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Abstract

Deduction, induction, and analogy pervade
all our thinking. In contrast with deduction,
understanding logical aspects of induction
and analogy is still an important and chal-
lenging issue of artificial intelligence. This
paper describes a logical formalization, called
production, of common conjectural reasoning
of both induction and analogy. By intro-
duction of preduction, analogical reasoning
is refined into "preduction + deduction" and
(empirical) inductive reasoning is refined into
"preduction + mathematical induction". We
examine generality of preduction through ap-
plications to various examples on induction
and analogy.

1 Introduction

Deduction, induction, and analogy are most common
patterns of our thinking. While deduction infers a prop-
erty about a specific individual from a general property
which every individual satisfies, inductive reasoning in-
fers an unknown property which every individual will
satisfy commonly from specific properties about individ-
uals. Analogical reasoning infers an unknown property
about an individual from known properties about simi-
lar others. Because of their generality and importance in
our intelligent activities, understanding their reasoning
processes is indispensable for embodying artificial intel-

ligence.
More formally, inferences by deduction, induction,
and analogy are typically represented as Table I". De-

duction(D.l) expresses "(D.l.lI) a is P. (D.1.2) all P-
things are Q. Therefore (D.1.3) a is Q." Induction(l.l)
which we call mathematical expresses the usual axiom
schema of induction in the arithmetic axioms. "(1.1.1)
the case of 0 satisfies P. (1.1.2) if the case of x satis-
fies P, the succeeding case of x also satisfies P. Conse-
quently, (1.1.3) any case will satisfy P." Induction (1.2)
expresses more empirical reasoning than (1.1); the same

'Deduction (D.l) is a derivative rule from V-elimination
and modus ponens.
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consequence is inferred not from a general assertion like
(1.1.2) but from an observation that (1.2.2) every case
of 0 to n satisfies P. Analogy (A.l) and (A.2) express
"(A.*.1) the base case b satisfies P. (A.*.2) the target
case t is similar to b. Thus, (A.*.3) t also satisfies P."
They are different in that the similarity between a target
and a base is explicit as a property Sin (A.2).

Deduction{D.1)

(D.1.1} P(a)
{D.1.2) Vz{P(z) 2 Q(z))

D13 Q)
Induction(1.1) Analogy(A.1)
(1.1.1)  P{0) (A1) P(b)
(1.1.2)  VYx(P{z) D P(s{z))) {A1.2) i~
13 Vz.Plz) AT3 PO

Induction(1.2) Analogy(A.2)

(12.1)  P(0) (A2.1) P(b)
(12.2)  P(1)A---A P(n) (A.2.2)  S(b)AS(H)
YR 7N o ) (RT3 P

Table 1: Deduction, induction, and analogy

In this paper, we especially focus on two logical as-
pects of induction and analogy; their consistency and
their relationship on inference. In contrast with (D.I)
and (1.1), each inference rule of (1.2), (A.l), and (A.2)
has at least one critical logical defect. The former, each
of (D.l) and (1.1), preserves consistency (i.e., only con-
sistent theorems are inferred from consistent axioms),
while the latter, each of (1.2), (A.l), and (A.2) does not.
In spite of this fact, the latter inference rules seem to
be natural to our common sense. For example, when we
infer a general rule from individual observations, where
knowledge as (1.1.2) comes from? Can we directly rec-
ognize the knowledge from observations? Although we
may recognize knowledge such as (1.2.2) from our envi-
ronments, we do not recognize such an (1.1.2) at least
from our daily life. From our view, it is the heart of
our empirical induction to infer (1.1.2) from (1.2.1) and
(1.2.2), and it is the process which we should investigate
and formalize.

Conjectural reasoning which always brings a consis-
tent conclusion at present but possibly inconsistent in
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Figure 1: Preduction + (Deduction/Induction)

the future immediately implies that it is non-monotonic.
Analogy and empirical induction often bring us con-
clusions turned to be wrong after we know more. In
such cases, their conclusions are invalidated in our belief.
This non-monotonicity is quite common to our reason-
ing. McCarthy introduced ctrcumscription [McCarthy,
1980] for the purpose of formalizing non-monotonicity
in common-sense reasoning. Circumscription of a predi-
cate P makes its extension minimized; anything is not P
unless it is stated P by given axioms. Helft[Helft, 1988]
used minimization of all predicates to formalize induc-
tive reasoning. By means of minimizing all predicates,
although preferably inferred when P(a) A S(a), a gen-
eralization Yz{5(x) O P(z)) is no more inferred when
P(a) A S(e) A 5(b) that normally happens whenever we
want to deduce a useful conclusion from the general-
ization. Inductive reasoning (and analogical reasoning)
should be naturally interpreted as a particular expansion
of the extension of a predicate rather than minimization.
Our approach follows circumscription just for formaliza-
tion of non-monotonicity, but does not inherit the idea
of minimality.

