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Abstract 
We present a optimization formulation for discrete 
binary CSP, based on the construction of a 
continuous function A(P) whose global maximum 
represents the best possible solution for that 
problem. By the best possible solution we mean 
either (i) a solution of the problem, if it is 
solvable, or (ii) a partial solution violating a 
minimal number of constraints, if the problem is 
unsolvable. This approach is based on relaxation 
labeling techniques used to enforce consistency in 
image interpretation. We have used a projected 
gradient ascent algorithm to maximize A(P) on the 
n-queens problem obtaining good results but with 
a high computational cost. To elude this problem, 
we have developed a heuristic for variable and 
value selection inspired in the direction in which 
A(P) is maximized. We have tested this heuristic 
with forward checking on several classes of CSP. 

1 Introduction 
The purpose of this paper is to show how discrete constraint 
satisfaction problems (usually abbreviated as CSP) can be 
effectively analyzed and solved as a kind of optimization 
problems. This is not a strictly new approach; other authors 
have used it to solve specific problems [Sosic and Gu, 
1991; Minton et al., 1992; Selman et a!., 1992; Morris, 
1993]. The novel aspect we present here consists in the 
following: we provide a way to construct, for any instance 
of CSP with binary constraints, a continuous function 
whose global maximum represents the best possible solution 
for that problem. By the best possible solution we mean 
cither (i) a solution of the problem, if it is solvable, or (ii) a 
partial solution violating a minimal number of constraints, 
if the problem is unsolvable. Therefore, a CSP can be 
solved constructing such a function and using any kind of 
optimization techniques to compute its global maximum. 
This function, A(P), is the average local consistency 
function associated with the problem. 

The present work is the result of applying relaxation 
labeling techniques, used to enforce consistency in image 
analysis, to CSP. Relaxation labeling considers labeling 
problems (LP), which can be seen as a generalization of 

CSP. LP and CSP have many points in common: both deal 
with a finite number of variables {Xi}y which take values on 
discrete domains {D i} under a set of binary constraints 
{Rij}. They differ in two main aspects: (i) in the problem 
formulation and (ii) in what they consider as a solution. 
With respect to the problem formulation, in CSP 
assignments and constraints are purely boolean (the 
assignment (Xit vj) is true or false, the constraint Rij{v*, v/) 
allows variables Xi; and Xj to take the values vk and v/ or 
not), while in LP assignments can be weighted (assign 
several values with different positive weights to the same 
variable is a legal assignment, providing the sum of weights 
is equal to 1), and constraints can express a graded level of 
consistency (for a given pair of variables different pairs of 
values can be consistent, but some more consistent —and 
therefore preferred—than others). With respect to a 
solution, both approaches look for a consistent assignment 
but they differ in the level of consistency required. In CSP, 
a solution must be globally consistent, that is, it must 
satisfy all the constraints (or a maximal number of 
constraints in the case of maximal constraint satisfaction). 
In LP different criteria for a consistent solution have been 
proposed; in this paper we will follow the proposal of 
[Hummel and Zucker, 1983] which, for a LP with 
symmetric constraints, identifies consistent solutions with 
local maxima of A(P), the average local consistency 
function. Local maxima of A(P) are not guaranteed either to 
satisfy every constraint or to restrict the assignment weights 
to {0,1}, so they are not feasible solutions for CSP. After 
this description, we can see a CSP as a particular instance of 
LP, but with more demanding requirements for a solution. 
We will show that the necessary and sufficient condition for 
the best solution of a CSP is to be a global maximum of 
A(P), and in this case it is always possible to restrict the 
assignment weights to {0,1}. 

This paper is organized as follows. In section 2, we 
revise some of the previous work on CSP and relaxation 
labeling. In section 3, we introduce the concepts needed to 
analyze a CSP as a LP. In section 4, we provide the results 
relating solutions with local and global maxima of A(P). In 
section 5, we discuss some approaches to compute a global 
maximum. In section 6, we discuss a heuristic approach for 
variable and value selection. Finally, in section 7 we 
summarize the main contributions of this work. 
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2 Related W o r k 
A significant amount of work has been made on CSP in the 
last twenty years (for an wide overview see [Tsang, 1993]). 
The most common approach to solve CSP has been a 
systematic search algorithm with backtracking. A consistent 
partial solution is formed by a subset of variables and it is 
extended by adding variables one by one until a complete 
solution is found. When no consistent value exists for the 
variable being added, backtracking occurs changing the 
value of a previously assigned variable. This approach is 
complete, it always finds a solution if it exists, but is has 
an important drawback: backtracking is extremely 
inefficient. To prevent this problem, several refinements and 
additions to this approach has been developed, such as local 
consistency pre-processing, backtrack-free problems, look-
ahead and look-back algorithms, heuristics, and 
combinations of these strategies. 

