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Abst rac t 

Looking ahead during search is often useful 
when solving constraint satisfaction problems. 
Previous studies have shown that looking ahead 
helps by causing dead-ends to occur earlier in 
the search, and by providing information that 
is useful for dynamic variable ordering. In this 
paper, we show that another benefit of look
ing ahead is a useful domain value ordering 
heuristic, which we call look-ahead value order
ing or LVO. LVO counts the number of times 
each value of the current variable conflicts with 
some value of a future variable, and the value 
with the lowest number of conflicts is chosen 
first. Our experiments show that look-ahead 
value ordering can be of substantial benefit, es
pecially on hard constraint satisfaction prob
lems. 

1 I n t roduc t i on 
In this paper we present a new heuristic for prioritizing 
the selection of values when searching for the solution 
of a constraint satisfaction problem. Because the task of 
finding a solution for a constraint satisfaction problem is 
NP-complete, it is unlikely that any solution technique 
exists that works well in all cases. Nevertheless, many al
gorithms and heuristics have been developed which pro-
vide substantial improvement over simple backtracking 
(depth-first search) on many problem instances. If a con
straint satisfaction problem has a solution, knowing the 
right value for each variable would enable a solution to 
be found in a backtrack-free manner. 

When a constraint satisfaction problem has only a 
small number of solutions, much time is often spent 
searching branches of the search space which do not lead 
to a solution. To minimize backtracking, we should first 
try the values which are more likely to lead to a consis
tent solution. Even a slight increase in the probability 
that a value chosen is part of a solution can have sub
stantial impact on the time required to find a solution. 

*This work was partially supported by NSF grant IRI-
9157636, by the Electrical Power Research Institute (EPRI), 
and by grants from Toshiba of America, Xerox Northrop and 
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Our new algorithm, look-ahead value ordering (LVO), 
implements a heuristic that ranks the values of a vari
able based on information gathered by looking ahead, 
determining the compatibility of each value with the val
ues of all future variables. Although the heuristic does 
not always accurately predict which values will lead to 
solutions, it is frequently more accurate than an unin
formed ordering of values. Our experiments show that 
while the overhead of LVO usually outweighs its ben
efits on easy problems, the improvement on very large 
problems can be substantial. Interestingly, LVO often 
improves the performance of backjumping on problems 
without solutions, as well. 

Look-ahead value ordering does the same type of look-
ahead as does the forward checking algorithm [6]. Be
cause forward checking rejects values that it determines 
will not lead to a solution, it can be viewed as doing 
a simple form of value ordering. In this regard LVO is 
more refined, because it also orders the values that may 
be part of a solution. 

In the following section we define formally constraint 
satisfaction problems and describe the look-ahead value 
ordering algorithm. Section 3 describes the experiments 
we conducted. In section 4 we discuss the results of 
these experiments. We review some related approaches 
in section 5 and in section 6 summarize our results. 

2 Def in i t ions and A lgo r i t hms 
A constraint satisfaction problem (CSP) is represented 
by a constraint network, consisting of a set of n variables, 
X\,..., Xn; their respective value domains, D\,..., Dn; 
and a set of constraints. A constraint is a subset of the 
Cartesian product Di1 x ... x Di., consisting of all tu
ples of values for a subset (Xix,..., X i j ) of the variables 
which are compatible with each other. A solution is an 
assignment of values to all the variables such that no con
straint is violated; a problem with a solution is termed 
satisfiable or consistent. Sometimes it is desired to find 
all solutions; in this paper, however, we focus on the task 
of finding one solution, or proving that no solution ex
ists. A binary CSP is one in which each of the constraints 
involves at most two variables. A constraint satisfaction 
problem can be represented by a constraint graph which 
has a node for each variable and an arc connecting each 
pair of variables that are contained in a constraint. 
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2.1 Algori thms and Heuristics 
We experimented with look-ahead value ordering by test
ing it in conjunction with an algorithm that combines 
backjumping, dynamic variable ordering, and the tem
porary pruning of future domains characteristic of for
ward checking. Previous experiments have shown that 
this combination is extremely effective over a wide range 
of problems [4]. LVO (or any other heuristic) is of prac
tical interest only if it improves upon the performance 
of state of the art algorithms. 

