
U s i n g I n f e r e n c e t o R e d u c e A r c C o n s i s t e n c y C o m p u t a t i o n 

Chr is t ian Bessiere 
LIRMM (UMR 9928 CNRS), 161 rue Ada 

34392 Montpellier cedex 5, France 
phone: (33) 67 41 85 39 
fax: (33) 67 41 85 00 

e-mail: bessiereClirnn.fr 

Eugene C. Freuder 
University of New Hampshire 

Durham, NH 03824 USA 
phone: 603-862-1867 
fax: 603-862-3493 

e-mail: ecfCcs.unh.edu 

Jean-Charles Regin 
GDR 1093 CNRS, LIRMM, 161 rue Ada 

34392 Montpellier cedex 5, Prance 
phone: (33) 67 41 85 80 
fax: (33) 67 41 85 00 

e-mail: reginClinnm.fr 

Abs t rac t 

Constraint satisfaction problems are widely 
used in artificial intelligence. They involve find
ing values for problem variables subject to con
straints that specify which combinations of val
ues are consistent. Knowledge about properties 
of the constraints can permit inferences that 
reduce the cost of consistency checking. In 
particular, such inferences can be used to re
duce the number of constraint checks required 
in establishing arc consistency, a fundamen
tal constraint-based reasoning technique. A 
general AC-Inference schema is presented and 
various forms of inference discussed. A spe
cific algorithm, AC-7, is presented, which takes 
advantage of a simple property common to 
all binary constraints to eliminate constraint 
checks that other arc consistency algorithms 
perform. The effectiveness of this approach is 
demonstrated analytically, and experimentally 
on real-world problems. 

1 I n t r oduc t i on 

1.1 Overview 
Constraint satisfaction problems (CSPs) occur widely in 
artificial intelligence. They involve finding values for 
problem variables subject to constraints on which com
binations are acceptable. For simplicity we restrict our 
attention here to binary CSPs, where the constraints in
volve two variables. 

Binary constraints are binary relations. If a variable i 
has a domain of potential values Di and a variable j has 
a domain of potential values Dj, the constraint on i and 
j, Rij, is a subset of the Cartesian product of Di and Dj. 
If the pair of values a for i (denoted by (i, a)) and b for 
j (denoted by (j, b)) is acceptable to the constraint Rij 
between i and j, i.e. a member of the Cartesian product, 
we will call the values consistent (with respect to Rij). 
Asking whether a pair of values is consistent is called a 
constraint check. 

Constraints can be represented implicitly, where a 
computation, or a real-world process, is needed to an
swer constraint check questions, or explicitly, where the 

answer is already recorded in a data base. Implicit con
straint checks could be very costly to compute. Even 
if the constraints are represented explicitly in a form 
that permits quick computation there may be an enor
mous number to compute, along with associated deci
sions about which checks to make and how to use the 
results. As a result much of the work on constraint rea
soning has focused on ways to reduce the number of con
straint checks required. 

Constraint algorithms often seek to establish support 
for a value a 6 Di, i.e. to find a value for a variable 
j that is consistent with (i,a) (or to determine that no 
such value exists). Traditionally constraint checks have 
been used to establish support. This paper proposes to 
reduce constraint checks by using metalevel knowledge to 
infer support. We will demonstrate that one such infer
ence can save many additional constraint checks, ensur
ing that the benefits of these inferences can more than 
offset the costs associated with making and exploiting 
them. 

We apply this approach to building a schema for arc 
consistency algorithms. Arc consistency is one of the 
most basic and useful constraint reasoning processes. 
Thus arc consistency algorithms have been the subject of 
much interest [Mackworth and Freuder, 1993]. The new 
algorithm schema, AC-Inference, permits use of inferred 
support. We identify several properties of constraints 
that permit such inferences. We hope that AC-Inference 
will permit the exploitation of many other generic and 
problem domain specific properties of constraints. Fur
thermore, the metaknowledge inference approach should 
also be extensible to higher order consistency [Freuder, 
1978]. 

We refine the schema to build a specific, new arc con
sistency algorithm AC-7. AC-7 is a general arc con
sistency algorithm, since it does not depend on special 
properties of a limited class of constraints, but simply 
utilizes the knowledge that support is bidirectional: (i, a) 
supports (j, b) if and only if ( j , b) supports (i,a). (It is 
tempting to assume that a special class of undirected 
constraints is required here; but a careful reading of 
[Mackworth, 1977] should demonstrate that this is not 
the case.) 

