
U n d e r s t a n d i n g N e u r a l N e t w o r k s v i a R u l e E x t r a c t i o n

Rudy Setiono and Huan L i u
Department of Information Systems and Computer Science

National University of Singapore
Kent Ridge, Singapore 0511

{rudys,liuh}@iscs.nus.sg

Abs t rac t

Although backpropagation neural networks
generally predict better than decision trees do
for pattern classification problems, they are of
ten regarded as black boxes, i.e., their predic
tions are not as interpretable as those of deci
sion trees. This paper argues that this is be
cause there has been no proper technique that
enables us to do so. With an algorithm that
can extract rules1, by drawing parallels with
those of decision trees, we show that the predic
tions of a network can be explained via rules ex
tracted from it, thereby, the network can be un
derstood. Experiments demonstrate that rules
extracted from neural networks are compara
ble with those of decision trees in terms of pre
dictive accuracy, number of rules and average
number of conditions for a rule; they preserve
high predictive accuracy of original networks.

1 I n t r o d u c t i o n
Researchers [Dietterich et a/., 1990; Quinlan, 1994; Shav-
lik et a/., 1991] have compared experimentally the perfor
mance of learning algorithms of decision trees and neural
networks (NNs). A general picture of these comparisons
is that: (1) Backpropagation (an NN learning method)
usually requires a great deal more computation; (2) the
predictive accuracy of both approaches is roughly the
same, with backpropagation often slightly more accu
rate [Quinlan, 1994]; and (3) symbolic learning (decision
trees induction) can produce interpretable rules while
networks of weights are harder to interpret [Shavlik et
a/., 1991]. In effect, a neural network is widely regarded
as a black box due to the fact that little is known about
how its prediction is made.

Our view is that this is because we are not equipped
with proper techniques to know more about how a neu
ral network makes a prediction. If we can extract
rules from neural networks as generating rules from de
cision trees, we can certainly understand better how

'Rules are in forms of "if x1 = v(x1) and X2 = v(x2) ...
and xn = v(xn) then Cj" where xi's are the inputs to the
network, v(xi)'s are one of the values xi can have, and Cj is
the network's prediction.

a prediction is made. In addition, rules are a form
of knowledge that can be easily verified by experts,
passed on and expanded. Some recent works [Fu, 1994;
Saito and Nakano, 1988; Towell and Shavlik, 1993] have
shown that rules can be extracted from networks. These
algorithms are search-based methods that have exponen
tial complexity. Subsets of incoming weights that ex
ceed the bias on a unit are searched. Such sets are then
rewritten as rules. To simplify the search process, some
assumptions are made. One assumption is that the acti
vation of a unit is either very close to 1 or very close to
0. This can restrict the capability of the network since
when the sigmoid transfer function is used as the the ac
tivation function, the activation of a unit can have any
value in the interval (0,1).

In this paper, a novel way to understand a neural
network is proposed. Understanding a neural network
is achieved by extracting rules with a three-phase algo-
rithm: first, a weight-decay backpropagation network is
built so that important connections are reflected by their
bigger weights; second, the network is pruned such that
insignificant connections are deleted while its predictive
accuracy is still maintained; and last, rules are extracted
by recursively discretizing the hidden unit activation val
ues. By drawing parallels with the rules generated from
decision trees, we show that networks can be interpreted
by the extracted rules; the rules in general preserve the
accuracy of the networks; and they also explain how a
prediction is made.

2 A Three-Phase A l g o r i t h m
A standard three layer feedforward network is the base of
the algorithm. Weight decay is implemented while back-
propagation is carried out. After the network is pruned,
its hidden units activation values are discretized. Rules
are extracted by examining the discretized activation
values of the hidden units. The algorithm is described
in steps below.

2.1 Backpropagation w i th Weight Decay
The basic structure of the neural network in this work is
a standard three-layer feedforward network, which con
sists of an input layer, I, a hidden layer, H, and an output
layer, 0. The number of input units corresponds to the
dimensionality of the examples of a classification prob-

480 C0NNECTI0NIST MODELS

This pruning algorithm removes the connections of the
network according to the magnitudes of their weights (4
and 5). As our eventual goal is to get a set of simple rules
that describe the classification process, it is important
that all unnecessary connections be removed. In order to
remove as many connections as possible, it is therefore
imperative that the weights be prevented from taking
values that are too large. At the same time, weights of
irrelevant connections should be encouraged to converge
to zero.