Relation between induction and analogy is another
point to be investigated. Analogy (A.2) can be viewed
as a two-step argument[Davies and Russell, 1987];
Yr(5(z) 2 P(z)) by a single-instance induction from
S(b) in (A.2.2) and P(d) in (A.2.1), and then by deduc-
tion with S(® in (A.2.2), we obtain (A.2.3). A similar
idea is suggested in [Peirce, 1932; Mostow, 1983]. Un-
like to their views, we consider there is a common infer-
ential structure behind induction (1.2), analogy (A.l),
and (A.2). Analogy includes a projection of informa-
tion from a similar known object to an unknown object.
Induction similarly includes a projection of information
from known previous cases. We discuss more about this
common denominator in the next section. We formal-
ize this type of projection based on a transitive relation
between objects. We call the formalization preduction
because the introduction of preduction allows empirical
induction and analogy to be broken into a stable part,
(1.1) and (D.1), and the preceding more conjectural part
corresponding to the preduction (Figure 1).

Formalizing consistent preduction has at least two
significant points. One is (of course) to allow us to
use empirical induction and analogy free from inconsis-
tency. If consistency of preduction guaranteed, because
of consistency of deduction and mathematical induction,
the whole processes of empirical induction and analogy
would become consistent.
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Figure 2: Common structure to analogy and induction

The other is to bring us a better understanding of
logical aspects of induction and analogy by stepping into
their insides. Their inferences are reduced into two clear
pieces; a common denominator, preduction, and each
of their residues, mathematical induction and deduction
that are well investigated. It allows us to focus on an
unexplored central part of thinking related to induction
and analogy by removing differential and well-explored
parts from them.

This paper is organized as follows. Section 2 gives
a formal view about the common denominator between
induction and analogy. Section 3 proposes a form of
preduction. Section 4 shows its generality by applying
the form to various examples over induction and analogy.
Section 5 proposes its model theory and shows that the
form preserves consistency. Section 6 concludes this.

2 Common Denominator

Figure 2 illustrates two typical processes by analogy and
by induction from another point of view than their log-
ical aspects. In analogical reasoning, an unknown prop-
erty P' about a target case is inferred by finding, based
on a property S' of the target case, a base case which
satisfies a corresponding property S to S', and by pro-
jecting a relevant base case property P to the target case.
In inductive reasoning, we see a similar inference which
is made possible by a result of induction rather than
induction itself. By a result of induction, an unknown
attribute value Vg 4 of an example indexed by Xy 1 be-
comes possible to T:e inferred based on the known value
Vy of its preceding example indexed by Xy. (e.g., the
value, Vi, 1, of factorial of (k+ 1), Xx 1, I8 computed
from the preceding case, the value of factorial of k.} To
get the unknown value Vx_ 1, we may have to trace back
(recursively) to some example indexed by Xg whose value
is known (e.g., the value of factorial of 0 is 1). Let us
identify this known example in induction with a base
case in analogy, and the unknown example indexed by
Xy, 1 with a target case. Then, although the number of
repetition of inference is different, we can identify these
structures where information is mapped from a base case
into a target case.

Now, in order to formalize a more general common
structure related to both analogy and induction, we ab-
stract these in two ways: number of repetition and pa-
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rameters of their cases/examples. Let us represent inner-
relation among the n-parameters inside a case/example
by an n-ary predicate P {n > 1), and their parameters
by a tuple of n-arguments of P. In this representation,
we do not distinguish a parameter for an index from a
parameter for a value. This abstraction is needed to
capture an inference about a concept which is naturally
represented by a predicate without parameter for value
(e.g., a predicate, "Is a number"). Let us denote outer-
relation between the parameters in a case/example and
the parameters in a preceding case/example by a 2 * n-
ary predicate .R.. Then, letting x and y be n-tuples of
variables, the following sentence absorbs the number of
repetition,

Yz, y(P(z) AzRy D P(y)),

which we call the R-expansite sentence of P. This im-
plies that, if there is a P-thing, any entities which relate
to it by R are also P-things. That is, by this sentence
the property P will be (recursively) projected from a
case /example known to be P to the unknown successive
-casel/example.

