
L o o k - a h e a d v a l u e o r d e r i n g f o r c o n s t r a i n t s a t i s f a c t i o n p r o b l e m s *

Daniel Frost and R ina Dechter
Dept. of Information and Computer Science

University of California, Irvine, CA 92717-3425 U.S.A.
{dfrost, dechter} @ics.uci.edu

Abst rac t

Looking ahead during search is often useful
when solving constraint satisfaction problems.
Previous studies have shown that looking ahead
helps by causing dead-ends to occur earlier in
the search, and by providing information that
is useful for dynamic variable ordering. In this
paper, we show that another benefit of look
ing ahead is a useful domain value ordering
heuristic, which we call look-ahead value order
ing or LVO. LVO counts the number of times
each value of the current variable conflicts with
some value of a future variable, and the value
with the lowest number of conflicts is chosen
first. Our experiments show that look-ahead
value ordering can be of substantial benefit, es
pecially on hard constraint satisfaction prob
lems.

1 I n t roduc t i on
In this paper we present a new heuristic for prioritizing
the selection of values when searching for the solution
of a constraint satisfaction problem. Because the task of
finding a solution for a constraint satisfaction problem is
NP-complete, it is unlikely that any solution technique
exists that works well in all cases. Nevertheless, many al
gorithms and heuristics have been developed which pro-
vide substantial improvement over simple backtracking
(depth-first search) on many problem instances. If a con
straint satisfaction problem has a solution, knowing the
right value for each variable would enable a solution to
be found in a backtrack-free manner.

When a constraint satisfaction problem has only a
small number of solutions, much time is often spent
searching branches of the search space which do not lead
to a solution. To minimize backtracking, we should first
try the values which are more likely to lead to a consis
tent solution. Even a slight increase in the probability
that a value chosen is part of a solution can have sub
stantial impact on the time required to find a solution.

*This work was partially supported by NSF grant IRI-
9157636, by the Electrical Power Research Institute (EPRI),
and by grants from Toshiba of America, Xerox Northrop and
Rockwell.

Our new algorithm, look-ahead value ordering (LVO),
implements a heuristic that ranks the values of a vari
able based on information gathered by looking ahead,
determining the compatibility of each value with the val
ues of all future variables. Although the heuristic does
not always accurately predict which values will lead to
solutions, it is frequently more accurate than an unin
formed ordering of values. Our experiments show that
while the overhead of LVO usually outweighs its ben
efits on easy problems, the improvement on very large
problems can be substantial. Interestingly, LVO often
improves the performance of backjumping on problems
without solutions, as well.

Look-ahead value ordering does the same type of look-
ahead as does the forward checking algorithm [6]. Be
cause forward checking rejects values that it determines
will not lead to a solution, it can be viewed as doing
a simple form of value ordering. In this regard LVO is
more refined, because it also orders the values that may
be part of a solution.

In the following section we define formally constraint
satisfaction problems and describe the look-ahead value
ordering algorithm. Section 3 describes the experiments
we conducted. In section 4 we discuss the results of
these experiments. We review some related approaches
in section 5 and in section 6 summarize our results.

2 Def in i t ions and A lgo r i t hms
A constraint satisfaction problem (CSP) is represented
by a constraint network, consisting of a set of n variables,
X\,..., Xn; their respective value domains, D\,..., Dn;
and a set of constraints. A constraint is a subset of the
Cartesian product Di1 x ... x Di., consisting of all tu
ples of values for a subset (Xix,..., X i j) of the variables
which are compatible with each other. A solution is an
assignment of values to all the variables such that no con
straint is violated; a problem with a solution is termed
satisfiable or consistent. Sometimes it is desired to find
all solutions; in this paper, however, we focus on the task
of finding one solution, or proving that no solution ex
ists. A binary CSP is one in which each of the constraints
involves at most two variables. A constraint satisfaction
problem can be represented by a constraint graph which
has a node for each variable and an arc connecting each
pair of variables that are contained in a constraint.

