
UPML: A framework for knowledge system reuse

Dieter Fensel V. Richard Benjamins Enrico Motta BobWielinga
Institute AIFB Dep.SWI Knowledge Media Institute Dep.SWI

Univ. of Karlsruhe Univ. of Amsterdam The Open University Univ. of Amsterdam
76128 Karlsruhe 1018 WB Amsterdam MK7 6AA, Milton Keynes 1018 WB Amsterdam

Germany The Netherlands United Kingdom The Netherlands

Abstract
Problem-solving methods provide reusable
architectures and components for implementing the
reasoning part of knowledge-based systems. The
Unified Problem-solving Method Development
Language, UPML, has been developed to describe
and implement such architectures and components
and to facilitate their semiautomatic reuse and
adaptation. In a nutshell, UPML is a framework for
developing knowledge-intensive reasoning systems
based on libraries of generic problem-solving
components. The paper describes the components,
architectural constraints, development guidelines,
and tools provided by UPML. Our focus is hereby
on the meta ontology that has been developed to
formalize the architectural structure and elements
of UPML.

1 Introduction
Problem-solving methods (PSMs) for knowledge-based
systems (KBSs) (cf. [Schreiber et al., 1994]; [Benjamins &
Fensel, 1998]) decompose the reasoning task of a KBS in a
number of subtasks and inference actions that are connected
by knowledge roles. Several problem solving method
libraries are now available [Breuker & van de Velde, 1994],
[Motta & Zdrahal, 1998]. The IBROW project [Benjamins et
al., 1998] has been set up with the aim of enabling
semiautomatic reuse of PSMs. This reuse is provided by
integrating PSM libraries in an internet-based environment.
A software broker selects and combines PSMs from different
libraries and provides a knowledge engineer with semi-
automated support for configuring a reasoning system.
Hence, a description language for these reasoning
components (i.e., PSMs) must provide human-
understandable, high-level descriptions, which should also
be grounded on a formal representation, to allow automated
support by the broker. To this purpose we have developed the
Unified Problem-Solving Method Development Language,
UPML [Fensel et al., 1999b]. UPML is a software
architecture for knowledge-based systems providing
components, adapters and a configuration (called
architectural constraints) of how the components should be
connected using the adapters. Finally design guidelines

specify how to develop a system constructed from the
components and connectors that satisfies the architectural
constraints.

In knowledge engineering terms UPML provides a
meta-ontology for describing knowledge-based systems. The
different elements of a specification correspond to concepts
of this ontology and the architectural constraints are axioms
in this ontology.

In this paper we outline the main features of the
approach we have taken to define a framework for
knowledge sharing and reuse. In particular we illustrate the
basic meta-ontology of UPML, its underlying architecture,
support tools and development guidelines. Because of space
constraints we can only provide a limited number of
technical details. Hence, the paper is better seen as an
overview report on the main issues we are facing and the
solutions we are developing.

The paper is organized as follows. In Section 2, we wil l
briefly sketch the overall structure of UPML. Then we wil l
discuss the (meta-)ontology that can be used to formalize
UPML. Section 4 introduces the architectural constraints of
UPML and Section 5 shows various ways in which tools for
developing, selecting, and combining PSMs can make use of
the (meta-)ontology. Section 6 briefly mentions the
development guidelines of UPML. Conclusions, related
work and outlook are discussed in Section 7.

2 The Overall Structure of UPML
[Fensel et al., 1999a] introduce the four components types of
a UPML specification:

• Tasks define the problems that should be solved by the
KBS.

• PSMs define the reasoning process of a KBS in
domain-independent terms.

• Domain models describe the domain knowledge of the
KBS.

• Ontologies provide the terminology used in tasks,
PSMs and domain definitions.

Each of these elements is described independently to enable
the reuse of task descriptions in different domains, the reuse
of PSMs across different tasks and domain, and the reuse of
domain knowledge for different tasks and PSMs. Therefore,

16 AUTOMATED REASONING

Fig 1. The overall structure of a UPML specification.

adapters are required to adjust the (reusable) parts to each
other and to the specific application problem. UPML
provides two types of adapters: bridges and refiners.

• Bridges explicitly model the relationships between
two distinct parts of an architecture, e.g. between
domain and task or task and PSM.