Backjumping 
Backjumping [5; 2] is an improvement to backtracking 
which takes advantage of sparseness and structure in the 
constraint graph. Both backtracking and backjumping 
consider each variable in order, instantiating the current 
variable, XCUr, with a value from its domain DCur that 
does not violate any constraint between Xcur and all 
previously instantiated variables. If Xcur has no such 
non-conflicting value, then a dead-end occurs. The ver
sion of backjumping we use, based on Prosser's conflict-
directed backjumping [9], is very effective in choosing the 
best variable to jump back to. 

There are two basic ways to determine which values 
in Di are consistent with all variables before Xi. Look
back methods consider each element in Di and check to 
ensure that no constraints with earlier variables are vio
lated. There are also several look-ahead approaches, the 
simplest being forward checking [6]. When assigning a 
value to the current variable, forward checking removes 
values from the domains of future variables that con
flict with that value. We will refer to the subset of Di 
that has incompatible values removed as Di. When Xi, 
is reached, the only values remaining in Di are those 
which are consistent with all previous variables, as in
stantiated. If a value x € Di had been removed because 
it conflicted with the instantiation of an earlier variable 
Xh, then x has to be restored when Xh is assigned a new 
value, or is jumped over in backjumping. 

Dynamic variable ordering 
In a dynamic variable ordering (DVO) scheme [6; 10; 
12] the order of variables can be different in different 
branches of the search tree. Our implementation of DVO 
uses information derived from a forward checking style 
look-ahead. At each step the variable with the smallest 
remaining domain size is selected. If Di is empty for 
some uninstantiated variable Xi, then Xi is moved to be 
the next variable, and a dead-end occurs immediately. 
The technique for breaking ties is important, as there 
are often many variables with the same domain size. In 
our implementation we maintain a list of the variables 
sorted by degree in the original constraint graph, and in 
case of a tie (and for the first variable), choose the one 
highest on this list. This scheme gives substantially bet
ter performance than picking one of the tying variables 
at random. 

Look-ahead value ordering 
Backjumping and dynamic variable ordering can be com
bined into an algorithm we call BJ+DVO [4]. The 
BJ+DVO algorithm does not specify how to choose a 
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value. In our experiments reported in [4], and in this 
paper when we refer to "plain" BJ+DVO, values are ar
bitrarily assigned a sequence number, and are selected 
according to this sequence. In this paper we explore 
the feasibility of using information gleaned during the 
look-ahead phase of BJ+DVO to improve the ordering 
of values. The method we use to rank the values in or
der of decreasing likelihood of leading to a solution is as 
follows. The current variable is tentatively instantiated 
with each value in its domain D'. With each value in D' 
LVO looks ahead to determine the impact this value will 
have on the D' domains of uninstantiated variables. We 
discuss in section 3.2 four heuristic functions that use 
information from the look-ahead to rank the values in 
the current domain. The current variable is then instan
tiated with the highest ranking value. If the algorithm 
back jumps to a variable, the highest ranked remaining 
value in its domain is selected. If the variable is re-
instantiated after earlier variables have changed, then 
the order of the values has to be recalculated. The LVO 
heuristic will not always make the right decision. How
ever, a small improvement in an algorithm's ability to 
choose the right value can have a big impact on the work 
required to solve a problem. 

A high-level description of BJ+DVO+LVO is given in 
Fig. 1. To avoid repeating consistency checks, our im
plementation saves in tables the results of looking ahead 
in step 1(b). After a value is chosen, the D's and Ps of 
future variables are copied from these tables instead of 
being recomputed in step 2(c). BJ+DVO uses 0(n2k) 
space for the D1 sets, where k is the size of the largest 
domain: n levels in the search tree (D' is saved at each 
level so that it does not have to be recomputed after 
backjumping) x n future variables x k values for each 
future variable. Our implementation of BJ+DVO+LVO 
uses 0(n2k2) space. There is an additional factor of k 
because at each level in the search tree up to k values 
are explored by look-ahead value ordering. Similarly, the 
space complexity for the P sets increases from 0(n2) 
in BJ+DVO to 0(n2k) for BJ+DVO+LVO. To solve 
a typical problem instance described in the next sec
tion, BJ+DVO required 1,800 kilobytes of random access 
memory, and BJ+DVO+LVO required 2,600 kilobytes. 
On most computers the additional space requirements of 
LVO will not be severe. 