In the last years, a new iterative approach to solve CSP 
has been proposed. Starting from an inconsistent global 
assignment, each iteration modifies this assignment using 
local information in such a way that the number of violated 
constraints decreases (or in some cases, remains unchanged), 
until global consistency is achieved [Sosic and Gu, 1991; 
Minton et al. , 1992; Selman et al., 1992]. This approach 
can be seen as a hill-climbing procedure, where the number 
of violated constraints is minimized. Given that it can be 
stuck in local minima (where some constraints are still 
violated), a way to escape from them is needed [Morris, 
1993]. This approach is not complete. When a given limit 
of iterations is achieved without reaching a solution, the 
process is restarted from another initial assignment. In 
practice and for some kind of problems, a few restarts are 
enough to reach a solution, with less computational effort 
than systematic search with backtracking. 

On the other hand, image interpretation considers the 
problem of assigning labels to image parts to produce a 
global consistent interpretation. Given that the presence of a 
particular object may impose constraints on other objects in 
its neighbourhood, a common approach uses local 
contextual information to obtain the most adequate label for 
each image part. This process is iterated to allow local 
information to propagate, until a stable state is reached 
[Davis and Rosenfeld, 1981]. An early example of this 
technique is the Waltz's work on interpretation of line 
segments [Waltz, 1975]. This work allowed unambiguous 
interpretations only. In general this is too restrictive, so 
ambiguous interpretations where several labels are assigned 
to the same image part with different weights are also 
allowed. In this context a number of techniques, called 
relaxation labeling, have been developed [Kittler and 
Illingworth, 1985; Torras, 1989]. A relaxation procedure is 
an iterative and parallel process which, starting from an 
initial weighted assignment (weights in [0,1]), performs a 
synchronous weight updating until it does not cause further 
changes in the current weighted assignment (it converges to 
a fixed point). Many updating formulas have been proposed 
[Rosenfeld et al., 1976], some of which have been proved 
as approximations of a gradient ascent algorithm and their 
fixed points are local maxima of a continuous function. 
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labeling problem. An unambiguous labeling PQ is csp-
consistent if and only if A(Po)= Amax. 
Proof. This corollary is a trivial specialization of Theorem 3 
using Lemma 1 when the global maximum satisfies all the 
constraints. ♦ 

5 Solving CSP by Gradient Ascent 
Using the results of section 4, given a CSP we can compute 
a solution in the following steps: (i) construct the A(P) 
function, (ii) compute a global maximum Po, and (iii) if 
A(P0) = Amax then we can compute a solution from P0, 
otherwise no solution exists. Steps (i) and (iii) are trivial 
but step (ii) is very difficult. Computing a global maximum 
of a continuous function which in general is not convex is a 
very difficult task [Horst and Tuy, 1993]. When possible, 
this issue is solved looking for a local maximum satisfying 
an additional condition which guarantees that it is a global 
one. In our case, we know that PQ is a global maximum 
when A{PQ) - Amax, for solvable CSP. To look for a global 
maximum of A(P) we take a very simple approach: starting 
from a random point, we look for a maximum using a 
continuous gradient ascent algorithm. If the value of A(P) 
on this maximum is Amax, the point is a global maximum. 
Otherwise, we discard this local maximum and restart the 
process starting from another random point. 

The maximization of A(P) is subjected to a set of 
m 
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the dimension of vectors P and Q increases as n2. 
We have also implemented a discrete hill-climbing 

algorithm, which starts from a random configuration of 
queens (a queen for row), selects a row at random and 
performs a change in the position of its queen if the number 
of conflicts decreases. When the algorithm stops on a local 
minimum, the process restarts from another random 
configuration. For n<50, the algorithm reaches a minimum 
in approximately n iterations, and it needs between 10n to 
100n restarts to achieve a solution. The number of conflicts 
in local minima commonly ranges from 2 to 4. Regarding 
computational cost, this approach is globally less expensive 
than the projected gradient algorithm described above. The 
reason is simple: an iteration of the projected continuous 
gradient is far more costly than an iteration of hill-climbing, 
and this cost is not compensated by the lineal number of 
restarts needed by hill-climbing with respect to the constant 
number of restarts of the projected gradient. 

source, selecting as the next variable that with the highest 
weight corresponding with a value of its domain. However, 
(6) is a ratio between supports (from (3)), where 2n is added 
to assure a positive fraction. This ratio is sensitive to small 
variations of support and it exhibits some unstable 
behaviour. Looking for robustness in variable selection, we 
moved to another criterion: select the variable with the 
lowest sum of supports for its remaining values, and order 
its values by decreasing support. We will refer to this 
heuristic as the lowest-support heuristic. It is obviously 
related to the optimization approach: it means to select a 
variable with a low denominator in (6) which implies that 
this variable will have high values of Pi[A] although not 
necessarily the highest. 