AC-7's exploitation of bidirectionality gives it a com
putational advantage over other general purpose arc con
sistency algorithms, and restricting attention to bidirec-

592 CONSTRAINT SATISFACTION 



tionality also permits an implementation with space effi
ciency comparable to the best of these algorithms, which 
is not possible for the AC-Inference schema in general. 
Constraint programmers tell us that space can be a ma
jor issue for practical applications. On the other hand, 
AC-Inference permits us to obtain additional computa
tional efficiency by taking advantage of knowledge about 
a restricted class of constraints. We demonstrate each of 
these advantages experimentally in real-world applica
tions. We also provide analytical evaluation of AC-7, 
specifically refuting an optimality claim for an earlier 
algorithm, AC-6 [Bessiere and Cordier, 1993]. 

1.2 Relation to Previous Work 
For some time the state of the art resided in two algo
rithms, AC-4 [Mohr and Henderson, 1986], which has op
timal worst-case behavior, and AC-3 [Mackworth, 1977], 
which often exhibits better average-case behavior [Wal
lace, 1993]. Two AC-5 algorithms, one by Deville and 
Van Hentenryck [Deville and Hentenryck, 1991] and an
other by Perlin [Perlin, 1992], permit exploitation of cer
tain specific constraint structures, but reduce to AC-3 
or AC-4 in the general case. Recently Bessi6re and 
Cordier have developed AC-6, which retains the opti
mal worst-case behavior of AC-4 while improving on 
the average-case behavior of AC-3 [Bessiere and Cordier, 
1993]. The new algorithm schema, AC-Inference, owes 
something to all these predecessors, but permits use of 
inferred support; AC-7 is most closely related to AC-6. 
This paper merges and extends previous independent 
work by the authors [Bessiere and Regin, 1994; 1995; 
Freuder, 1995]. 

The potential redundancy in processing of bidirec
tional support has been recognized before. When AC-3 
removes a value from the domain of variable X because 
it has no support in variable Y, it realizes that this can
not cause a value of Y to become bereft of support at X. 
DEEB [Gaschnig, 1978] uses a "revise-both" procedure 
that more directly anticipates AC-7. After the values 
for X are checked for support at Y, values for Y are im
mediately checked for support at X, but only those Y 
values that have not just provided support for X values 
are checked. Gaschnig points out that this avoids un
necessary checks performed by AC-3 the first time the 
domains of X and Y are checked against each other; 
but he incorrectly, it seems to us, concludes that DEEB 
also avoids all the checks that AC-3 avoids by utilizing 
bidirectionality. 

Neither algorithm, however, has any long term mem
ory of inferences based on bidirectionality. For exam
ple, suppose that the first value, x1 and last value, X100, 
among a hundred values for X are found to be supported 
by a value y for Y. If later X\ is deleted during the con
straint propagation process, neither AC-3 nor DEEB will 
remember that y still is supported by X100- In fact they 
may need to look at the other 98 values for X before 
"rediscovering" that y is supported by :X100- More gen
erally, both AC-3 and DEEB are "arc revision" oriented, 
while AC-7 is "support maintenance" oriented, in the 
spirit of AC-6. As a result, AC-7 will have the same sort 
of constraint check advantage over AC-3 that has been 

b AC-3 and AC-6 c. bidirectional 
support 

d. irreflexive c. commutative f. irretflexive and 
commutative 

Figure 1: Making inferences. 

demonstrated for AC-6, plus the additional advantage 
provided by inferences based on bidirectionality. 

2 In ferr ing Support 
2.1 Principle 
We illustrate the principle of inferring support with a 
simple coloring problem example. Consider a trivial one 
for illustration purposes. The problem is to assign a 
color, a (aquamarine), b (blue) or c (coral), to each of 
two countries, X and Y, such that X and Y have differ
ent colors. As a CSP, the countries are the variables, the 
colors the values. The constraint between the two vari
ables specifics that the two countries cannot have the 
same color (i.e. it is a not-equal constraint). 