3 Exper imenta l Methods and Results 
3.1 Instance Generator 
The experiments reported in this paper were run on ran
dom instances generated using a model that takes four 
parameters: N, K, T and C. The problem instances are 
binary CSPs with N variables, each having a domain of 
size K. The parameter T (tightness) specifies a fraction 
of the K2 value pairs in each constraint that are disal
lowed by the constraint. The value pairs to be disallowed 
by the constraint are selected randomly from a uniform 
distribution, but each constraint has the same fraction 
T of such incompatible pairs. T ranges from 0 to 1, 
with a low value of T, such as 1/9, termed a loose or re
laxed constraint. The parameter C specifies the number 
of constraints out of the N * (N - l)/2 possible. The 
specific constraints are chosen randomly from a uniform 
distribution. 

Certain combinations of parameters generate prob
lems of which about 50% are satisfiable; such problems 
are on average much more difficult than those which all 
have solutions (under-constrained) or which never have 
solutions (over-constrained) [ l ; 7]. Such a set of param
eters is sometimes called a cross-over point. For a given 
value of N, K and T, we call the value of C which pro-
duces 50% solvable problems "Cco". 

3.2 LVO Heuristics 
The BJ+DVO+LVO algorithm in Fig. 1 does not spec
ify exactly how information about conflicts with future 
variables should be used to prioritize the values of the 
current variable. We experimented with four heuristics 
that rank values by looking ahead. 

The first heuristic, called min-conflicts (MC), consid
ers each value in D' of the current variable and associates 
with it the number of values in the D' domains of future 
variables with which it is not compatible. The current 
variable's values are then selected in increasing order of 
this count. 

The other three heuristics are inspired by the intuition 
that a subproblem is more likely to have a solution if it 
doesn't have variables with only one value. The max-
domain-size (MD) heuristic therefore prefers the value 
that creates the largest minimum domain size in the fu
ture variables. For example, if after instantiating Xcur 
with value x1 the min,€{ct i r+l i .n \D'i | is 2, and with 
Xcur = x2 the min is 1, then x1 will be preferred. 
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Figure 3: Results of several experiments on CSPs with various parameters, all near the 50% crossover point except as 
noted. In each experiment, 500 instances were generated and solved with BJ+DVO ("DVO") and BJ+DVO+LVO 
with the MC heuristic ("LVO"). Consistency checks and CPU time were recorded. For mean and median consistency 
check figures, the low order three digits are omitted. The "Ratio" columns show the LVO statistic to the left divided 
by the corresponding DVO statistic. The "Best" ratio column is the number of times the BJ+DVO+LVO was better 
divided by the number of times BJ+DVO was better. The small numbers in parentheses tell the size of the 95% 
confidence interval for consistency checks. For instance, "254 (7%)'' means that the size of the 95% confidence interval 
is 7% of 254,000 or 17,780. Since the interval is centered around 254,000, we are 95% confident that the true mean 
is between 236,220 and 271,780. 

Since several values in the domain of the current vari
able D'Cur may create future D's of the same size, the 
MD heuristic frequently leads to ties. A refined version 
of MD is weighted-max-domain-size (WMD). Like MD, 
WMD prefers values that leave larger future domains, 
but it break ties based on the number of future vari
ables that have a given future domain size. Continuing 
the example from the previous paragraph, if x1 leaves 
3 variables with domain size 2 (and the rest with do
main sizes larger than 2), and x3 leaves 5 variables with 
domain size 2, then X1 will be preferred over X3. 

Our fourth heuristic, called point-domain-size (PDS), 
gives each value in D'cur a point value: 8 points for each 
future domain of size 1; 4 points for each future domain 
of size 2; 2 points for each future domain of size 3 (if 
K > 3); and 1 point for each future domain of size 4 (if 
K > 4). The value with the smallest sum of points is 
chosen first. 

Fig. 2 shows the results of experiments comparing 
the four LVO heuristics. In terms of mean consistency 
checks, LVO usually improves BJ+DVO no matter which 
heuristic is chosen. Since the MC heuristic was clearly 
best, we selected it for further experimentation. In the 
rest of the paper, reference to LVO implies the MC 
heuristic. 

3.3 Experimental results 
The overall conclusion we draw from our experiments 
comparing BJ-fDVO with BJ+DVO+LVO is that on 
sufficiently difficult problems LVO almost always pro

duces substantial improvement; on medium problems 
LVO usually helps but frequently hurts; and on easy 
problems the overhead of LVO is almost always worse 
than the benefit. Very roughly, "sufficiently difficult" is 
over 1,000,000 consistency checks and "easy" is under 
10,000 consistency checks. 