• Refiners can be used to express the stepwise
specialization of a class of elements of a specification,
e.g. a task is refined or a PSM is refined.

Very generic PSMs and tasks can be refined to more specific
ones by applying a sequence of refiners (cf. [Fensel, 1997]).
Again, separating generic and specific parts of a reasoning
process maximizes reusability.
Together, the six UPML building blocks define a software
architecture. The overall structure of a UPML specification
is presented in Figure 1 (a more detailed discussion of the
example can be found in [Fensel et al., 1999b]). A task
called "complete and parsimonious diagnoses" is defined by
importing an ontology called "diagnosis". The PSM applied
to solve the task is "hill climbing". A bridge is required to
connect the generic terminology of hill climbing with the
diagnostic task: states and states transitions of the method
have to be rephrased in terms of the task ontology.
Hill climbing is only one possible refinement of a generic
search method that decomposes an entire search task into

five more elementary subtasks: Initialize, Derive Successor
Nodes, Select Node, Stop and Update Nodes. Hill climbing
can be derived from this generic search method by (i)
refining one of its subtasks (i.e., update node forgets all
earlier nodes and only processes the currently derived
successors further) and (ii) introducing a preference
ordering.
PSM-mediated task decomposition and PSM specialization
through a refiner are analogous to the part-of and to-a
constructs of knowledge representation formalisms.
Subtasking corresponds to the part-of construct because it
decomposes a task into subtasks. The refinement of
problem-solving methods, as introduced in [Fensel, 1997],
corresponds to the is-a relationship of knowledge
representation formalisms - e.g., Hill-climbing is a
specialization of a general search method by refining some
of its attributes (i.e., subtasks).

3 The Meta Ontology of UPML
We used PROTEGE-II [Puerta et al., 1992] to develop a
meta ontology of UPML. PROTEGE-II is a knowledge
acquisition tool-generator. After defining an ontology it
semiautomatically generates a graphical interface for
collecting the knowledge that is described by the ontology.
The ontology can be described in terms of classes and

FENSEL, BENJAMINS, MOTTA, AND WIELINGA 17

Root
Competence

Competence CPSM
Competence Task

Competence PPSM
Cost expression
Formula
MCL-Prograra
Operational Description
Pragmatics
Renaming
Role

Input/Output Role
Input Role
Output Role

Intermediate Role
Knowledge Role

Signature
Specification Units

Bridge
PSM-Domain Bridge
PSM-Task Bridge
Task-Domain Bridge

Domain Model
Domain Refiner

Ontology
Ontology Refiner

PSM
Complex PSM
Primitive PSM
PSM Refiner

Complex PSM Ref.
Primitive PSM Ref.

Task
Task Refiner

UPML Specification
Fig 2. The class hierarchy of the UPML meta ontology.

attributes and organized with an is-a hierarchy and attribute
inheritance. Viewing UPML as an ontology and structuring
this ontology with the help of PROTEGE-II, helped us to
realize some missing elements in sub-specifications and we
obtained a much clearer view of the overall structure of
UPML. It turned out that the two adapter types, refiners and
bridges are rather different entities in the ontology. Refiners
are a subconcept of the specification element they refine,
while bridges are a class by themselves. Figure 2 provides
the class hierarchy of the UPML meta ontology. The
organizational principle of the class hierarchy was to
minimize the definitions of attributes, i.e. to maximize
attribute inheritance. The definitions of the attributes of the
class task and task competence are provided in Figure 3.
This ontology has been used to formulate architectural
constraints, and to develop tools like editors, browsing,
querying and reasoning services for UPML.

4. Architectural Constraints
Architectural constraints ensure well-defined components
and composed systems. The conceptual model of UPML
decomposes the overall specification and verification tasks

18 AUTOMATED REASONING

into subtasks of smaller grainsize and clearer focus. The
architectural constraints of UPML consist of requirements
that are imposed on the intra- and interrelationships of the
different parts of the architecture. They either ensure a valid
part (for example, a task or a problem-solving method) by
restricting possible relationships between its
subspecifications or they ensure a valid composition of
different elements of the architecture (for example,
constraints on connecting a problem-solving method with a
task). These architectural constraints can be formulated as
axioms of the UPML meta ontology.

For example, we require the consistency of a task
specification, i.e.

T1 ontology axioms preconditions
assumptions must have a model.

