
Increas ing Func t iona l Const ra in ts Need to Be Checked O n l y Once 

Bing L iu 
Department of Information Systems and Computer Science 

National University of Singapore 
Lower Kent Ridge Road, Singapore 0511 

Republic of Singapore 

Abstract 
Central to solving Constraint Satisfaction Problem 

(CSP) is the problem of consistency check. Past 
research has produced many general and specific 
consistency algorithms. Specific algorithms are 
efficient specializations of the general ones for 
specific constraints. Functional, anti-functional and 
monotonic constraints are three important classes of 
specific constraints. They form the basis of the current 
constraint programming languages. This paper 
proposes a more efficient method for checking an 
important subclass of functional constraints, 
increasing functional constraints. Rather than 
checking them many times as in a typical consistency 
check process, in the new method they (almost all of 
them) only need to be checked once. This results in a 
substantia] saving in computation. 

1. Introduction 
The key technique in solving CSPs is consistency check. 
Arc consistency algorithms that work on a network 
representation of binary CSPs are perhaps the most 
important class of consistency algorithms. In this paper, we 
are also concerned with arc consistency of binary 
constraints, in particular, increasing functional constraints. 

Over the past two decades, a number of general arc 
consistency algorithms have been proposed, e.g., AC-3 
[Mackworth, 1977], AC-4 [Mohr and Henderson, 1986], 
AC-5 [Hentenryck et a/., 1992] and AC-6 [Bessiere and 
Cordier, 1993]. Apart from the general algorithms, many 
specific methods were also designed which are 
specializations of the general ones for specific constraints 
[Lauriere, 1978; Mohr and Masini, 1988, Hentenryck et a/., 
1992]. These methods typically exploit the semantics of 
individual constraints, and are more efficient in checking 
these constraints. For instance, in [Hentenryck et a/., 1992], 
AC-5 is specialized for functional, anti-functional and 
monotonic constraints, and their piecewise generalizations 
(see their formal definitions in [Hentenryck et a/., 1992]). 

Recent years, the CSP model has been implemented in 
constraint programming languages, such as CHIP 
[Hentenryck, 1989], Charme [Charme, 1990], Hog Solver 
[Hog, 1993], etc., for solving practical combinatorial 
problems, such as scheduling, sequencing and resource 

allocations [Dincbas et a/., 1990; Hentenryck, 1989]. The 
basic constraints used in these languages are special cases 
of functional, anti-functional and monotonic constraints. 

In this paper, we propose a more efficient consistency 
technique for a frequently used subclass of functional 
constraints, namely, increasing functional constraints 
(IFC). This technique allows this subclass of constraints 
(almost all of them) to be checked (or considered) only once 
in an arc consistency check process. 

In a normal process, a constraint needs to be checked 
many times to maintain consistency. Recheck is necessary 
when its previously established consistency is broken by 
other constraints. In the new method, IFCs only need to be 
checked once. This is achieved by merging the domains of 
the two variables in a IFC in the initial check such that 
rechecks will not be necessary. This technique may be 
embedded in any general arc consistency algorithm. This 
paper only presents a modified AC-5 algorithm, called AC-
S'*", to incorporate this technique. 

Experimental results have shown the new technique 
outperforms the existing techniques substantially. This 
saving is important in practice because from our 
experiences in using two constraint languages, Charme and 
Hog Solver to build practical systems, many constraints are 
IFCs, in particular, equations of the form aX = bY + c, 
where X and Y are variables, and a and b are positive 
constants and c a constant. 

Section 2 gives definitions and conventions. Section 3 
describes AC-5+. Section 4 presents the new method for 
IFCs. Section 5 shows the test results. Section 6 discusses 
the related work and Section 7 concludes the paper. 

2. Preliminaries 
A binary CSP is defined as follows: (1) variables - a finite 
set of n variables {1, 2 n}, and (2) domains - each 
variable i takes its values from an associated Finite domain 
Di,-, and (3) constraints - a set of binary constraints C 
between variables. If i and j are variables (i < j), we 
assume, for simplicity, that there is at most one constraint 
relating them, denoted Cij.. A solution to a CSP is an 
assignment of values to variables such that constraints are 
satisfied. 

A graph G can be associated with a binary CSP, where 
each node represents a variable /, and each edge between 
two variables i and y, a constraint, which is expressed as 

586 CONSTRAINT SATISFACTION 



LIU 587 



Regarding the info structure, the field size gives the 
domain size; the fields min and max are used to access the 
minimum and maximum values in the domain; the fields 
pred and succ allow accessing in constant time the 
successor and predecessor of a value in the domain. This 
representation allows the algorithm to reason about array 
indices rather than values. These fields are the same as 
those in AC-5. The extra field is arcs storing the arcs 
(which are kept elsewhere in AC-5) related to the variable 
except those IFC arcs because our new technique checks 
them only once. Then, there is no need to store them. 

We now present AC-5+ (Figure 2). It has two parts, the 
initial check part (line 2 and 3), and the recheck part (line 
4-8). Note that in line 2, we use arc(G') instead of arc(G) 
as in AC-5. arc(G) is the same as arc(G) except that each 
IFC is expressed as one arc, either (i, j) or (j, i), rather than 
two arcs. The reason for this will be clear later. Q in AC-5+ 

has elements of the form <(i, j), w> (line 6), where (/, j) is 
an arc and w is the array index of a real value (in Devalues) 
removed from Dj Only in one special case, w is the real 
value itself (see next section). In AC-5, w is always a real 
value removed from Dj. This change is also important. 

