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Abstract 
Deduction, induction, and analogy pervade 
all our thinking. In contrast with deduction, 
understanding logical aspects of induction 
and analogy is stil l an important and chal­
lenging issue of artificial intelligence. This 
paper describes a logical formalization, called 
production, of common conjectural reasoning 
of both induction and analogy. By intro-
duction of preduction, analogical reasoning 
is refined into "preduction + deduction" and 
(empirical) inductive reasoning is refined into 
"preduction + mathematical induction". We 
examine generality of preduction through ap­
plications to various examples on induction 
and analogy. 

1 Introduction 
Deduction, induction, and analogy are most common 
patterns of our thinking. While deduction infers a prop­
erty about a specific individual from a general property 
which every individual satisfies, inductive reasoning in­
fers an unknown property which every individual wil l 
satisfy commonly from specific properties about individ­
uals. Analogical reasoning infers an unknown property 
about an individual from known properties about simi­
lar others. Because of their generality and importance in 
our intelligent activities, understanding their reasoning 
processes is indispensable for embodying artificial intel-
ligence. 

More formally, inferences by deduction, induction, 
and analogy are typically represented as Table l 1 . De-
duction(D.l) expresses " (D . l . l ) a is P. (D.1.2) all P-
things are Q. Therefore (D.1.3) a is Q." Induction(I. l ) 
which we call mathematical expresses the usual axiom 
schema of induction in the arithmetic axioms. "(1.1.1) 
the case of 0 satisfies P. (1.1.2) if the case of x satis­
fies P, the succeeding case of x also satisfies P. Conse­
quently, (1.1.3) any case wil l satisfy P." Induction (1.2) 
expresses more empirical reasoning than (1.1); the same 

1Deduction (D.l) is a derivative rule from V-elimination 
and modus ponens. 

consequence is inferred not from a general assertion like 
(1.1.2) but from an observation that (1.2.2) every case 
of 0 to n satisfies P. Analogy (A . l ) and (A.2) express 
" (A . * . l ) the base case b satisfies P. (A.*.2) the target 
case t is similar to b. Thus, (A.*.3) t also satisfies P.'' 
They are different in that the similarity between a target 
and a base is explicit as a property S in (A.2). 

Table 1: Deduction, induction, and analogy 

In this paper, we especially focus on two logical as­
pects of induction and analogy; their consistency and 
their relationship on inference. In contrast wi th (D. l ) 
and (1.1), each inference rule of (1.2), ( A . l ) , and (A.2) 
has at least one critical logical defect. The former, each 
of (D . l ) and (1.1), preserves consistency (i.e., only con­
sistent theorems are inferred from consistent axioms), 
while the latter, each of (1.2), (A . l ) , and (A.2) does not. 
In spite of this fact, the latter inference rules seem to 
be natural to our common sense. For example, when we 
infer a general rule from individual observations, where 
knowledge as (1.1.2) comes from? Can we directly rec­
ognize the knowledge from observations? Although we 
may recognize knowledge such as (1.2.2) from our envi­
ronments, we do not recognize such an (1.1.2) at least 
from our daily life. From our view, it is the heart of 
our empirical induction to infer (1.1.2) from (1.2.1) and 
(1.2.2), and it is the process which we should investigate 
and formalize. 

Conjectural reasoning which always brings a consis­
tent conclusion at present but possibly inconsistent in 
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the future immediately implies that it is non-monotonic. 
Analogy and empirical induction often bring us con­
clusions turned to be wrong after we know more. In 
such cases, their conclusions are invalidated in our belief. 
This non-monotonicity is quite common to our reason­
ing. McCarthy introduced ctrcumscription [McCarthy, 
1980] for the purpose of formalizing non-monotonicity 
in common-sense reasoning. Circumscription of a predi­
cate P makes its extension minimized; anything is not P 
unless it is stated P by given axioms. Helft[Helft, 1988] 
used minimization of all predicates to formalize induc­
tive reasoning. By means of minimizing all predicates, 

want to deduce a useful conclusion from the general­
ization. Inductive reasoning (and analogical reasoning) 
should be naturally interpreted as a particular expansion 
of the extension of a predicate rather than minimization. 
Our approach follows circumscription just for formaliza­
tion of non-monotonicity, but does not inherit the idea 
of minimality. 

Relation between induction and analogy is another 
point to be investigated. Analogy (A.2) can be viewed 
as a two-step argument[Davies and Russell, 1987]; 

tion with S(t) in (A.2.2), we obtain (A.2.3). A similar 
idea is suggested in [Peirce, 1932; Mostow, 1983]. Un­
like to their views, we consider there is a common infer­
ential structure behind induction (1.2), analogy (A. l ) , 
and (A.2). Analogy includes a projection of informa­
tion from a similar known object to an unknown object. 
Induction similarly includes a projection of information 
from known previous cases. We discuss more about this 
common denominator in the next section. We formal­
ize this type of projection based on a transitive relation 
between objects. We call the formalization preduction 
because the introduction of preduction allows empirical 
induction and analogy to be broken into a stable part, 
(1.1) and (D. l ) , and the precedtng more conjectural part 
corresponding to the preduction (Figure 1). 

Formalizing consistent preduction has at least two 
significant points. One is (of course) to allow us to 
use empirical induction and analogy free from inconsis­
tency. If consistency of preduction guaranteed, because 
of consistency of deduction and mathematical induction, 
the whole processes of empirical induction and analogy 
would become consistent. 

repetition of inference is different, we can identify these 
structures where information is mapped from a base case 
into a target case. 