Returning to the schemas in Table 1, let us see how
this sentence relates with them. If we substitute y = s(x)
for xRy, we get

Vz,y(P(z}Ay=s(z) D P(y)) ---(})

which is equivalent to (I.1.2) by the nature of =, and if
z ~ y and S5(z) A S(y) for 2Ry, we get

Vo, W P(x)Az~y D P(y), (i)

Vz,y(P(z) A S(z) A S(y) D P(y)) --- (i)

with which (A.1.3) and (A.2.3) can be deduced from
their premises, respectively. Now let us assume an infer-
ential schema, preduction, which can conclude each R-
expangile sentence of (i), {ii), and (iii) from the premises
of (I.2), (A.1), and {A.2), respectively. Then by this
new schema, Induction (I1.2) can be broken down into
two steps; 1) from the premises (1.2.1) and (1.2.2), con-
clude the expansile sentence (i) by preduction, and 2}
from (1.2.1} and (i), conclude (1.2.3) by Induction (I.1).
Each of Analogy (A.1) and (A.2), on the other hand,
becomes a derivative rule from preduction and deduc-
tion; 1) from the premises, conclude each R-expansile
sentence (ii}/{iit) by preduction, and 2) from (ii)/(iii)
together with their premises, conclude (A.1.3}/(A.2.3)
by deduction, respectively. Thus, preduction is a com-
mon inference of (I.2), {A.1), and (A.2) (Figure 1).

3 Preduction

Preduction is a formal representation of the following
concept: *If every entity known to be P can be traced
back to some roots of P along a relation R, then the
unknown descendants of their roots will satisfy P simi-
larly. " Here, a set of roots corresponds to a set which
includes a base case/an example X, in the previous sec-
tion.
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Before describing a form of the concept, we introduce
some terminology. For a transitive relation < and a pair
of objects e and ¢/, when ¢ < €', we say ¢ is an ancestor
of ¢/ and ¢ is a descendant of e with respect to <. An
n-ary predicate [ is generally expressed by AzQ, where z
is a tuple of n object variables, @ is a sentence in which
no object variables except variables in r occur free.

For a 2- r-ary predicate .R. and . <g ., let Tr#(R; <g)
express that <g is the transitive closure of R, that is,
< g is the minimal predicate which satisfies

Vz,y(zRy D ¢ <R y)

AVe, ¥, 2(z <p 2 Az <R YDz <R Y).

Let P be an n-ary predicate symbol and A a first order
sentence. Let . < . be a 2- n-ary transitive predicate in
which P does not occur. The preductive sentence of P
on < in A, written Pd(A; P; <), is

3P Vo (®(2) D P()) A3z, y(P(z) Az <y A P(y)

A AfAz(®(z) v I2(®(z) Az < 2))])
D Vz,y(P(z) Az <y D Ply)),
where A[Az{®(z)VvI2(P(z)Az < 1))] expresses the result
of substituting the predicate Az(®(c)vIz(P(2)Az < z))
for all occurrences of P in A.

In the left side of the implication of the preductive
sentence, a predicate variable ¢ represents a concept of
root of P-things with respect to a relation <. The first
conjunct expresses that ¢ is a sub-class of P. The second
conjunct confirms that there is an entity of ® that is an
ancestor (with respect to <) of an entity of P. The
third conjunct expresses that P can be interpreted as a
set of entities who have their roots in ¢. If a predicate ¢
satisfies all these three conditions, Pd{A; P; <) tells us
every <-descendants of an entity satisfying P satisfies P
sirmilarly.

Let P do not occur in K. Then, the preduction of P
on R frem A is the sentence,

AATr(R;<g) A Pd(A; P; <R),
denoted by Preducl(A; P; R), where < is a new predi-
cate symbol which does not occur in A.

Preduction is guaranteed fo maintain consistency,
which will be proved in Section 5. The following prop-
erties are straightforward and used in the next section.
The conclusion of a preductive sentence, Yz, y(P(z) A
T <p ¥ D P(y)), implies the R-expansile sentence of
P, ¥z, y(P(z) A zRy O P(y)), because of Tr(R; <gr).
Tr(R; <r) can be expressed formally by a second order
sentence which circumscribes < g alone in the above two
sentences of Tr( R; <g) [McCarthy, 1980]. If R is transi-
tive, the transitive closure of R is R itself. Thus, in this
case Preduci(A; P; R) is simplified to A AVe,y(zRy =
z <p Yy) A Pd(A; P; R).