572 CONSTRAINT SATISFACTION

2.1 Algori thms and Heuristics
We experimented with look-ahead value ordering by test
ing it in conjunction with an algorithm that combines
backjumping, dynamic variable ordering, and the tem
porary pruning of future domains characteristic of for
ward checking. Previous experiments have shown that
this combination is extremely effective over a wide range
of problems [4]. LVO (or any other heuristic) is of prac
tical interest only if it improves upon the performance
of state of the art algorithms.

Backjumping
Backjumping [5; 2] is an improvement to backtracking
which takes advantage of sparseness and structure in the
constraint graph. Both backtracking and backjumping
consider each variable in order, instantiating the current
variable, XCUr, with a value from its domain DCur that
does not violate any constraint between Xcur and all
previously instantiated variables. If Xcur has no such
non-conflicting value, then a dead-end occurs. The ver
sion of backjumping we use, based on Prosser's conflict-
directed backjumping [9], is very effective in choosing the
best variable to jump back to.

There are two basic ways to determine which values
in Di are consistent with all variables before Xi. Look
back methods consider each element in Di and check to
ensure that no constraints with earlier variables are vio
lated. There are also several look-ahead approaches, the
simplest being forward checking [6]. When assigning a
value to the current variable, forward checking removes
values from the domains of future variables that con
flict with that value. We will refer to the subset of Di
that has incompatible values removed as Di. When Xi,
is reached, the only values remaining in Di are those
which are consistent with all previous variables, as in
stantiated. If a value x € Di had been removed because
it conflicted with the instantiation of an earlier variable
Xh, then x has to be restored when Xh is assigned a new
value, or is jumped over in backjumping.

Dynamic variable ordering
In a dynamic variable ordering (DVO) scheme [6; 10;
12] the order of variables can be different in different
branches of the search tree. Our implementation of DVO
uses information derived from a forward checking style
look-ahead. At each step the variable with the smallest
remaining domain size is selected. If Di is empty for
some uninstantiated variable Xi, then Xi is moved to be
the next variable, and a dead-end occurs immediately.
The technique for breaking ties is important, as there
are often many variables with the same domain size. In
our implementation we maintain a list of the variables
sorted by degree in the original constraint graph, and in
case of a tie (and for the first variable), choose the one
highest on this list. This scheme gives substantially bet
ter performance than picking one of the tying variables
at random.

Look-ahead value ordering
Backjumping and dynamic variable ordering can be com
bined into an algorithm we call BJ+DVO [4]. The
BJ+DVO algorithm does not specify how to choose a

FROST AND DECHTER 573

value. In our experiments reported in [4], and in this
paper when we refer to "plain" BJ+DVO, values are ar
bitrarily assigned a sequence number, and are selected
according to this sequence. In this paper we explore
the feasibility of using information gleaned during the
look-ahead phase of BJ+DVO to improve the ordering
of values. The method we use to rank the values in or
der of decreasing likelihood of leading to a solution is as
follows. The current variable is tentatively instantiated
with each value in its domain D'. With each value in D'
LVO looks ahead to determine the impact this value will
have on the D' domains of uninstantiated variables. We
discuss in section 3.2 four heuristic functions that use
information from the look-ahead to rank the values in
the current domain. The current variable is then instan
tiated with the highest ranking value. If the algorithm
back jumps to a variable, the highest ranked remaining
value in its domain is selected. If the variable is re-
instantiated after earlier variables have changed, then
the order of the values has to be recalculated. The LVO
heuristic will not always make the right decision. How
ever, a small improvement in an algorithm's ability to
choose the right value can have a big impact on the work
required to solve a problem.

