

[Barringer et al, 1996] H. Barringer, M. Fisher, D. Gabbay, 
R. Owens, and M. Reynolds, editors. The Imperative Future: 
Principles of Executable Temporal Logics. Research Studies 
Press, 1996. 

[Benerecetti et al, 1997] M. Benerecetti, F. Giunchiglia, and 
L. Serafini. Model Checking Multiagent Systems. To appear 
in Journal of Logic and Computation, 1997. 

[Blackburn and de Rijke, 1997] P. Blackburn and M. de Rijke. Why 
Combine Logics? Studia Logica, 59:5-27, 1997. 

[Bratman et al, 1988] M. E. Bratman, D. J. Israel, and M. E. Pol
lack. Plans and resource-bounded practical reasoning. Computa
tional Intelligence, 4:349-355, 1988. 

[Dixon et al, 1998] C. Dixon, M. Fisher, and M Wooldridge. Res-
olution for Temporal Logics of Knowledge. Journal of Logic and 
Computation, 8(3):345-372, 1998. 

[Emerson, 1990] E. A. Emerson. Temporal and Modal Logic. In 
J. van Leeuwen, editor. Handbook of Theoretical Computer Sci-
ence, pages 996-1072. Elsevier, 1990. 

Fagin et aL, 1996] R. Fagin, J. Halpern, Y. Moses, and M. Vardi. 
Reasoning About Knowledge, MIT Press, 1996. 

[Fisher, 1995] M. Fisher. Representing and Executing Agent-Based 
Systems. In M. Wooldridge and N. R. Jennings, editors, Intelli
gent Agents. Springer-Verlag, 1995. 

[Fisher, 1997al M. Fisher. A Normal Form for Temporal Logic and 
its Application in Theorem-Proving and Execution. Journal of 
Logic and Computation, 7(4), 1997. 

[Fisher, 1997b) M. Fisher. Implementing BDl-like Systems by Di
rect Execution. In Proc. IJCAI-97. Morgan-Kaufmann, 1997. 

[Ghidini, 1998] C. Ghidini. Tableaux for Multi-Context Logics. 
(Unpublished manuscript.), 1998. 

[Giunchiglia and Ghidini, 19981 F. Giunchiglia and C. Ghidini. Lo
cal Models Semantics, or Contextual Reasoning = Locality + 
Compatibility. In Proc. KR-98. Morgan Kaufmann, 1998. 

IGiunchiglia and Serafini, 1994) F Giunchiglia and L. Serafini. 
Multilanguage hierarchical logics (or: how we can do without 
modal logics). Artificial Intelligence, 65:29-70, 1994. 

[Giunchiglia et aL, 1993] F. Giunchiglia, L. Serafini, 
E. Giunchiglia, and M. Frixione. Non-Omniscient Belief 
as Context-Based Reasoning. In Proc. IJCAI-93. Morgan-
Kaufmann, 1993. 

[Halpern and Moses, 1992] J. Y. Halpern and Y. Moses. A guide to 
completeness and complexity for modal logics of knowledge and 
belief. Artificial Intelligence, 54:319-379, 1992. 

[Plaisted and Greenbaum, 1986] D. A. Plaisted and S. A. Green-
baum. A Structure-Preserving Clause Form Translation. Journal 
of Symbolic Computation, 2(3):293-304, 1986. 

[Rao and Georgeff, 1991] A. S. Rao and M. P. Georgeff. Model
ing Agents within a BDI-Architecture. In Proc. KR-91. Morgan 
Kaufmann, 1991. 

[Wooldridge et al, 1998] M. Wooldridge, C. Dixon, and M. Fisher. 
A Tableau-Based Proof Method for Temporal Logics of Knowl
edge and Belief. Journal of Applied Non-Classical Logics, 
8(3):225~258, 1998. 

FISHER AND GHIDINI 205 