4 Examples: Induction and Analogy

In the following eXampIes, we implicitly use a classical
logic with equality axioms and with the unique name
axioms [Clark, 1978] which tells us that different ground
terms denote different objects (or you may always add
these axioms to A; in these examples).



4.1 Induction
Example 1. Let A; and § be

A1 = N(0) A N(s(s(0)))

and

z8y = y = 8(z).
Let <g denote the transitive closure of § by T»(S; <s).
Then, Pd(A;; N; <5} i8

AP( Ye(®(z) D N(z))
Ade,y(®(z) Az <s yAN(Y)
A(P0) v Az(P(z) A z <5 D))
A(®(s(5(0))) v I P(2) A z <5 5(5(0)))))
DV, y(N{z) Az <5y D N(y))

The sentence scoped by 3@, if substituted $(r) =z =0
(“z is a root iff z is 0”), becomes

N{0) Ay <s yAN()) A0 <5 5(5(0))

and follows from A, A Tr(S; <5). Thus, as the left side
of the implication of Pd{A;; N; <35) hold, the preduction
of P on S from A; concludes

V:L‘, y(N(t) AL <5¥yD N(y))!

and, by ¥z, y(y = s(z) D ¢ <5 y) {in Tr(S; <s)}) and by
the equality axioms,

Yz(N(z) D N{s(z))).

As this example shows, the preduction from "0 and 2 are
natural numbers" gives "the successor of each natural
number is a natural number" and thus, N(l), N(3), -« «
are also theorems of the production. It shows the pro-
duction expands the extension of N.

The production is non-monotonic with respect to A,
that is, the theorems of some production from A does
not always include the theorems of the production from
a sub-set theory of A. The following shows an example
where a theorem of a production from a sub-set A\ of
A, is not the theorem from A..

Example 2. Lei Az = 4; A-N(5{0})) and 5 is the same
as in Example 1. Pd(Ay; N; <g) is the result obtained
just by attaching the following sentence to the left side
of the implication of Pd(A,; N; <s) in the scope of 3®;

=(®(s(0)) v I(P(2) A 2 <5 5(0))),
which, by distribution of the negation, becomes
~®(5(0)) A ~Tz(P(2) A x <5 8(0))).

This second conjunct telling us “any less than 1 does
not satisfy $". This contradicts (${0) v 32{P(2) Az <5
0)) in the left side of the implication of Pd(Ay;N;S)
by the transitivity of <s. Thus, for ®, no predicate
satisfies the left side of the implication of Pd(Aj3; ¥;S),
and Pd(A;; N; S} is seen to be tautology.

Example 3. In Inductive Logic Programming (ILP),
the inference of the following form is most commonly*
used in generalizing a clause (absorption [Muggleton,

1991], saturation [Rouveirol and Puget, 1990J, fold-
ing [Lu and Arima, 1996], and etc.):
Induction(L.3)
(1.3.1) Yz(a{z) D P(z))
Yr{a(z) D Bz

1.3.2

.3 z(f(x) S Flz)),
where P is a predicate symbol and o, 8 are conjunctions
of literals. Unfortunately, this rule also does not main-
tain consistency. Thus, to check consistency is always
necessary to discard an inconsistent conclusion produced
by this rule. (It corresponds to over-generalization in
ILP where a negative ezample ¢ of P is covered by the
newly obtained generalized clause H, that is, 4 - ~P(e)
but A, H F P(e).) The preduction can work as a consis-
tent version of this rule.

Proposition 1 Let P do not appear in B. Let zBy
be B(z) A B(y). Then the following is a theorem of
Preduct{A; P, B):
Va(a(z) D P(z)) AVx(a(z) D A(2))
Adea(z) A A[F]
2 Vz(B{x) > P(2)),

Proof. B is transitive. Thus, Pd{A;P;B) is a
theorem of Preduct(A; P;B). Assuming Vr(a{z) DO
P(z)), Yr(a(r) D A(z)), and Jra(z), it is sufficient to
prove that A[3] D Vz(8(x) D P(z)) is a theorem of
Pd(A; P; B).

Consider a preductive sentence Pd(A; P; B) where o
substituted for ®. The first condition of the sentence is
just the same as the first assumption Ve(a(x) D P(z)).
The second condition,

3z, yla(z) A Blx) A B(y) A a(y)),
is equivalent to Jz(a({z) A 8(2)), which follows from the
second and the third assumptions. The third condition
of the preductive sentence becomes simply A[S] under
the second and the third assumptions, because

(alz) v Ix(a(z) A B(2) A B(2))) = B(z).