Otherwise we would define an inconsistent task
specification which would never be solved. In addition, it
must hold:

assumptions
That is, if the ontology axioms, preconditions, and

assumptions are fulfilled by a domain and the provided case
data then the goal of a task must be achievable. This
constraint ensures that the task model makes the underlying
assumption of a task explicit. For example, when defining a
global optimum as a goal of a task it must be ensured that a
preference relation exists and that this relation has certain
properties. For example that (i.e.,
reflexivity) is prohibited because otherwise the existence of
a global optimum cannot be guaranteed.
These are the two architectural constraints UPML imposes
to guarantee well-defined task specifications. A third
optional constraint ensures minimality of assumptions and
preconditions (called weakest preconditions in software
engineering) and therefore maximizes the reusability of the
task specification. It prevents overspecialization of
assumptions and preconditions (i.e., it ensures that a task is
not applied to an unsuitable domain).

ontology axioms preconditions assumptions)
Similar constraints have been developed for the other
components. Correct relationships between components are
formalized as axioms concerning the relevant bridges. For

Task[
pragmatics Pragmatics
ontologies Ontology
import Task
competence Competence Task]

Competence Task[
goal Formula
precondition Formula
roles Input/Output fcole
assumptions Formula]

Fig 3. The attributes of the UPML meta ontology.

Remaing(PSM preconditions PSM assumptions
PSM'postconditions)
task ontology task precoditions task assumptions
bridge ontology mappingaxioms bridgeassumptions

task goaf

ensures that the goal of the task is fulfilled by the
postcondition of the selected method. Further axioms can
be found in [Fensel et al., 1999b].

5. Tool Support
We used PROTEGE-II to implement an editor for UPML
specifications. First PROTEGE-II helps to define an
ontology (in our case the meta ontology of UPML). In a
second step it automatically derives an editor from it that
requires some human interaction to derive a suitable tool
f r o m i t

The output of the UPML editor delivers files of the
ontology and UPML specifications in a lisp-like syntax. We
implemented a tool that translates these files into Frame
Logic [Kifer et al., 1995]. The reason for this is to be able to
use On2brokerl as a browsing and query interface for
UPML specifications. On2broker (cf. [Fensel et al., 1998])
is an advanced tool for browsing and querying WWW
information sources. It provides a hyperbolic browsing and
querying interface for formulating queries, an inference
engine used to derive answers, and a webcrawler used to
collect the required knowledge from the web. Figure 4
provides the hyperbolic presentation of the UPML meta
ontology: classes in the center are depicted with a large
circle, whereas classes at the border of the surrounding
circle are only marked with a small circle. The visualization
technique allows a quick navigation to classes far away
from the center as well as a closer examination of classes
and their vicinity. The structure of the frame-based
representation language is used to define a tabular querying
interface that frees users from typing logical formulas (see
Figure 4). When a user selects a class from the hyperbolic
ontology view, the class name appears in the class field of
the tabular query interface and the user can select one of the
attributes from the attribute choice menu because the pre
selected class determines the possible attributes. The
discussed tool set is implemented in Java and available via
the WWW.
However, typical UPML queries may be more complex. For
example, Figure 5 shows parts of an On2broker,s answer.to
a complex query which asks for all attribute values of a task
specification. Such queries are closer to short logical
programs than to typical database queries. To ameliorate
this problem we have used the UPML meta-ontology to
define generic query patterns such as the one shown in

Figure 5 which are instantiated for specific queries.
Moreover, because the quety interface is implemented as a
Java Remote Method Invocation (RMI) Server.

6. Development Guidelines
Design guidelines define a process model for building
complex KBSs out of elementary components/In general,
the guidelines of UPML fall into three categories (cf.
[Fensel et al., 1999b]):

• How to develop an application system out of reusable
components. Guidelines describe the sequence and
interrelationships of component selection and
adaptation in developing an application system.

• How to develop a library of reusable task definitions
and problem-solving methods. A three dimensional
design space with predefined transition types
provides structured support in developing and
refining PSMs according to algorithmic paradigms,
task terminologies and assumptions on domain
knowledge.

• Which components of UPML correspond to an
implementation and how can such components be
implemented in an object-oriented framework. We
developed and refined some Design Patterns that
guide this translation process and defined certain
interface guidelines.