A value, (z,a), is arc inconsistent if there is a vari
able for which there is no value that supports (i,a). We 
achieve arc consistency by removing all arc inconsistent 
values or in this simple coloring problem by verifying 
that there are no arc inconsistent values. In general, 
removing one value may make another value arc incon
sistent, so we say that achieving arc consistency can in
volve a constraint propagation process. However, in this 
simple example we do not have to worry about that. 

The AC-4 arc consistency algorithm operates by first 
checking for all possible support. It stores summary in
formation in support counters, and is later able to im
plement constraint propagation efficiently when propa
gation is required, by updating the counters rather than 
by performing further constraint checks. However, its 
brute force initial processing is costly; it performs all pos
sible constraint checks twice (this total can be reduced 
when values are deleted during initial processing). Eigh
teen constraint checks are required for this little problem. 
These are shown in Figure la. The values for country 
X are on the left, for country Y on the right. An arrow 
from a value u for A" to a value v for Y indicates that a 
check of the consistency of (X,u) with (Y,v), (denoted 
by RXY(U,V)), has been computed while seeking sup
port for (A', u). The double ended arrows indicate that 
redundant checks were made, while seeking support for 
both (X,u) and (Y,v). A solid arrow indicates that the 
check established consistency; a dashed arrow indicates 
that the check established inconsistency. 

AC-3 seeks only to establish that each value has a 
supporting value (at every other variable). This only 

BESSIERE, FREUDER, AND REGIN 593 



requires 8 constraint checks here (Figure lb), but some 
of them are redundant. In general, AC-3 propagation 
can involve additional redundant checking, but this does 
not enter in here. AC-6 can improve on AC-3 by avoid
ing some redundant checking during propagation. If the 
support it finds initially is deleted, it proceeds on from 
that point to look for another support; it does not need 
to "start over" as AC-3 does. However, in this simple 
example, AC-6 has no opportunity to exhibit this addi
tional intelligence. It too requires 8 constraint checks. 

AC-3 may check pairs once, twice, or more than twice. 
AC-4 checks each pair at most twice. AC-6 was said 
to be optimal in the sense that it only made necessary 
checks. (The actual number of checks it makes is still 
subject to processing order effects.) However, support 
inference based on the bidirectionality of support can 
reduce constraint checks further. AC-6 (AC-3 and AC-4 
as well) checks, for example, that (X, a) is supported by 
(Y, 6), and then separately checks that (Y, b) is supported 
by (X,a). These algorithms can not say: "oh, I already 
know (Y,b) is supported; I just found that out while 
looking for support for (X,a)". 

The AC-7 algorithm that we propose here can, in ef
fect, say this. After it checks (X,a) against (Y, b) and 
finds that the latter supports the former, it infers that 
the former also supports the latter. This inference is 
based upon the simple metaknowledge that support is 
bidirectional. Utilizing such inferences, AC-7 only re
quires 5 constraint checks to establish arc consistency. 
This is shown in Figure lc. Large barbed arrowheads 
are used to indicate inferences. The double-ended ar
rows here, with a barb on one end, indicate a constraint 
check in one direction followed by a constraint inference 
in the other. Notice that negative support information 
can also be inferred: after performing a constraint check 
to determine that (Y, a) does not support (X, a), we can 
infer that (X,a) does not support (Y,a). 

Moreover, AC-7 is but one instance of the general prin
cipal of using constraint metaknowledge to infer or avoid 
constraint checks. We will illustrate this point with a 
couple of further examples. Suppose we have further 
metaknowledge of these constraints. Suppose we know 
that they are also irreflexive: Rxy(v,v) does not hold 
for any v. Then the number of checks can be reduced 
to 4. Irreflexivity allows us to immediately infer that 
(X,a) is inconsistent with (Y,a), making it unnecessary 
to check this (Figure Id). Suppose we know that the con
straints are commutative: Rxy(u,v) = RXY(V,U). This 
permits us to reduce the number of constraint checks to 
3. For example, after checking Rxy(a,b) we can infer 
Rxy(b, a). See Figure le. If we know they are irreflexive 
and commutative, we are down to two checks, Figure If. 