We experimented further with LVO by selecting sev
eral sets of parameters and with each set generating 
500 instances that were solved with both BJ+DVO and 
BJ+DVO+LVO. We used two approaches for select
ing combinations of parameters which had large values 
of N and K, and yet did not generate problems that 
were too computationally expensive. The first strategy 
was to use very tight constraints and very sparse con
straint graphs. For instance, problems at N=100 and 
K=12 would be extremely time consuming to solve, ex
cept that we used a small number (C=120) of extremely 
tight constraints (T=l 10/144). Another method for gen
erating easier problems with large N and K is to select 
parameters that are not exactly at the cross-over point. 
We used this approach for the experiment with N=350, 
K=3, T=l/9 and C=2292, which is 90% of the estimated 
Ccoof2547. 

The results of these experiments are summarized in 
Fig. 3. We present the data in several ways: the ta
ble show the mean, the median, and the ratio of how 
many times each algorithm was better than the other. 
The "Ratio" columns under "Mean" and "Median" in 
Fig. 3 provide an indication of the relative performance 
of the two algorithms. Mean ratios and median ra-
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Figure 4: The instances in one experiment were di
vided into 10 groups, based on the number of consis
tency checks made by BJ+DVO. Each point is the mean 
of 50 instances in one group. The dotted line, show
ing the percentage of times BJ+DVO was better than 
BJ+DVO+LVO (when measuring consistency checks), 
is related to the right-hand scale. 

tios less than one indicate that BJ+DVO+LVO is bet
ter than BJ+DVO (required fewer consistency checks or 
CPU time). In the "Best Ratio" column a larger num
ber indicates superior performance by BJ+DVO+LVO, 
as this figure is the number of times BJ+DVO+LVO was 
better then BJ+DVO, divided by the number of times 
BJ+DVO bested BJ+DVO+LVO (as measured by con
sistency checks or CPU time). 

For many uses, the mean is the most relevant statis
tic, as it takes into account the impact of the occasional 
extremely difficult problem. To convey an estimate of 
the accuracy of our sample of 500 instances, we provide, 
for the consistency check measure, the size of the 95% 
confidence interval, expressed as a percentage of the sam
ple mean. The 95% confidence interval around the true 
population mean u is computed as 

where x is the sample mean, o is the population standard 
deviation, t is the number of trials, and 1.96 is the factor 
associated with the 95% confidence interval. Since we 
don't actually know the standard deviation of the entire 
population, we have to estimate it by using the sample 
standard deviation; this is acceptable as long as t > 30, 
but still introduces another source of possible inaccuracy. 

The medians in Fig. 3 are much lower than the means, 
because in each sample there were a small number of ex
tremely difficult problems, and a few very difficult ones. 
In our experiments with N=100, K=12, T=110/144 and 
C=120 half the CPU time was spent solving the hardest 
25 of the 500 problems. Fig. 4 shows the skew in the 
distribution, and how LVO affects problems of different 
difficulties. For this figure, the 500 instances in one ex
periment were divided into ten groups of 50, based on 
the number of consistency checks required by BJ+DVO. 

Figure 5: Each point (• = has solution, o = no solu
tion) represents one instance out of 500. Points below 
the diagonal line required fewer consistency checks with 
LVO. 

The easiest 50 were put in the first group, the next easi
est 50 in the second group, and so on. LVO is harmful for 
the first several groups, and then produces increasingly 
larger benefits as the problems become more difficult. 
The scatter chart in Fig. 5 also indicates the distribu
tion of the data. (Due to space constraints, some of our 
figures show data drawn from only one parameters, such 
as N=100, K=12, T=110/144, C=120. The charts of 
data from experiments with other parameters are quite 
similar.) 

In general the statistics for CPU time are slightly less 
favorable for LVO than are the statistics for Consistency 
Checks, reflecting the fact that, in our implementation, 
there is approximately a 5%-10% performance penalty 
in CPU time for LVO. This is caused by the need to store 
and copy the large tables that hold the results of look
ing ahead on different values of a variable (the caching 
referred to in Step 2(c) of Fig. 1). Many problem in
stances required slightly fewer consistency checks with 
LVO but slightly more CPU time, resulting in the often 
substantially different "Consistency Checks Best Ratio" 
and "CPU seconds Best Ratio" numbers in Fig. 3. 