A high-level description of BJ+DVO+LVO is given in
Fig. 1. To avoid repeating consistency checks, our im
plementation saves in tables the results of looking ahead
in step 1(b). After a value is chosen, the D's and Ps of
future variables are copied from these tables instead of
being recomputed in step 2(c). BJ+DVO uses 0(n2k)
space for the D1 sets, where k is the size of the largest
domain: n levels in the search tree (D' is saved at each
level so that it does not have to be recomputed after
backjumping) x n future variables x k values for each
future variable. Our implementation of BJ+DVO+LVO
uses 0(n2k2) space. There is an additional factor of k
because at each level in the search tree up to k values
are explored by look-ahead value ordering. Similarly, the
space complexity for the P sets increases from 0(n2)
in BJ+DVO to 0(n2k) for BJ+DVO+LVO. To solve
a typical problem instance described in the next sec
tion, BJ+DVO required 1,800 kilobytes of random access
memory, and BJ+DVO+LVO required 2,600 kilobytes.
On most computers the additional space requirements of
LVO will not be severe.

3 Exper imenta l Methods and Results
3.1 Instance Generator
The experiments reported in this paper were run on ran
dom instances generated using a model that takes four
parameters: N, K, T and C. The problem instances are
binary CSPs with N variables, each having a domain of
size K. The parameter T (tightness) specifies a fraction
of the K2 value pairs in each constraint that are disal
lowed by the constraint. The value pairs to be disallowed
by the constraint are selected randomly from a uniform
distribution, but each constraint has the same fraction
T of such incompatible pairs. T ranges from 0 to 1,
with a low value of T, such as 1/9, termed a loose or re
laxed constraint. The parameter C specifies the number
of constraints out of the N * (N - l)/2 possible. The
specific constraints are chosen randomly from a uniform
distribution.

Certain combinations of parameters generate prob
lems of which about 50% are satisfiable; such problems
are on average much more difficult than those which all
have solutions (under-constrained) or which never have
solutions (over-constrained) [l ; 7]. Such a set of param
eters is sometimes called a cross-over point. For a given
value of N, K and T, we call the value of C which pro-
duces 50% solvable problems "Cco".

3.2 LVO Heuristics
The BJ+DVO+LVO algorithm in Fig. 1 does not spec
ify exactly how information about conflicts with future
variables should be used to prioritize the values of the
current variable. We experimented with four heuristics
that rank values by looking ahead.

The first heuristic, called min-conflicts (MC), consid
ers each value in D' of the current variable and associates
with it the number of values in the D' domains of future
variables with which it is not compatible. The current
variable's values are then selected in increasing order of
this count.

The other three heuristics are inspired by the intuition
that a subproblem is more likely to have a solution if it
doesn't have variables with only one value. The max-
domain-size (MD) heuristic therefore prefers the value
that creates the largest minimum domain size in the fu
ture variables. For example, if after instantiating Xcur
with value x1 the min,€{ct i r+l i .n \D'i | is 2, and with
Xcur = x2 the min is 1, then x1 will be preferred.

574 CONSTRAINT SATISFACTION

Figure 3: Results of several experiments on CSPs with various parameters, all near the 50% crossover point except as
noted. In each experiment, 500 instances were generated and solved with BJ+DVO ("DVO") and BJ+DVO+LVO
with the MC heuristic ("LVO"). Consistency checks and CPU time were recorded. For mean and median consistency
check figures, the low order three digits are omitted. The "Ratio" columns show the LVO statistic to the left divided
by the corresponding DVO statistic. The "Best" ratio column is the number of times the BJ+DVO+LVO was better
divided by the number of times BJ+DVO was better. The small numbers in parentheses tell the size of the 95%
confidence interval for consistency checks. For instance, "254 (7%)'' means that the size of the 95% confidence interval
is 7% of 254,000 or 17,780. Since the interval is centered around 254,000, we are 95% confident that the true mean
is between 236,220 and 271,780.

Since several values in the domain of the current vari
able D'Cur may create future D's of the same size, the
MD heuristic frequently leads to ties. A refined version
of MD is weighted-max-domain-size (WMD). Like MD,
WMD prefers values that leave larger future domains,
but it break ties based on the number of future vari
ables that have a given future domain size. Continuing
the example from the previous paragraph, if x1 leaves
3 variables with domain size 2 (and the rest with do
main sizes larger than 2), and x3 leaves 5 variables with
domain size 2, then X1 will be preferred over X3.