Finally, suppose we know that the constraints are in
equality constraints. What does it mean to know that 
they are inequality constraints? Well one thing it could 
mean is that we have an inference rule that says sim
ply: if the constraints are inequality constraints, and 
the domains contain more than one element, forget arc 
consistency processing—the problem is already arc con
sistent. This reduces the processing to zero constraint 
checks. Less dramatically, but potentially of consider

able significance, we may have a problem in which some 
of the constraints appear repeatedly involving different 
variables. A consistency check involving one of these 
"repeated" constraints can permit us to infer support in
formation for all these variables (to the extent to which 
they share common domains). 

2.2 Schema 
The key to the inference schema, as it is to AC-3, AC-4 
and AC-6, is maintaining appropriate information. AC-3 
determines which values need to be rechecked to see if 
they are still supported. AC-4 computes a total support 
count initially and then updates it as values are deleted. 
If AC-Inference needs to find support for value (i.a) at 
variable j, it looks through an ordered list of j values for 
a single supporting value, b. If b is deleted, AC-Inference 
looks for another supporting value later in the list. 

The schema data structures are something of a hybrid 
of AC-4 and AC-6. Conceptually, for each value, a, for 
each variable, i, and each other variable j, which shares 
a constraint with i, AC-Inference maintains a support set 
of values from Dj that support (i,a), and the unchecked 
set of values from Dj that have not yet been checked to 
see if they support (i, a). (Values that have been checked 
and found not to support (i,a) appear in neither set.) 

Maintaining these sets enables the schema to remem
ber inferred constraint check information. Positive re
sults are remembered by adding to the support sets. 
Negative results are remembered by deleting from the 
unchecked sets. Like AC-6 we only have to work through 
the unchecked sets once; unlike AC-6 we can avoid some 
of those values via inference. 

The support data structures of AC-4 accept additional 
support during the initialization phase and can be mod
ified to reflect deletion of support. For the schema, sup
port can be both added and deleted throughout the pro
cessing. AC-6 proceeds through the variable domains as 
necessary looking for support, ignoring deleted values. 
The schema does the same, ignoring also values whose 
support status has already been inferred. The number 
of supporting and unchecked values can be maintained 
to facilitate deletion decisions. 

The schema can be expressed as a processor for two 
streams. 
AC-Inference Schema: 

In i t ia l ize the seek-support stream 
Establish the i n i t i a l support and unchecked 

sets, using any i n i t i a l inferences 
Repeat un t i l done: 

If process-deletion stream is not empty, 
process i t s f i r s t element 

else if seek-support stream is not empty, 
process i t s f i r s t element 

else done 
The seek-support stream contains value-variable pairs. 

If a is a value for a variable i and the variable j shares a 
constraint with i, [(i, a), j] will appear on the initial seek-
support stream. Processing an element of this stream in
volves looking for support for the value in the unchecked 
set of the variable. After each constraint check a set of 
inferences is made, based on the outcome. The specific 

694 CONSTRAINT SATISFACTION 



set of inferences chosen instantiates the schema. The 
process-deletion stream consists of values whose support 
and unchecked sets at some variable are both empty. 
Processing a deletion involves removing it, at least con
ceptually, from the domain of values for its variable, and 
the support and unchecked sets in which it appears. 

When both the support and unchecked sets for a value 
with respect to a variable become empty, that value en
ters the process-deletion stream. This can happen either 
as the result of seeking support or processing deletion. 
When only the support set for a value with respect to 
a variable becomes empty, that value enters the seek-
support stream. This can happen as the result of pro
cessing a deletion. Notice that we respond to deletions 
immediately. Furthermore we recommend implementing 
the seek-support stream as a stack, so that the effects 
of deletions will propagate immediately. We believe this 
to be an improvement on the "two-pass" organization of 
AC-4 and AC-6. 

3 AC-7 
AC-7 refines the AC-Inference schema, while restricting 
inferences to those based on bidirectionality. Since bidi-
rectionality is a general property of constraints, AC-7 is 
a general purpose arc consistency algorithm. Also by 
restricted our inferences to bidirectionality we are able 
to maintain a space complexity of the same order as 
AC-6, namely O(ed), for a problem with e constraints 
and maximum domain size d. AC-Inference (and AC-4) 
space complexity is quadratic in d. In some applica
tions, the size of the problem (number of variables, size 
of the domains, number of constraints) is so high that it 
is impossible to store in memory all the support sets and 
unchecked sets needed by AC-Inference. Swapping slows 
down running time. AC-7 avoids the space requirements 
of AC-lnference by using an AC-6-like data structure to 
avoid the constraint checks that would be inferred by 
AC-Inference. 