2.3 Rule Extraction
When network pruning is completed, the network con
tains only those salient connections. Nevertheless, rules
are not readily extractable because the hidden unit acti
vation values are continuous. The discretization of these
values paves the way for rule extraction. The following
algorithm discretizes the activation values (many clus
tering algorithms can be used for this purpose).

SETIONO AND LIU 481

When the clustering is done, the network's accuracy
is checked to see if it drops or not. A very small c can
guarantee that the network with discretized activation
values is as accurate as the original network with contin
uous activation values. So if it's accuracy does not drop
and there are still many discrete values, clustering can
be performed again with a larger e. Otherwise, E should
be reduced to a smaller value.

After network pruning and activation value discretiza
tion, rules can be extracted by examining the possible
combinations in the network outputs (explained in detail
in Section 3.2). The actual rule extraction is done by an
algorithm that generates 100% accurate rules [Liu, 1995].
However, when there are still too many connections (e.g.,
more than 7) between a hidden unit and input units, the
extracted rules may not be easy to understand. Another
three layer feedforward subnetwork may be employed to
simplify rule extraction for the hidden unit. This sub
network is trained in the same ways as is the original net
work, but in a reduced scale: the number of output units
is the number of discrete values of the hidden unit, while
the input units are those connected to the hidden unit in
the original network. Examples are grouped according
to their discretized activation values. Given d discrete
activation values D1, D2,..., Dd, all examples with ac
tivation values equal to Dj are given a d-dimensional
target value of all zeros except for one 1 in position j. A
new hidden layer is introduced for this subnetwork and
it is then trained, pruned, and the activation values of its
hidden units are discretized for rule extraction. If neces
sary, another subnetwork is created until the number of
connection is small enough or the new subnetwork can
not simplify the connections between the inputs and the
hidden unit at the higher level. The creation of subnet
works is rarely needed. For example, in our experiments,
it was only used for the Splice-junction problem.

3 Exper iments and Results
In this section, we describe the datasets and representa
tions used in experiments. A detailed example is given
to show how the three-phase algorithm is applied to ex
tracting rules. Summary of the results on all datasets
are given with a comparison to those produced by the
decision tree induction methods. Understanding a neu
ral network is achieved by being able to explain, based
on the rules, how each prediction is made in parallel with
understanding a decision tree by having rules generated
from it [Quinlan, 1993].

3.1 Datasets and Representations
Three datasets used are: 1. Iris - a classic dataset intro
duced by R. A. Fisher [1936]; 2. Breast Cancer - a widely
tested real-world dataset for the Wisconsin Breast Can
cer diagnosis; and 3. Splice-junction - a dataset used in
splice-junction determination originally described by No-
ordewier et al [1991]. The datasets are obtainable from
the University of California Irvine data repository for
machine learning (via anonymous ftp from ics.uci.edu).
The summary of these datasets, their representations,
and how each dataset is used in experiments are given
below.

• Iris - the dataset contains 50 examples each of the
classes Iris setosa, Iris versicolor, and Iris virginica
(species of iris). Each example is described using
four numeric attributes (A1, A2, A3 and A4): sepal-
length, sepal-width, petal-length, and petal-width.
Since each attribute takes a continuous value, the
ChiMerge algorithm proposed by Kerber [1992J was
reimplemented to discretize attribute values. The
thermometer code [Smith, 1993] is used to bin arize
the discretized values; 16, 9, 7, and 6 inputs (dis
crete values) for A 1 A 2 , A 3 a n d A4respectively.
With 1 input for bias, there are total 39 inputs and
three outputs. Examples in odd positions in the
original dataset form the training set and the rest
are for testing as was done in [Fu, 1994].

• Breast Cancer - the dataset consists of 699 exam
ples, of which 458 examples are classified as benign,
and 241 are malignant. 50% examples of each class
were randomly selected (i.e., 229 benign and 121
malignant examples) for training, the rest for test
ing in the experiments. Each example is described
by 9 attributes, each attribute takes an ordinal in
teger from 1 to 10 (10 values). Due to the ordinal
nature, the thermometer code is used again to code
each attribute value. Ten inputs correspond to 10
values of each attribute with all 10 inputs on rep
resenting value 10, the rightmost input on for value
1, and the two rightmost inputs on for value 2, etc.