Consequently, the conditions of the preductive sentence
is equivalent to A[8]. Also, these assumptions give

Az(P(z) A B(z)),
which siruplifies the conclusion of the preductive sentence
Vz,y(P(z) A B(z) A B(y) O P(y)) to Ve(8(z) D P(z)).

As Proposition 1 shows, the preduction proposes two
more conditions than the two premises of Induction(1.3).
The former condition dra(z) relates to the justsfication
of induction (I.3). If Jxa(z) is not required like Induc-
tion(1.3), it allows the case A F ~3za{r), where (1.3.1)
and (1.3.2) hold always, because these preconditions are
always false. Thus Induction(1.3) yields, no matter what
B is, ¥z(8(x) D P(x)). There would be no reason to jus-
tify such an inference. The latter condition keeps con-
sistency. This will be shown in Theorem 2.

ARIMA 213



4.2 Analogy

A consistent version of Analogy (A.2) is also deduced
from a preduction. In the next proposition, as in (A.2),
S corresponds to similarity and P a projected property
by the similarity.

Proponition 2 Let P do not appear in S, Let zCy
be S(x) A S(y). Then the following is a theorem of
Preduct(A; P; C):

32(P(2) A S(2)) A A[S] D Y2(S(x) D P(z)),

Proof. C is transitive. Thus, Pd{A4; P;C) is a theorem.
Assuming P{v)AS(v), consider the sentence obtained by
substituting Az(z = v) for ® in Pd(A; P;C). The first
condition ¥z(z = v O P(z)) of the sentence is satisfied
because P(v), and the second condition 3y(S(v)AS(y) A
P(y)) is satisfied because of v as y. The third condition
becomes simply A[S], because (z = vV vCz) = S(z)
from S(v). The conclusion of the preductive sentence is
simplified to Yz(5(z) O P(z)) because 3z( P(z) A S(x))
from the assumption. Consequently, Preduct{A; P;C) A
P(v) A S(v) gives

A[S} D Vz(S(z) D P(z)),

which proves the proposition.

Example 4. Let A; be
human{t) A mortal(b) A hurnan(b).
We define C by their similarity, human(= S), that is,
xCy = human(x) A human(y).

Then, as Proposition 2 shows, Preduct(As; mortal,C)
yields

3z(mortol(2) A human(z)) A Ag[human]

D Yz{human(z) D mortal(z)).

Substituted the target case b for z, the left side of the
implication is

mortal(b) A human(b)

Ahuman(t) A human(d) A human(b)

which follows from As. Thus, Preduct(As; mortal; C)
yields

. VYz(human(z) D mortail(z)),
which tells us that every human is mortal. Therefore,
the preduction of mortal on C can derive an analogical
conclusion mortal(t) by the fact human(t).

Attempts to understand analogical reasoning are rig-
orously continued in Philosophy, Cognitive Science, and
Artificial Intelligence[Helman, 1988]. Theschemas (A.l)
and (A.2) are too simple description of the process of
analogy. Davies and Russell clearly argue that there
should be more premises in their schemas by posing
the following example: we will not infer that one (t) of
two cars of the same model (5) is painted red (P) just
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because the other (}) is painted red, although we may
guess & prlce (P') of the one _]ust because the other same
mode] car is valued at the price (7')[Davies and Russell,
1987}. That is, we prefer the latter inference, (P'(t) just
for P'(b) A S(b) A S(1)) than the former {P(t) just for
P(b) A S(b) A S(1)) by the difference of the properties
(P and P’} although there is no difference in applying
the schemas to the cases. The missing premise should
be weaker than Vx(S(z) D P(z)), because, if otherwise,
S(1) is enough for the conclusion P(i) and thus infor-
mation about the base case (b) becomes unnecessary.
Davies and Russell proposed the following premise:

p, s(3z(E(z, s) A ll(z, p)) D Vy(X(y,5) O Li(y,p))),

which allows a particular pair of 5 (as a similarity) and p
(as a projected property) to work in analogical reasoning
based on a base case (z). {e.g., £ = Model and I =
Price). They call this sentence determination rule.

Although weaker than ¥z{5(z) D P(z)), thls preduc~
tion is not an answer for the query of the missing premise
in analogical schema. Instead, preduction provides a
consistent way to infer determination itself. Given a cer-
tain triplet, a sentence A, a predicate P and a relation
R, the preduction can yield the determination rule as a
theorem. This would be enough by showing the fact that
the determination rule is an expansile sentence.