AC-7 has the following desirable properties. AC-7: 

1. never checks Riija,b) if there exists b' still in Dj 
such that Rij(a,b') has already been successfully 
checked. 

2. never checks Rij(a,b) if there exists b' still in Dj 
such that Rji(b',a) has already been successfully 
checked. 

3. never checks Rij(a,b) if: 
a) it has already been checked 

or b) RJt(b,a) has been checked. 
4. has 0(ed) space complexity. 
AC-3 lacks properties (1), (2), (3a), and (3b). AC-4 

lacks (1), (2), (3b), and (4). AC-6 lacks (2), and (3b), 
the properties resulting from bidirectionality. 

3.1 Data structure 
Every time a constraint check Rji(b,a) is performed, 
AC-7 needs to store this information to avoid future 
Rij(a, b) or Rij(a, b') checks forbidden by properties (3b) 
and (2). This storage must be done in a careful way to 

avoid falling into the trap of an 0(ed2) space complex
ity. AC-7 does this by adding two refinements to the 
data structures of AC-6. 

AC-6 assigns an ordering of the values in every D i, 
checks one support (the first one) for each value (i,a) 
on each constraint Rij to prove that (i,a) is currently 
viable. When (j, b) is found as the smallest support of 
(i,a) on Rij, (i,a) is added to S[j,b], the list of values 
currently having (j,b) as smallest support. If (7,6) is 
removed from Dj then AC-6 looks for the next support 
in Dj for each value (i,a) in S[j.b]. In AC-7, S[i,a] 
sets are split into S[(i,j),a] sets, to support property 
(2): each value (i,a) has a set of values supported by 
it per constraint instead of one for all the constraints. 
b E S[(i,j),a] implies (i,a) is known as supporting (j',b) 
on RJi then (i,a) is compatible with (j,b). Hence, an 
R i ja.b) is checked if and only if S[(iJ),a] = 0, other
wise we know (i, a) has a support on RiJ without any new 
constraint check. Also, arrays inf-support are added to 
support property (3b) for negative constraint checks and 
property (3a)1: inf-support[(i, j ) , a] represents the small
est value in Dj which may be compatible with (i,a). 

In more detail the data structure of AC-7: 
• A table M of Booleans keeps track of which values 

of the initial domain are in the current domain or 
not (M[i,a]=true <=> a € Di). In this table, each 
initial Di is considered as the integer range l..|Di|. 
We use the following constant time functions and 
procedures to handle Di lists. last(Di) returns the 
greatest value in Di if Di = 0, else returns 0. If 
a € Di\last(Dl), next(a,Di) returns the smallest 
value in Di greater than a. remove(a,Di) removes 
the value a from D i. remove(a, Di) can be extended 
to stop the arc consistency algorithm if a was the 
only remaining value in D i. The CSP, indeed, has 
no solution. 

• For all a in Dt, S[(i,j), a] contains all values b in Dj 
for which (i,a) is assigned as its current support. 
The current support is not necessary the smallest 
one, as opposed to AC-6. 

• Arrays inf-support are updated by AC-7 to ensure 
that every b in Dj compatible with (i,a) is greater 
than or equal to inf-support[(i,j),a]. 

• Deletionstream and SeekSupportStream have the 
same behavior as in AC-Inference. Handling the 
SeekSupportStrearn as a stack seems to be an ef
ficient heuristic because it propagates the conse
quences of deletions as soon as they appear, and 
then discovers empty domains earlier. 

3.2 Algori thm 
The algorithm AC-7 (see Fig. 2), has the same frame-
work as AC-Inference. There are two main operations: 
processing the deletion of a value, and seeking a new sup
port for a value. AC-7 processes the deletion of a value 
(j, b) by adding in the SeekSupportStrearn all the value-
variable pairs [(i,a), j] such that (i,a) was supported by 

Property (3a) held in AC-6 without inf-support arrays 
because we knew that (i,a) was always the smallest support 
for values in S[i,a], In AC-7 we lose this strong property. 