7. Conclusions

1. http://www.aifb.uni-karlsruhe.de/www-broker. Fig 4. Hyperbolic Query Interface of On2broker.

FENSEL, BENJAMINS, MOTTA, AND WIELINGA 19

Ontologies were introduced as means to support knowledge
sharing and reuse (cf. [Gruber, 1993]). UPML provides an
ontology for sharing and reusing knowledge-based systems.
That is, it provides a (meta-)ontology for describing tasks,
PSMs, domain models, ontologies, their mappings via
bridges and refiners that express adaptation of the
components. A number of tools have been developed and
configured for supporting the definition and use of UPML
components. A PROTEGE-H based editor enables the
development of UPML descriptions, while On2broker can
be used to browse and query such descriptions. In addition,
the IBROW broker matches user requirements with
knowledge components specified in UPML and supports
their distributed execution.

Related Work
UPML is close in spirit to CML which has been developed
in the CommonKADS project (cf. [Schreiber et al., 1994]).
CML provides a layered conceptual model of KBS by
distinguishing between domain, inference, and task layers
according to the CommonKADS model of expertise.
UPML took this model as a starting point, but refined it
according to the component-oriented style of software
architectures. UPML decomposes a knowledge-based
system - via an architecture - into a set of related elements:
tasks, problem-solving methods, domain models and
bridges that define their relationships. CML does not
provide task-independent specification of problem-solving
methods nor the encapsulation mechanism of UPML for
problem-solving method. In UPML, the operational
specification of a method is an internal aspect that is
externally described by the competence of the method. In
addition, CML does not provide means to refine tasks and
problem-solving methods. In general, UPML is much more
oriented to problem-solving method reuse (i.e., component
reuse) than CML. Finally, CML is a semiformal language
whereas UPML can be used as a semiformal language
(using its structuring primitives) and as a formal language
(UPML provides logical formalisms to formally define the
elementary slots).

UPML has also many similarities with other
standardization efforts in the area of knowledge-based
systems. OKBC [Chaudhri et al., 1998] jointly developed at
SRI International and Stanford University, provides a set of
functions that support a generic interface to underlying
frame representation systems. The Knowledge Interchange
Format [KIF] is a computer-oriented first-order language
for the interchange of knowledge among disparate
programs. [KQML] or the Knowledge Query and
Manipulation Language is a language and protocol for
exchanging information and knowledge. KQML can be
used as a language for an application program to interact
with an intelligent system or for two or more intelligent
systems to share knowledge in support of cooperative
problem solving. The distinctive feature of UPML is that it
is about sharing and exchange of problem-solving methods,

AUTOMATED REASONING

Fig 5. Querying the specification of a task.

i.e. software components that realize complex reasoning
tasks of knowledge-based systems. Moreover, UPML is
less a standardization formalism than a standard
architecture, which is defined by its mcta-ontology. A
similar approach is taken in Ontolingua [Gruber, 1993],
which defines a meta-ontology for describing frame-based
ontologies. Although UPML aims for a much broader
scope, Ontolingua could be used at the object level of
UPML for describing the elementary attribute values of
specifications.

Finally, [Fensel et al., 1999b] put UPML in the general
context of software architectures and also sketch how it can
be translated into UML.

Outlook
An important issue concerns the integration of components
subscribing to different ontologies. This integration can be
specified by means of bridges. Bridges can either be
defined by hand (i.e. by library providers or application
developers) or can be generated automatically by an
intelligent broker (cf [Benjamins et al., 1999]). However,
the automatic generation of bridges requires that the library
providers do not only agree on a shared language (i.e.,
UPML) but also on a shared vocabulary, i.e., they do not
only have to use the same UPML meta-ontology but also
partially the same ontology at the object level.

Acknowledgment We thank Igor Becker, Stefan
Decker, Mauro Gaspari, John Gennari, Rix
Groenboom, William Grosso, Frank van Harmelen,
Mark Musen, John Park, Rainer Perkun, Enric Plaza,
Guus Schreiber, Rudi Studer, Annette ten Teije, and
Andre Valente for valuable comments on early drafts
of the paper.

References
[Benjamins & Fensel, 1998] V. R. Benjamins and D.

Fensel: Special issue on problem-solving methods of
the International Journal of Human-Computer
Studies (IJHCS), 49(4), 1998.