The graphs in Fig. 6 show that the impact of LVO 
increases as the number of variables increase. Moreover, 
when variables have small domain sizes, a larger number 
of variables is required for LVO to have a beneficial im
pact. For instance, at N=75 and K=12, LVO improves 
BJ+DVO substantially, while with the small domain size 
K=3, the impact of LVO does not appear until N is larger 
than 200. 

The efficacy of LVO also depends on how near the pa
rameters are to the 50% solvable crossover point. As the 
data in Fig. 7 indicate, LVO is detrimental on very easy 

576 CONSTRAINT SATISFACTION 



Figure 7: The varying effectiveness of LVO on prob
lems not at the cross-over point. Each point on 
the chart represents the mean number of consistency 
checks from solving 500 CSP instances, using BJ+DVO 
and BJ+DVO+LVO. On over-constrained problems, the 
means of BJ+DVO and BJ+DVO+LVO are almost iden
tical. 

underconstrained problems (with C less than around 
80% of Cco) that have many solutions. On these prob
lems, the extra work LVO does exploring all values of a 
variable is almost always unnecessary. When problems 
are sufficiently overconstrained (C greater than around 
125% of Cco), LVO has very little effect on the number 
of consistency checks. 

In addition to experimenting with LVO on random 
problems, we compared BJ+DVO and BJ+DVO+LVO 
on several scheduling problems that had been trans-
formed into graph coloring problems. In each case the 
impact of LVO was minimal, except for a slight degra-
dation in CPU time. The symmetrical nature of graph 
coloring constraints does not provide any information 
that look-ahead value ordering can exploit. 
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unattacked cells" is the same as our max-conflicts heuris-
tic, and his "row with the least number of unattacked 
cells" heuristic is the same as max-domain-size. 

Dechter and Pearl [3] developed an Advised Backtrack 
algorithm which estimates the number of solutions in the 
subproblem created by instantiating each value. The es
timate is based on a tree-like relaxation of the remainder 
of the problem. For each value, the number of solutions 
is counted, and the count is used to rank the values. 
Advised Backtrack was the first implementation of the 
general idea that heuristics can be generated from a re
laxed version of the problem instance. 

Sadeh and Fox [ l l ] also use a tree-like relaxation of the 
remaining problem, in the context of job-shop scheduling 
problems. Their value ordering heuristic considers as 
well the impact of capacity constraints and demand on 
scarce resources. 

6 Conclusions and Future W o r k 
We have introduced look-ahead value ordering, an al
gorithm for ordering the values in a constraint satisfac
tion problem. Our experiments show that for large and 
hard problems, LVO can improve the already very good 
BJ+ DVCValgorithm by over a factor of five. 

One drawback of LVO is that it is somewhat com
plex to implement, as it uses a set of tables to cache the 
results of values that have been examined (during the 
ranking process) but not yet instantiated. Manipulat
ing these tables incurs a small CPU overhead. Another 
disadvantage of LVO is that on easy solvable problems, 
where there are many solutions and hence many accept
able value choices, it is usually detrimental. LVO need
lessly examines every value of each variable along the 
almost backtrack-free search for a solution. 

LVO is almost always beneficial on difficult instances 
that require over 1,000,000 consistency checks. Unex
pectedly, it even helps on problems without solutions 
when used in conjunction with backjumping. We have 
tested LVO using a forward checking level of look-ahead. 
We plan to explore the possibility that a more compu
tationally expensive scheme, such as partial look-ahead 
or full look-ahead [6] or directional arc consistency [3], 
will pay off in the increased accuracy of the value order
ing. Another research direction is to reduce the over
head of LVO on easy problems. This might be achieved 
by only employing value ordering in the earlier levels 
of the search, or by having value ordering automatically 
"turn off" when it notices that current values are in con
flict with relatively few future values, indicating an un-
derconstrained problem. A simple way to eliminate the 
overhead of LVO on very easy problems would be to al
ways run a non-LVO algorithm first; if that algorithm 
has not completed by, say, 100,000 consistency checks, 
it is cancelled and problem solving is restarted with an 
LVO version. At the price of 100,000 extra consistency 
checks on some difficult problems, the costs of LVO on 
the easy majority of problems is avoided. 
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