• Splice-junction - the data set contains 3175
examples2, approximately 25% are exon/intron
boundaries (El), 25% are intron/exon boundaries
(IE), and remaining 50% are neither (N). Each
example consists of a 60-nucleotide-long DNA se
quence categorized with EI, IE or N. Each of these
60 attributes takes one of the four values: G, T, C or
A that are coded as 1000, 0100, 0010, and 0001, re
spectively. The class values (EI, IE, N) are similarly
coded as 100, 010, and 001, respectively.For the re
sults presented here, the training data set consists
of 1006 examples while the testing data set consists
of all 3175 examples.

3.2 A Detailed Example - Iris Data
Classification

This example shows in detail how rules are extracted
from a pruned network. In the experiment, 100 fully
connected neural networks were used as the starting net
works. Each of these networks consists of 39 input units,
3 hidden units and 3 output units. These networks were
trained with initial weights that had been randomly gen
erated in the interval [-1,1]. Each of the trained net
works was pruned until its accuracy on the training data
dropped below 95%. The weights and topology of net
works with the smallest number of connections and an
accuracy rate of more than 97% were saved for possi
ble rule extraction. The results of these experiments
are summarized in Table 1 in which we list the average
number of connections in the pruned networks and their

2 Another 15 examples in the original dataset contain in
valid values so these examples are not included in experiment.

482 C0NNECTI0NIST MODELS

average accuracy rates on the training data and the test
ing data. Statistics in the second column of this table
were obtained from 100 pruned networks, all of which
have accuracy rates on the training data of at least 95
%. In the th i rd column, the figures were obtained from
100 pruned networks w i th accuracy of at least 97 % on
the t ra in ing data.

One of the smallest pruned networks is depicted in
Figure 1. It has only 2 hidden units and a total of 8 con
nections w i th 98.67% accuracy on the training set and
97.33% on the testing set. We ran the clustering algo
r i t hm of Section 2.3 on this network and found only 2
discrete values are needed at each of the two hidden units
to maintain the same level of accuracy on the training
data. At hidden unit 1, 48 of 75 training examples have
activation values equal to 0 and the remaining 27 have
activation values equal to 1. At hidden unit 2, the acti
vation value of 25 examples is 1 and the activation value
of the remaining 50 examples is -0.5. Since we have two
activation values at each of the two hidden units, four
different outcomes at the output units are possible (Ta
ble 2). From this table, it is clear that an example wi l l
be classified as Iris setosa as long as its activation value
at the second hidden uni t is equal to 1. Otherwise, the
example is classified as Iris versicolor provided that its
first hidden uni t activation value H_l = 0. The default
class wi l l then be Iris virginica.

As seen in Figure 1, only two inputs, L31 and 1.39, de
termine the activation values of the second hidden uni t ,
H_2. However, since L39 is 1 for all the training data,
H_2 is effectively determined by I-31. Since the weights
of the arcs connecting input units 31 and 39 to the sec

ond hidden unit are -5.4 and 4.8 respectively, it is easy to
conclude that if 1.31 = 0, then H_2 is 1, otherwise, H_2
is -0.52. This implies that an example wi l l be classified
as Iris setosa only if L_31 is 0 (hence H_2 is 1).

The activation value of the first hidden uni t , H_l , de
pends only on L26 and L34. The weights of the arcs
connecting input units 26 and 34 to the first hidden uni t
are 5.1 and 8.1, respectively, hence H_l is 0 if and only
if L26 = L34 = 0. Other input combinations wi l l yield
value 1 for H_l. Hence, an example wi th 1.31 = 1, L26
= L34 = 0 wi l l be classified as Iris versicolor.

Wi th the thermometer coding scheme used for the in
put , a complete set of rules can be easily obtained in
terms of the original attributes of the iris data set. The
accuracy of this rule set is summarized in Table 3:

N N Ru les 3

R u l e 1: If Petal-length < 1.9 then Iris setosa
R u l e 2: If Petal-length < 4.9 and Petal-width < 1.6

then Ins versicolor
D e f a u l t R u l e : Iris virginica.

For reference, the rule set (D T Rules) generated by
C4.5rules (based on a decision tree method but generate
more concise rules than the tree itself) is included here:

D T Ru les
R u l e 1: If Petal-length < 1.9 then Ins setosa
R u l e 2: If Petal-length > 1.9 and Petal-width < 1.6

then Iris versicolor
R u l e 3: If Petal-width > 1.6 then Ins virginica
D e f a u l t R u l e : Iris setosa.