Our fourth heuristic, called point-domain-size (PDS),
gives each value in D'cur a point value: 8 points for each
future domain of size 1; 4 points for each future domain
of size 2; 2 points for each future domain of size 3 (if
K > 3); and 1 point for each future domain of size 4 (if
K > 4). The value with the smallest sum of points is
chosen first.

Fig. 2 shows the results of experiments comparing
the four LVO heuristics. In terms of mean consistency
checks, LVO usually improves BJ+DVO no matter which
heuristic is chosen. Since the MC heuristic was clearly
best, we selected it for further experimentation. In the
rest of the paper, reference to LVO implies the MC
heuristic.

3.3 Experimental results
The overall conclusion we draw from our experiments
comparing BJ-fDVO with BJ+DVO+LVO is that on
sufficiently difficult problems LVO almost always pro

duces substantial improvement; on medium problems
LVO usually helps but frequently hurts; and on easy
problems the overhead of LVO is almost always worse
than the benefit. Very roughly, "sufficiently difficult" is
over 1,000,000 consistency checks and "easy" is under
10,000 consistency checks.

We experimented further with LVO by selecting sev
eral sets of parameters and with each set generating
500 instances that were solved with both BJ+DVO and
BJ+DVO+LVO. We used two approaches for select
ing combinations of parameters which had large values
of N and K, and yet did not generate problems that
were too computationally expensive. The first strategy
was to use very tight constraints and very sparse con
straint graphs. For instance, problems at N=100 and
K=12 would be extremely time consuming to solve, ex
cept that we used a small number (C=120) of extremely
tight constraints (T=l 10/144). Another method for gen
erating easier problems with large N and K is to select
parameters that are not exactly at the cross-over point.
We used this approach for the experiment with N=350,
K=3, T=l/9 and C=2292, which is 90% of the estimated
Ccoof2547.

The results of these experiments are summarized in
Fig. 3. We present the data in several ways: the ta
ble show the mean, the median, and the ratio of how
many times each algorithm was better than the other.
The "Ratio" columns under "Mean" and "Median" in
Fig. 3 provide an indication of the relative performance
of the two algorithms. Mean ratios and median ra-

FR0ST AND DECHTER 575

Figure 4: The instances in one experiment were di
vided into 10 groups, based on the number of consis
tency checks made by BJ+DVO. Each point is the mean
of 50 instances in one group. The dotted line, show
ing the percentage of times BJ+DVO was better than
BJ+DVO+LVO (when measuring consistency checks),
is related to the right-hand scale.

tios less than one indicate that BJ+DVO+LVO is bet
ter than BJ+DVO (required fewer consistency checks or
CPU time). In the "Best Ratio" column a larger num
ber indicates superior performance by BJ+DVO+LVO,
as this figure is the number of times BJ+DVO+LVO was
better then BJ+DVO, divided by the number of times
BJ+DVO bested BJ+DVO+LVO (as measured by con
sistency checks or CPU time).

For many uses, the mean is the most relevant statis
tic, as it takes into account the impact of the occasional
extremely difficult problem. To convey an estimate of
the accuracy of our sample of 500 instances, we provide,
for the consistency check measure, the size of the 95%
confidence interval, expressed as a percentage of the sam
ple mean. The 95% confidence interval around the true
population mean u is computed as

where x is the sample mean, o is the population standard
deviation, t is the number of trials, and 1.96 is the factor
associated with the 95% confidence interval. Since we
don't actually know the standard deviation of the entire
population, we have to estimate it by using the sample
standard deviation; this is acceptable as long as t > 30,
but still introduces another source of possible inaccuracy.