BESSlERE, FREUDER, AND REGIN 595 



The function SeekNextSupport (Fig. 3), which looks 
for the smallest value in Dj not smaller than b and sup
porting (i,a) on Rij, is the same as in AC-6 except the 
addition of the test of line 3 to avoid checking Rij(a,b) 
when Rjt(b,a) has already been checked as false (i.e. 
when we know that (j, b) has no support in Di until a 
value greater than a). 

Another function, SeeklnferableSupport (Fig. 3), is 
used in AC-7 to check whether a value (i, a) has inferable 
supports on Rij or not (i.e. whether S[(i,j),a] contains 
values in Dj or not). Every time SeeklnferableSupport 
unsuccessfully checks if a value b in S[(i,j),a] is in D j , 
b is deleted from S[(i,j),a] to avoid checking it again in 
the following. 

3.3 Analysis 
We first show that AC-7 has all of the desirable proper
ties enumerated earlier. 

By the same principle as with AC-6, properties (1) 

596 CONSTRAINT SATISFACTION 

(j,b) (i.e. values (i,a) that were in the S[(j,i),b] sets). 
The search on Rij for a new support for a value (i,a) 
is only done if S[(i,j),a] does not contain values in Dj\ 
otherwise, this search is useless: (i,a) has inferable sup
ports on R i j (since values supported by (i,a) are sup
ports for (i,a)). If the search of support is done for a 
value (i,a) on R i j and a value c is found, a is added 
to S[(j,i),c] since c is now the current support of (i,a). 
inf-support[(i, j),a] records c as the smallest value in Dj 
supporting (i, a) on R i j since the search follows the order 
of Dj. During the whole algorithm, every time a value 
is found without support on a constraint, it is removed 
from D and put in the DeletionStream. 



Figure 4: Analysis. 

suming the variables are ordered from top to bottom. In 
this example the number of checks for AC-7 is 21; for 
AC-3 or AC-6, 48, for AC-4, 64. 

This example can be generalized from domain sizes of 
8 to domain sizes of d, where 0(d2) checks are saved. 
Observe that it is constructed so that d/2 of the values 
in the second domain (y2 to y5) must be checked (and 
fail) against from d/2 to d — 1 of the values in the first 
domain with AC-3 or AC-6, while AC-7 avoids these 
checks entirely. Thus we have established the following: 
Theorem 1 AC-7 can save 0{d2) non-inverse con
straint checks for domain size d. 

Notice that we have established this theorem without 
even considering constraint propagation, where further 
savings may be realized. Bear in mind that inferring 
non-support and utilizing it immediately can justify the 
deletion of values. Early deletions of values can lead to 
further savings, as we no longer have to seek support 
for these deleted values, or consider them as possible 
supports for other values. It may even lead to early 
discovery of unsolvability. We would expect AC-7 to 
show to better advantage on more tightly constrained 
problems, where one has to look harder to find support, 
and thus can benefit more when inferences preclude the 
need to look for support. 

We would expect AC-7 to show to best advantage on 
problems with structures such as those above, that can 
especially benefit from the undirected constraint infer
ences. Changing the order in which values are considered 
can increase (or reduce) the advantage of AC-7, but since 
these advantages are tied to the structure of the consis
tency graph, and since determining consistency graph 
structure involves performing the very constraint checks 
we are trying to avoid, it is difficult to argue strongly for 
or against AC-7 based on such ordering considerations. 
However, in specific cases, we might be able to utilize 
metaknowledge of the consistency graph structure for 
effective value-ordering heuristics. 

We have been focusing on constraint checks, which 
are a standard measure of CSP algorithm performance. 
Of course, constraint checks alone do not tell the whole 
story. However, if we either assume a large enough cost 
per constraint check, or demonstrate a large enough sav
ings in the number of constraint checks, the constraint 
check count will dominate overhead concerns. AC-7 can 
even permit us to cope with some situations where some 
constraint checks cannot be computed at all. 

4 Exper imen ta l results 
We tested AC-Inference and AC-7 on two real-world 
problems. (Since AC-Inference is an algorithm that takes 

2The number of constraint checks for MAC4 is the same 
as the number of constraint checks for the first AC-4 call, 
since all support information is then in the support sets. 