3.3 C o m p a r i s o n s
In this section, parallels are drawn between rules ex
tracted from both neural networks and decision trees

3The rules are fired in a top-down and left-to-right fashion.

SETI0N0 AND LIU 483

(NN rules vs. DT rules). Understand ability is partly
defined as being explicable in the sense that a prediction
can be explained in terms of inputs (or attribute values).
Choosing to compare NN rules with DT rules is due to
the fact that DT rules are considered best understand
able among the available choices. A rule in discussion
consists of two parts: the if-part is made of a conjunc
tion of conditions, and the then-part specifies a class
value. The conditions of a rule are in forms of "Ai,=Vj",
i.e., attribute A, takes value Vj. When a rule is fired, a
prediction is given that the example under consideration
belongs to class Ck. By examining the fired rule, it can
be explained how the prediction is attained. If necessary,
the intermediate process can also be explicitly explained.

C4.5 and C4.5rules [Quinlan, 1993] were run on the
above three datasets to generate DT rules. Briefly,
C4.5 generates a decision tree which C4.5rules gener
alizes to rules. Since researchers [Cheng et a/., 1988;
Shavlik et a/., 1991] observed that mapping many-valued
variables to two-valued variables results in decision trees
with higher classification accuracy4, the same binary
coded data for neural networks were used for C4.5 and
C4.5rules.

Being explicable is only one aspect of understandabil-
ity. A rule with many conditions is harder to understand
than a rule with fewer conditions. Too many rules also
hinder humans understanding of the data under exami
nation. In addition to understandability, rules without
generalization (i.e., high accuracy on testing data) are
not much of use. Hence, the comparison is performed
along three dimensions: 1. predictive accuracy; 2. av
erage number of conditions of a rule; and 3. number of
rules (see Figures 2-4).

The reasoning behind the comparisons is that if NN
rules are comparable with DT rules, since the latter are
admittedly interpretable, so should the former. Now
that each prediction can be explained in light of some
rule, and those rules have direct links to the neural net
work, it can be concluded that the network's behavior
can be understood via those rules.

A It's true indeed for the three datasets in our experiments.

4 Discussion
The comparisons made in Figures 2-4 indicate that NN
rules are comparable with, if not better than, DT rules
in terms of our understanding measures. The average
number of conditions in NN rules is higher than that of
DT for 2 of the 3 problems tested, however, the total
number of NN rules is less than DT rules for all the 3
problems. These observations are consistent with the
nature of each learning algorithm, i.e., parallel vs. se
quential. Other issues of interests arc:

• The training time. It takes much longer time to
train a neural network than to learn a decision tree.
This is also true for NN rules and DT rules extrac
tion. Due to the existence of sequential and parallel
data types, and decision trees and neural networks
are best suited to one type only [Quinlan, 1994], the
two approaches are expected to coexist. When time
is really scarce, the decision tree approach should be
taken. Otherwise, it is worthwhile trying both be
cause of backpropagation's other advantages (gener
alizing better on a smaller dataset, predicting better
in general, etc. [Towell and Shavlik, 1993]).

• Average performance of NN rules. Because of neural
networks' nondeterministic nature, it is not uncom
mon that many runs of networks are needed with

484 CONNECTIONIST MODELS

different initial weights. As was shown in Table 1,
the average performance for 100 pruned networks is
very impressive (94.55%). This displays the robust
ness of the presented algorithm.

• Accuracy of neural networks and NN rules. There is
a trade-off between the accuracy of the the rules ex
tracted from the network and the complexity of the
rules. A network can be further pruned and simpler
rules obtained at the cost of sacrificing its accuracy.
A notable feature of our rule extraction algorithm
is that while it allows us to extract rules with the
same accuracy level as that of the pruned network,
it is also possible to simplify the rules by considering
a smaller number of hidden unit activation values.

• Understanding the weights of connections. Unlike
M-of-N rules [Towell and Shavlik, 1993], NN rules
here reflect precisely how the network works. NN
rules given here are actually the merge of the two
sets: 1. from the input layer to the hidden layer;
and 2. from the hidden layer to the output layer.
NN rules cover all the possible combinations of the
connections with various input values and discrete
activation values of hidden units. This is a signifi
cant improvement over search-based methods [Tow
ell and Shavlik, 1993; Fu, 1994] where all possible in
put combinations are searched for subsets that will
exceed the bias on a unit. To reduce the cost of
searching, they normally limit the number of an
tecedents in extracted rules. Our algorithm imposes
no such limit.