The medians in Fig. 3 are much lower than the means,
because in each sample there were a small number of ex
tremely difficult problems, and a few very difficult ones.
In our experiments with N=100, K=12, T=110/144 and
C=120 half the CPU time was spent solving the hardest
25 of the 500 problems. Fig. 4 shows the skew in the
distribution, and how LVO affects problems of different
difficulties. For this figure, the 500 instances in one ex
periment were divided into ten groups of 50, based on
the number of consistency checks required by BJ+DVO.

Figure 5: Each point (• = has solution, o = no solu
tion) represents one instance out of 500. Points below
the diagonal line required fewer consistency checks with
LVO.

The easiest 50 were put in the first group, the next easi
est 50 in the second group, and so on. LVO is harmful for
the first several groups, and then produces increasingly
larger benefits as the problems become more difficult.
The scatter chart in Fig. 5 also indicates the distribu
tion of the data. (Due to space constraints, some of our
figures show data drawn from only one parameters, such
as N=100, K=12, T=110/144, C=120. The charts of
data from experiments with other parameters are quite
similar.)

In general the statistics for CPU time are slightly less
favorable for LVO than are the statistics for Consistency
Checks, reflecting the fact that, in our implementation,
there is approximately a 5%-10% performance penalty
in CPU time for LVO. This is caused by the need to store
and copy the large tables that hold the results of look
ing ahead on different values of a variable (the caching
referred to in Step 2(c) of Fig. 1). Many problem in
stances required slightly fewer consistency checks with
LVO but slightly more CPU time, resulting in the often
substantially different "Consistency Checks Best Ratio"
and "CPU seconds Best Ratio" numbers in Fig. 3.

The graphs in Fig. 6 show that the impact of LVO
increases as the number of variables increase. Moreover,
when variables have small domain sizes, a larger number
of variables is required for LVO to have a beneficial im
pact. For instance, at N=75 and K=12, LVO improves
BJ+DVO substantially, while with the small domain size
K=3, the impact of LVO does not appear until N is larger
than 200.

The efficacy of LVO also depends on how near the pa
rameters are to the 50% solvable crossover point. As the
data in Fig. 7 indicate, LVO is detrimental on very easy

576 CONSTRAINT SATISFACTION

Figure 7: The varying effectiveness of LVO on prob
lems not at the cross-over point. Each point on
the chart represents the mean number of consistency
checks from solving 500 CSP instances, using BJ+DVO
and BJ+DVO+LVO. On over-constrained problems, the
means of BJ+DVO and BJ+DVO+LVO are almost iden
tical.

underconstrained problems (with C less than around
80% of Cco) that have many solutions. On these prob
lems, the extra work LVO does exploring all values of a
variable is almost always unnecessary. When problems
are sufficiently overconstrained (C greater than around
125% of Cco), LVO has very little effect on the number
of consistency checks.

In addition to experimenting with LVO on random
problems, we compared BJ+DVO and BJ+DVO+LVO
on several scheduling problems that had been trans-
formed into graph coloring problems. In each case the
impact of LVO was minimal, except for a slight degra-
dation in CPU time. The symmetrical nature of graph
coloring constraints does not provide any information
that look-ahead value ordering can exploit.

FROST AND DECHTER 577

unattacked cells" is the same as our max-conflicts heuris-
tic, and his "row with the least number of unattacked
cells" heuristic is the same as max-domain-size.

Dechter and Pearl [3] developed an Advised Backtrack
algorithm which estimates the number of solutions in the
subproblem created by instantiating each value. The es
timate is based on a tree-like relaxation of the remainder
of the problem. For each value, the number of solutions
is counted, and the count is used to rank the values.
Advised Backtrack was the first implementation of the
general idea that heuristics can be generated from a re
laxed version of the problem instance.

Sadeh and Fox [l l] also use a tree-like relaxation of the
remaining problem, in the context of job-shop scheduling
problems. Their value ordering heuristic considers as
well the impact of capacity constraints and demand on
scarce resources.