[Benjamins et al., 1998] V. R. Benjamins, E. Plaza, E.
Motta, D. Fensel, R. Studer, B. Wielinga, G.
Schreiber, Z. Zdrahal, and S. Decker: An Intelligent
Brokering Service for Knowledge-Component Reuse
on the World-Wide Web. In Proceedings of the 11th
Banff Knowledge Acquisition for Knowledge-Based
System Workshop (KAW'98), Banff, Canada, April
18-23,1998.

[Benjamins et al., 1999] V. R. Benjamins, B. Wielinga, J.
Wielemaker, and D. Fensel: Brokering Problem-
Solving Knowledge at the Internet. In Proceedings of
the European Knowledge Acquisition Workshop
(EKAW-99), D. Fensel et al. (eds.), Lecture Notes in
Artificial Intelligence, Springer-Verlag, May 1999.

[Breuker & van de Velde, 1994] J. A. Breuker and W. van

de Velde: CommonKADS Library for Expertise
Modelling. IOS Press, Amsterdam, The Netherlands.

[Chaudhri et al., 1998] V. K. Chaudhri, A, Farquhar, R.
Pikes, P. D. Karp, and J. P. Rice: Open Knowledge
Base Connectivity 2.0, Knowledge Systems
Laboratory, KSL-98-06, January 1 9 9 8 . h t t p : / / w w w -
ksl-svc.stanford.edu:5915/doc/project-papers.html

[Fensel, 1997] D. Fensel: The Tower-of-Adapter Method
for Developing and Reusing Problem-Solving
Methods. In E. Plaza et al. (eds.), Knowledge
Acquisition, Modeling and Management, Lecture
Notes in Artificial Intelligence (LNAI) 1319,
Springer-Verlag, 1997.

[Fensel et al., 1998] D. Fensel, S. Decker, M. Erdmann, and
R. Studer: Ontobroker: The Very High Idea. In
Proceedings of the 11th International Flairs
Conference (FLAIRS-98), Sanibal Island, Florida,
USA, 131-135, May 1998.

[Fensel et al., 1999a] D. Fensel, V. R. Benjamins, S.
Decker, M. Gaspari, R. Groenboom, W. Grosso, M.
Musen, E. Motta, E. Plaza, G. Schreiber, R. Studer,
and B. Wielinga: The Component Model of UPML in
a Nutshell. In WWW Proceedings of the 1st Working
IFIP Conference on Software Architectures
(WICSA1), San Antonio, Texas, USA, February 1999.

[Fensel et al., 1999b] D. Fensel, E. Motta, V. R. Benjamins,
S. Decker, M. Gaspari, R. Groenboom, W. Grosso,
M. Musen, E. Plaza, G. Schreiber, R. Studer, and B.
Wielinga: The Unified Problem-solving Method
development Language UPML. ESPRIT project
number 27169, IBROW3, Deliverable 1.1, Chapter 1.
http://www.aifb.uni-karlsruhe.de/WBS/dfe/
publications99.html.

[Gruber, 1993] T. R. Gruber: A Translation Approach to
Portable Ontology Specifications, Knowledge
Acquisition, 5:199—220,1993.

[KJF] KIF: http://logic.stanford.edu/kif7kif.html.
[Kifer et al., 1995] M. Kifer, G. Lausen, and J. Wu: Logical

Foundations of Object-Oriented and Frame-Based
Languages, Journal of the ACM, vol 42,1995.

[KQML] KQML: http:
//www.cs.umbc.edu/kqml/.
[Motta & Zdrahal, 1998] E. Motta and Z. Zdrahal: An

approach to the organization of a library of problem
solving methods which integrates the search
paradigm with task and method ontologies. In
[Benjamins & Fensel, 1998].

[Puerta et al., 1992] A. R. Puerta, J. W. Egar, S. W. Tu, and
M.A. Musen: A Multiple-method Knowledge-
Acquisition Shell for the Automatic Generation of
Knowledge-acquisition Tools, Knowledge
Acquisition, A{2)M\—196,1992.

[Schreiber et al., 1994] A. TH. Schreiber, B. Wielinga, J.
M. Akkermans, W. Van De Velde, and R. de Hoog:
CommonKADS. A Comprehensive Methodology for
KBS Development, IEEE Expert, 9(6):28—37,1994.

FENSEL, BENJAMINS, MOTTA, AND WIELINGA 21