Figure 2. The AC-5+ algorithm 
The implementations of the two procedures initialCheck 

and recheck are left open. Their general definitions are 
almost the same as those for ARCCONS and 
LOCALARCCONS in AC-5. Due to the space limitation, we 
will not describe them here. The major difference is that 
AC-5+ embeds two procedures remove and enqueue inside 
initialCheck and recheck as it gives more flexibility in 
implementing specialized initialCheck and recheck 
procedures. In AC-5, these procedures are in the main AC-
5 algorithm, remove removes those inconsistent domain 
values from Di and enqueue adds elements of the form <(k, 
/), w> to Q, where (k, /) is a related arc of i and w is either 
the Di values array index of a real value or a real value. 

AC-5+ inherits all the properties and complexity results 
of AC-5 as the key operations and data structures of them 
are almost the same. The differences are non-essential. 

4. Merge Variable Domains in a IFC 
We now describe the proposed technique that checks 
(almost all) IFC only once. The main idea is to exploit the 
fact that consistent values in the variable domains of a IFC 
is one-to-one correspondent and in an increasing order. In 
initial check, we can make the two variables of a IFC share 
some key information. Then, later on, domain change of 

one variable will be felt automatically by the other. In this 
way, rechecks of the constraint can be avoided. 

As indicated, our technique does not guarantee that every 
IFC will be checked once. Let us describe the condition 
under which every IFC needs only one check. Take note 
that every IFC in arc(G) is expressed as one arc (or edge). 
Condition: each IFC in arc(G) to be checked (in the initial 

check process) must have no more than one variable that 
has appeared in a previously checked IFC (also in the 
initial check process). 

For example, we have IFC arcs (1, 2), (3, 4), and (2, 3). If 
they are checked in this order, the above condition is not 
satisfied. It may be rearranged as (1, 2), (2, 3), and (3,4) to 
satisfy the above condition. 

In practical problem solving, this condition may not be 
fully satisfied but only partially because the sequencing of 
constraints may depend on the problem, and the IFCs may 
also form cycles. In these cases, those IFCs that do not met 
the condition still need recheck. However, from our 
experience in building practical systems, there are normally 
many clusters of IFCs in a practical CSP, and each cluster 
typically has only 2 to 3 variables. Then, the above 
condition is always satisfied. That is why we say almost all 
IFCs need no recheck in our method. 

Figure 3 shows the procedure initialCheck for IFCs. Two 
sub-procedures are used. The first one is mergeCheck 
(Figure 4), which is used when the arc (i, j) satisfies the 
above condition. The second one is nonMergeCheck 
(Figure 6), which is used when the arc (i,j) does not satisfy 
the condition. These two procedures use enqueue (Figure 5) 
mentioned in the last section. 

588 CONSTRAINT SATISFACTION 



LIU 589 



6 9 0 CONSTRAINT SATISFACTION 



0(ed), experiments have shown it is more efficient than 
that in AC-5. 

Mohr and Masini [Mohr and Masini, 1988] discovered 
independently that binary equations, inequalities, and 
disequations can be solved in 0(ed). Earlier work on 
constraint solvers (e.g., ALICE (Lauriere, 1978]) and 
constraint programming languages (e.g., CHIP 
[Hentenryck, 1989]) also presented special algorithms for 
these types of constraints. However, equations in all these 
methods need to be checked many times. 

7. Conclusion 
We have proposed a new consistency technique for IFCs. It 
checks most IFCs only once rather than many times. 
Although this technique does not reduce the complexity, 
our experiments have shown it outperforms substantially 
the existing methods. The main application of this 
technique will be in constraint programming languages. 

Acknowledgments: I would like to thank Kim-Heng 
Teo, Chee-Kit Looi and anonymous IJCAI reviewers for 
their helpful comments and suggestions. 

References 
[Bessiere and Cordier, 1993] C. Bessiere and M Cordier. 

Arc-consistency and are-consistency again. AAAI-93, 
pages 108-113,1993. 

[Charme, 1990] Charme Reference Manual. Artificial 
Intelligence Development Centre, Bull, 1990. 

[Dincbas et al, 1990] M. Dincbas, et al. Solving large 
combinational problem in logic programming. Journal 
of Logic Prggramming, 8:75-93,1990. 

[Hog, 1993] Hog Solver Reference Manual ILOG, 1993. 
[Liu and Ku, 1992] Bing Liu and Y W. Ku. ConstraintLisp: 

an object-oriented constraint programming language. 
SIGPLAN Notices, 27(11):17-26, 1992. 

[Lauriere, 1978] J. Lauriere. A language and a program for 
stating and solving combinatorial problems. Artificial 
Intelligence, 10:29-127, 1978. 

[Mack worth, 1977] A. K. Mack worth. Consistency in 
networks of relations. Artificial Intelligence, 8:99-118, 
1977. 

[Mohr and Henderson, 1986] R. Mohr and T.C. Henderson. 
Arc and path consistency revisited. Artificial 
Intelligence, 28:225-233, 1986. 

[Mohr and Masini, 1988] R. Mohr and G. Masini. Running 
efficiently arc consistency. Springer, Berlin, 1988, pages 
217-231. 

[Perlin, 1991] M. Perlin. Arc consistency for factorable 
relataions. In Proceedings of Third International Conf 
on Tools for Al, pages 340-345,1991. 

[Hentenryck, 1989] P. Van Hentenryck. Constraint 
Satisfaction in Logic Programming. MIT Press, 
Cambridge, MA, 1989. 

[Hentenryck et al, 1992] P.V. Hentenryck, Y. Deville and 
C-M. Teng. A generic are-consistency algorithm and its 
specifications. Artificial Intelligence, 27:291-322. 1992. 

[Waltz, 1972] D. Waltz. Generating Semantic Descriptions 
from Drawings of Scenes with Shadows, Tech Rept 
AI271, MIT, Cambridge, MA, 1972. 

LIU 591 