Example 5. In the R-expansile sentence, substituting
Az, pll(z, p) for P, Az, p, y, p’3s(Z(x, )AE(y, 8)Ap = p),
for R, {z,p} for 2 and {y,p'} for y results in

Y, y, (I, p) A 3s(Z(z, 5) A E(y, 5)) D I{y,p))

by the nature of =, which is arranged to the determina-
tion rule.

5 Model Theory

Let U and ¢ be sets such that ¢ C /. Let < be a
transitive relation on /. We say a set 1 is the ezpansie
set of ¢ with respect to < if ¢ is the union of v with the
(ascending) segment by » with respect to <, that is,

¥ =@ U{e]| there exists € p, z < ¢€}.

For a predicate P and a structure M, we write P™ for
the extension of P in M. Let M and A be structures.
For a predicate P and a predicate i in which P does not
occur, we say that M is an R-ezpansile structure of N
in P, if i) M and A have the same universe, ii) all other
predicate symbols and function symbols besides P have
the same extensions in A1 and N' (thus, RM = RV},
iii) but, for some subset ¢ of PV such that an entlt.y
eE¢ and an entity ¢’ € PV satisfy e<ge’, P™ is the
expansile set of ¢ with respect to <p, where <p is the
transitive closure of

Let M be a model of A. We say that M is & preductive
modelof A in P on R, if i) any R-expansile structure of
M is not a model of A, or otherwise ii) M is an R-
expansile structure of a mode] of A.



Theorem 1 We write A (= f if a sentence f is true
in all preductive models of Ain P on R. Then,
Akf f if Preduct(A;P;R)t f

Proof. Let M be a preductive model of A in P on
R. Let ¢ be a predicate which, for the transitive clo-
sure <g of R, satisfies the left side of the implication of
Pd(A; P; <g) when substituted for ®. Then the exten-
sion of ¢ is & subset of the extension of P and includes
an entity which is an ancestor of an entity of P with re-
spect to ~<g, and its expansile set with respect to <g is
an alternative extension of P. Thus, there is a model of
A that is an R-expansile structure of M. It implies that
M should also be an R-expansile structure of a model of
A by the definition of the preductive model. If the right
side of Pd(A; P, R) were not true on M, there would
exist a pair of entities, (1, ez}, such that they satisfies
R and that ¢; is an entity of P but es is not of P. This
would contradict that A4 is an R-expansile structure.

Theorem 2 (consistency): A predicate P does not oc-
cur in a predicale R. If A is consisient, the preductive
sentence Preduct{A; P; R) is consislent.

Proof. Assume that A is consistent but that
Preduct{A; P; R) is inconsistent. A ATr(R; <g) is con-
sistent becaunse Tr(R; <g) just defines a new predicate
< g to be the transitive closure of R. By the assumption,
for any model N of AAT»(R; <g)}, N |= =Pd(A; P; <p).
Thus, because the left side of Pd(A; P; <g) is true on N,
there is a predictive model of AATr(R; <g) that is an R-
expansile structure of . Let this be AM. Now, by the as-
sunuption, the negalion of the right side of Pd(A; P; <g)
is also true on M, that is,
M E Jz y(P(e} Az <g y A -P{y)).
M agrees with A on all symbols {including R and <g)
except P and, on P, agrees with the expansile set of
the extension of ® on A" with respect to <gx. Therefore,
letting 9V = gM,
M E 2, y({e(x} v 32(d(z) Az <p )
AT <R ¥ A (=é(y) A-3z(d(2) Az <p y)))-
M3z, y((d(z)Az <p yVI2(d(2)Az <p s AT <R ¥))
/\—132((5(2) Az =g y))

The both disjuncts in the first conjunct contradict the
second conjunct by the transitivity of <g. Thus, there is
no such a model A4. This contradicts the assumption.

6 Conclusion

This paper proposes a common form of analogy and (em-
pirical) induction. The form, called preduction, preserves
consistency and brings a view that analogy and induc-
tion come from the same type of inference and diverge
depending on types of sequent inference, deduction and
mathematical induction, respectively. The generality of
this form is verified by its broad application ranging over
analogy and induction in the logical approach of artifi-
cial intelligence. Although the form will not contribute
directly to a design of a general inference machine, we
hope that this promotes us to devise it by better under-
standing logical aspects of analogy and induction.
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