6 Conclusions and Future W o r k
We have introduced look-ahead value ordering, an al
gorithm for ordering the values in a constraint satisfac
tion problem. Our experiments show that for large and
hard problems, LVO can improve the already very good
BJ+ DVCValgorithm by over a factor of five.

One drawback of LVO is that it is somewhat com
plex to implement, as it uses a set of tables to cache the
results of values that have been examined (during the
ranking process) but not yet instantiated. Manipulat
ing these tables incurs a small CPU overhead. Another
disadvantage of LVO is that on easy solvable problems,
where there are many solutions and hence many accept
able value choices, it is usually detrimental. LVO need
lessly examines every value of each variable along the
almost backtrack-free search for a solution.

LVO is almost always beneficial on difficult instances
that require over 1,000,000 consistency checks. Unex
pectedly, it even helps on problems without solutions
when used in conjunction with backjumping. We have
tested LVO using a forward checking level of look-ahead.
We plan to explore the possibility that a more compu
tationally expensive scheme, such as partial look-ahead
or full look-ahead [6] or directional arc consistency [3],
will pay off in the increased accuracy of the value order
ing. Another research direction is to reduce the over
head of LVO on easy problems. This might be achieved
by only employing value ordering in the earlier levels
of the search, or by having value ordering automatically
"turn off" when it notices that current values are in con
flict with relatively few future values, indicating an un-
derconstrained problem. A simple way to eliminate the
overhead of LVO on very easy problems would be to al
ways run a non-LVO algorithm first; if that algorithm
has not completed by, say, 100,000 consistency checks,
it is cancelled and problem solving is restarted with an
LVO version. At the price of 100,000 extra consistency
checks on some difficult problems, the costs of LVO on
the easy majority of problems is avoided.

References
[1] Peter Cheeseman, Bob Kanefsky, and William M.

Taylor. Where the really hard problems are. In

Proceedings of the International Joint Conference
on Artificial Intelligence, pages 331-337, 1991.

[2] Rina Dechter. Enhancement Schemes for Constraint
Processing: Backjumping, Learning, and Cutset
Decomposition. Artificial Intelligence, 41:273-312,
1990.

[3] Rina Dechter and Judea Pearl. Network-based
heuristics for constraint-satisfaction problems. Ar-
tificial Intelligence, 34:1-38, 1987.

[4] Daniel Frost and Rina Dechter. In search of the
best constraint satisfaction search. In Proceedings
of the Twelfth National Conference on Artificial In
telligence, pages 301-306, 1994.

[5] J. Gaschnig. Performance measurement and anal
ysis of certain search algorithms. Technical Report
CMU-CS-79-124, Carnegie Mellon University, 1979.

[6] R. M. Haralick and G. L. Elliott. Increasing Tree
Search Efficiency for Constraint Satisfaction Prob
lems. Artificial Intelligence, 14:263-313, 1980.

[7] David Mitchell, Bart Selman, and Hector Levesque.
Hard and Easy Distributions of SAT Problems. In
Proceedings of the Tenth National Conference on
Artificial Intelligence, pages 459-465, 1992.

[8] Judea Pearl. Heuristics. Addison-Wesley, Reading,
Mass., 1985.

[9] Patrick Prosser. Hybrid Algorithms for the Con
straint Satisfaction Problem. Computational Intel
ligence, 9(3):268-299, 1993.

[10] Paul Walton Purdom. Search Rearrangement Back
tracking and Polynomial Average Time. Artificial
Intelligence, 21:117-133, 1983.

[11] Norman Sadeh and Mark S. Fox. Variable and
Value Ordering Heuristics for Activity-based Job-
shop Scheduling. In Proceedings of the Fourth Inter
national Conference on Expert Systems in Produc
tion and Operations Management, pages 134-144,
1990.

[12] Ramin Zabih and David McAllester. A Rearrange
ment Search Strategy for Determining Propositional
Satisfiability. In Proceedings of the Seventh Na
tional Conference on Artificial Intelligence, pages
155-160, 1988.

578 CONSTRAINT SATISFACTION