The lowest support heuristic is computed each time a 
new variable has to be selected. Assignment is performed 
as in standard forward checking. When a new variable is 
assigned, future domains are filtered, a new labeling is 
constructed and the heuristic is computed again to select the 
next variable. When backtracking occurs (a future domain 
becomes empty), the last assigned variable is reassigned 
using the value ordering set when it was selected. 

This heuristic is expensive to compute. To simplify 
computation, we have considered two approximations. 
First, restrict heuristic computation to the set of variables 
with minimal domains, because there is a high chance that 
the selected variable will belong to this set. Second, after 
assigning a variable we still use the computed supports for 
further assignments if the next lowest sum of supports is 
close enough to the initial one. We have accepted sum of 
old supports when they have become smaller (due to 
domain pruning) than the initial one. 

We will refer to forward checking with lowest-support 
without approximations as fc-ls, and with approximations 
as fc-ls-app. We will refer to the standard forward checking 
with first-fail (selecting variable with the smallest domain, 
breaking ties randomly and selecting values randomly) as fc-
ff. We have tested these algorithms on two problems: 
random solvable graph colouring, and random problems. 
Empirical results are given in the following. 
Graph colouring. Following [Minton et al. 92], we tested 
our heuristic on graph 3-colourability problems. 
Specifically, we have considered solvable random graphs 
with n nodes and m arcs, forming two classes: sparsely-
connected graphs (m = 2n) and densely-connected graphs (m 
= n (n - 1) / 4). We generated graphs on the range from n = 
10 to n = 180, incrementing n by 1. For densely-connected 
graphs, fc-ls does not bring any real improvement to fc-ff. 
Almost all problem instances were solved without 
backtracking for both algorithms, and regarding CPU time, 
fc-ls took a bit longer than fc-ff, because the time required 
by support computing. For sparsely-connected graphs, both 
fc-ls and fc-ls-app outperformed clearly to fc-ff in 
backtrackings and CPU time. Results are given in Table 1. 



Random problems. We tested our heuristic on random 
problems following [Prosser, 1994]. We worked on problem 
instances on the peak by choosing the appropriate tightness 
(P2) for a given connectivity (p1) and problem size (n, m). 
We considered two types: sparsely-connected instances, 
(with p1; = 0.4) and densely-connected instances (with p1 = 
1). To select problems on the peak, we used the Prosser's 
formula to compute the appropriate tightness. Around this 
value, we varied p2 by steps of 0.001, in the interval where 
a fifty percent of problems happened to be solvable. Ten 
instances of each p2 setting were used for testing. The 
results are given in Tables 2 and 3. For sparsely-connected 
problems, fc-ls saves around half number of backtrackings 
required by fc-ff, although it needs more CPU time. 
Including approximations, fc-ls-app is slightly worse than 
fc-ls in backtrackings, but it requires less time than fc-ff 
(except in the 10, 10 case). For densely-connected problems, 
although the heuristic decreases the number of backtrackings 
performed by fc-ff, it is not cost-effective regarding time. 

Our results on graph colouring and random problems 
show that the proposed heuristic provides good advice (fc-ls 
always performs less backtrackings than fc-ff in every 
problem type), although it may not be cost-effective for 
some problem classes. It seems to be appropriate for 
sparsely-connected problems with a high number of 
variables relative to the number of values. In these 
problems, first fail variable selection heuristic is not enough 
to reduce drastically the number of backtrackings. Relation 
between the usefulness of the heuristic and the shape of A(P) 
requires further investigatioa 

7 Conclusions 
This paper offers two main contributions. On the theoretical 
side we have shown that any binary discrete CSP can be 
formulated as an optimization problem of a continuous 
function A(P), which is constructed from the set of initial 
constraints. A global maximum of A(P) corresponds to the 
best possible solution of the CSP, that is, an assignment 
violating a minimal number of constraints. On the practical 
side we have applied this result to solve some CSP 
problems. Computing a global maximum of A(P) is quite 
costly, so we moved to an heuristic approach: use the 
direction of change that increases A(P) to generate a heuristic 
for variable and value selection. The results on two kind of 
CSP show that it causes a low number of backtrackings, 
being cost-effective for sparsely-connected problems. 
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