• Consistency between NN and DT rules. Consistency
checking is not an easy task. In general, the possible
rule space is very large since the training data is
only a sample of the world under consideration. It
is not surprising that there exist many equally good
rule sets. Using the binary code for the Iris data,
for example, the possible size of the rule space is
238, but there are only 75 examples for training.
However, for simple problem like the Iris problem,
the rules extracted by NN and the rules generated
by DT are remarkably similar.

5 Conclusion
Neural networks have been considered black boxes. In
this paper, we propose to understand a network by rules
extracted from it. We describe a three-phase algorithm
that can extract rules from a standard feedforward neu
ral network. Network training and pruning is done via
the simple and widely-used backpropagation method.
No restriction is imposed on the activation values of the
hidden units or output units. Extracted rules are a one-
to-one mapping of the network. They are compact and
comprehensible, and do not involve any weight values.
The accuracy of the rules from a pruned network is as
high as the accuracy of the network. Experiments show
that NN rules and DT rules are quite comparable. Since
DT rules are regarded as explicit and understandable, we
conclude that NN rules are likewise. With the rules ex
tracted by the method introduced here, neural networks
should no longer be regarded as black boxes.

References
[Cheng et ai, 1988] J. Cheng, U.M. Fayyad, K.B. Irani,

and Z Qian. Improved decision trees: A generalized
version of id3. In Proceedings of the Fifth Interna
tional Conference on Machine Learning, pages 100-
106. Morgan Kaufman, 1988.

[Dietterich et ai, 1990] T.G. Dietterich, II. Hild, and
G. Bakiri. A comparative study of id3 and backprop
agation for english text-to-speech mapping. In Ma
chine Learning: Proceedings of the Seventh Interna
tional Conference. University of Texas, Austin, Texas,
1990.

[Fisher, 1936] R.A. Fisher. The use of multiple mea
surements in taxonomic problems. Ann. Eugenics,
7(2):179-188, 1936.

[Fu, 1994] L. Fu. Neural Networks m Computer Intelli
gence. McGraw-Hill, 1994.

[Kerber, 1992] R. Kerber. Chimerge: Discretization of
numeric attributes. In AAAI-92, Proceedings Ninth
National Conference on Artificial Intelligence, pages
123 128. AAAI Press/The MIT Press, 1992.

[Liu, 1995] II. Liu. Generating perfect rules. Technical
report, Department of Info Sys and Comp Sci, Na
tional University of Singapore, February 1995.

[Noordewieer et ai, 1991] M.O. Noordewieer, G.G.
Towell, and J.W. Shavlik. Training knowledge-based
neural networks to recognize genes in dna sequences.
In Advances in neural information processing systems,
volume 3, pages 530 536. Morgan Kaufmann, 1991.

[Quinlan, 1993] J.R. Quinlan. C4-5: Programs for Ma
chine Learning. Morgan Kaufmann, 1993.

[Quinlan, 1994] J.R. Quinlan. Comparing connection-
ist and symbolic learning methods. In S.J. Hanson,
G.A. Drastall, and R.L. Rivest, editors, Computa
tional Learning Therory and Natural Learning Sys
tems, volume 1, pages 445-456. A Bradford Book, The
MIT Press, 1994.

[Saito and Nakano, 1988] K. Saito and R Nakano. Med
ical diagnostic expert system based on pdp model.
In Proceedings of IEEE International Conference on
Neural Networks, volume 1, pages 255-262. IEEE,
1988.

[Setiono, 1995] R. Setiono. A penalty function approach
for pruning feedforward neural networks. Techni
cal Report, DISCS, National University of Singapore,
1995.

[Shavlik et ai, 1991] J.W. Shavlik, R.J. Mooney, and
G.G. Towell. Symbolic and neural learning algo
rithms: An experimental comparison. Machine Learn
ing, 6(2):111-143, 1991.

[Smith, 1993] M. Smith. Neural networks for Statistical
Modeling. Van Nostrand Reinhold, 1993.

[Towell and Shavlik, 1993] G.G. Towell and J.W. Shav
lik. Extracting refined rules from knowledge-based
neural networks. Machine Learning, 13(1):71—101,
1993.

SETIONO AND LIU 485