Now, in order to formalize a more general common 
structure related to both analogy and induction, we ab­
stract these in two ways: number of repetition and pa-

2 Common Denominator 
Figure 2 illustrates two typical processes by analogy and 
by induction from another point of view than their log­
ical aspects. In analogical reasoning, an unknown prop-
erty P' about a target case is inferred by finding, based 
on a property S' of the target case, a base case which 
satisfies a corresponding property S to S', and by pro-
jecting a relevant base case property P to the target case. 
In inductive reasoning, we see a similar inference which 
is made possible by a result of induction rather than 
induction itself. By a result of induction, an unknown 

Figure 2: Common structure to analogy and induction 

The other is to bring us a better understanding of 
logical aspects of induction and analogy by stepping into 
their insides. Their inferences are reduced into two clear 
pieces; a common denominator, preduction, and each 
of their residues, mathematical induction and deduction 
that are well investigated. It allows us to focus on an 
unexplored central part of thinking related to induction 
and analogy by removing differential and well-explored 
parts from them. 

This paper is organized as follows. Section 2 gives 
a formal view about the common denominator between 
induction and analogy. Section 3 proposes a form of 
preduction. Section 4 shows its generality by applying 
the form to various examples over induction and analogy. 
Section 5 proposes its model theory and shows that the 
form preserves consistency. Section 6 concludes this. 
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by a tuple of n-arguments of P. In this representation, 
we do not distinguish a parameter for an index from a 
parameter for a value. This abstraction is needed to 
capture an inference about a concept which is naturally 
represented by a predicate without parameter for value 
(e.g., a predicate, "Is a number"). Let us denote outer-
relation between the parameters in a case/example and 
the parameters in a preceding case/example by a 2 • n-
ary predicate .R.. Then, letting x and y be n-tuples of 
variables, the following sentence absorbs the number of 
repetition, 

which we call the R-expansite sentence of P. This im­
plies that, if there is a P-thing, any entities which relate 
to it by R are also P-things. That is, by this sentence 
the property P will be (recursively) projected from a 
case /example known to be P to the unknown successive 
case/example. 

Returning to the schemas in Table 1, let us see how 
this sentence relates with them. If we substitute y = s(x) 
for xRy, we get 

3 Preduction 
Preduction is a formal representation of the following 
concept: *If every entity known to be P can be traced 
back to some roots of P along a relation R, then the 
unknown descendants of their roots will satisfy P simi­
larly. " Here, a set of roots corresponds to a set which 
includes a base case/an example X0 in the previous sec­
tion. 

4 Examples: Induction and Analogy 
In the following examples, we implicitly use a classical 
logic with equality axioms and with the unique name 
axioms [Clark, 1978] which tells us that different ground 
terms denote different objects (or you may always add 
these axioms to Ai in these examples). 
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4.1 Induction 

As this example shows, the preduction from ''0 and 2 are 
natural numbers'' gives "the successor of each natural 
number is a natural number" and thus, N(l), N(3), - • • 
are also theorems of the production. It shows the pro­
duction expands the extension of N. 

The production is non-monotonic with respect to A, 
that is, the theorems of some production from A does 
not always include the theorems of the production from 
a sub-set theory of A. The following shows an example 
where a theorem of a production from a sub-set A\ of 
A2 is not the theorem from A2. 

Example 3. In Inductive Logic Programming ( ILP), 
the inference of the following form is most commonly* 
used in generalizing a clause (absorption [Muggleton, 
1991], saturation [Rouveirol and Puget, 1990J, fold-
ing [Lu and Arima, 1996], and etc.): 
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4.2 Analogy 
A consistent version of Analogy (A.2) is also deduced 
from a preduction. In the next proposition, as in (A.2), 
S corresponds to similarity and P a projected property 
bv the similarity. 

which proves the proposition 

Example 4. Let A3 be 

human{t) A mortal(b) A hurnan(b). 

We define C by their similarity, human(= S), that is, 

xCy = human(x) A human(y). 

which tells us that every human is mortal. Therefore, 
the preduction of mortal on C can derive an analogical 
conclusion mortal(t) by the fact human(t). 

Attempts to understand analogical reasoning are rig-
orously continued in Philosophy, Cognitive Science, and 
Artificial Intelligence[Helman, 1988]. Theschemas (A. l ) 
and (A.2) are too simple description of the process of 
analogy. Davies and Russell clearly argue that there 
should be more premises in their schemas by posing 
the following example: we will not infer that one (t) of 
two cars of the same model (5) is painted red (P) just 

tion is not an answer for the query of the missing premise 
in analogical schema. Instead, preduction provides a 
consistent way to infer determination itself. Given a cer­
tain triplet, a sentence A, a predicate P and a relation 
R, the preduction can yield the determination rule as a 
theorem. This would be enough by showing the fact that 
the determination rule is an expansile sentence. 

by the nature of =, which is arranged to the determina­
tion rule. 
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6 Conclusion 
This paper proposes a common form of analogy and (em­
pirical) induction. The form, called preduction, preserves 
consistency and brings a view that analogy and induc­
tion come from the same type of inference and diverge 
depending on types of sequent inference, deduction and 
mathematical induction, respectively. The generality of 
this form is verified by its broad application ranging over 
analogy and induction in the logical approach of artif i­
cial intelligence. Although the form will not contribute 
directly to a design of a general inference machine, we 
hope that this promotes us to devise it by better under­
standing logical aspects of analogy and induction. 