3MACS was not used because it has a behavior really 
worse than the other algorithms, except on very easy in
stances where it can outperform MAC4-

4because MAC6 contains the expensive initialization 
phase of AC-6 (which is only performed at the first call), 
while MAC6+heuristic already benefits from the good be
havior of the heuristic. 

BESSlERE, FREUDER, AND REGIN 597 



Table 1: Results in number of constraint checks (#ccks) and in cpu time in seconds (time) on a SPARC 10 machine 
with 32 megabytes of memory. 

RNA problem shows the consequences of tackling space 
complexity: AC-4 and AC-Inference could not process 
sequences larger than "HIV1" (124 variables, an average 
of 47 values per domain, 7626 constraints), while AC-6 
and AC-7 could process "rnasePcoli" (377 variables). On 
the RNA problem we can also remark on the small dif
ferences in performance between AC-6, AC-7 and AC-
Inference, explained by the looseness of the constraints 
(finding a support is easy). 

5 Conclusion 
Metaknowledge about constraints can be used to infer, 
rather than compute, support information, and to both 
infer and avoid constraint checks. A variety of basic 
properties of constraints can be exploited in this way. 
The AC-Inference schema permits exploitation of infer
ences in establishing arc consistency. AC-7 is a refine
ment of that schema that exploits only the bidirection-
ality of support; thus is a fully general arc consistency 
algorithm. AC-7 can exhibit significant savings over pre
vious general arc consistency algorithms. AC-Inference 
may prove especially useful when constraints have strong 
structural properties, when some constraints appear re
peatedly or when support is costly to compute. 

Acknowledgements 
This material is based in part on work supported by 
the National Science Foundation under Grant No. IRI-
9207633. We thank Thomas Schiex and the French Centre 
d'Electronique de I'Armement for making RLFAP available, 
Christine Gaspin for providing the RNA problem and Alan 
Mackworth for a helpful discussion. 

References 

[Bessiere and Cordier, 1993] 
C. Bessiere and M.O. Cordier. 
arc consistency again. In Proc. 

Arc consistency and 
AAAI'98. 

[Bessiere and Regin, 1994] C. Bessiere and J.C. Regin. 
An arc-consistency algorithm optimal in the number 
of constraint checks. In Proc. IEEE TAI'94-

[Bessiere and Regin, 1995] C. Bessiere and J.C. Regin. 
Using bidirectionality to speed up arc-consistency pro
cessing. In M. Meyer, editor, Constraint Process-
ing: Selected Papers from the ECAI'94 Workshop. 
Springer-Verlag, 1995. to appear. 

[Deville and Hentenryck, 199l] Y. Deville and P. Van 
Hentenryck. An efficient arc consistency algorithm for 
a class of csp problems. In Proc. IJCAI'91. 

[Freuder, 1978] E.C. Freuder. Synthesizing constraint 
expressions. CACM, 21:958-966, 1978. 

[Freuder, 1995] E.C. Freuder. Using metalevel knowl
edge to reduce constraint checking. In M. Meyer, ed
itor, Constraint Processing: Selected Papers from the 
ECAI'94 Workshop. Springer-Verlag, 1995. to appear. 

[Gaschnig, 1978] J. Gaschnig. Experimental case stud
ies of backtrack vs waltz-type vs new algorithms for 
satisficing assignment problems. In Proc. CCSCSI'78. 

[Mackworth and Freuder, 1993] A. Mackworth and E.C. 
Freuder. The complexity of constraint satisfaction re
visited. Artificial Intelligence, 59:57-62, 1993. 

[Mackworth, 1977] A. Mackworth. Consistency in net
works of relations. Artificial Intelligence, 8, 1977. 

[Mohr and Henderson, 1986] R. Mohr and T. Hender
son. Arc and path consistency revisited. Artificial 
Intelligence, 28:225-233, 1986. 

[Perlin, 1992] M. Perlin. Arc consistency for factorable 
relations. Artificial Intelligence, 53:329-342, 1992. 

[Sabinand Freuder, 1994] D. Sabin and E.C. Freuder. 
Contradicting conventional wisdom in constraint sat
isfaction. In Proc. ECAI'94. 

[Wallace, 1993] R. Wallace. Why AC-3 is almost always 
better than AC-4 for establishing arc consistency in 
CSPs. In Proc. IJCAI'93. 

598 CONSTRAINT SATISFACTION 


