
M o d e l E l i m i n a t i o n , Log ic P r o g r a m m i n g 
and C o m p u t i n g Answers 

Peter Baumgartner • Ulrich Furbach • Frieder Stolzenburg 
Universitat Koblenz • Institut fiir Informatik 
Rheinau 1 • D-56075 Koblenz • Germany 

E-mail: {peter,uli,stolzen} @informatik.uni-koblenz.de 

Abstract 

We demonstrate that theorem provers using model 
elimination (ME) can be used as answer com
plete interpreters for disjunctive logic program
ming. More specifically, we introduce a mechanism 
for computing answers into the restart variant of 
ME. Building on this, we develop a new calcu
lus called ancestry restart ME. This variant admits 
a more restrictive regularity restriction than restart 
ME, and, as a side effect, it is in particular attractive 
for computing definite answers. The presented cal
culi can also be used successfully in the context of 
automated theorem proving. We demonstrate exper
imentally that it is more difficult to compute (non-
trivial) answers to goals, instead of only proving the 
existence of answers. 
Keywords. Automated reasoning; theorem prov
ing; model elimination; logic programming; com
puting answers. 

The aim of this paper is twofold: Firstly, we prove that the
orem provers using model elimination (ME) can be used as 
answer complete interpreters for disjunctive logic program
ming. Secondly, we demonstrate that in the context of auto
mated theorem proving it is much more difficult to compute 
(non-trivial) answers to goals, instead of only to prove the 
existence of answers. 

Concerning the first aspect it is important to note that there 
is a lot of work towards model theoretic semantics of positive 
disjunctive logic programs, and of course there are numer
ous proposals for non-monotonic extensions. However, with 
respect to interpretation, i.e. proof-theoretic investigations the 
situation is not so clear. At first glance one might be convinced 
that any first order theorem prover can be used for the interpre
tation of disjunctive logic programs, since a program clause 
A\ V ... V Am <— B\ A ... A Bn is a representation of the 
clause A1 V ... V Am V ->B1 V ... V -Bn. Indeed, in [Lobo 
et al, 1992] SLI-resolution is used as a calculus for disjunc
tive logic programming. From logic programming with Horn 
clauses, however, we learn that for a procedural interpreta
tion of program clauses it is crucial that clauses can only be 
accessed by the literals Ai, i.e. by the head literals. Techni
cally, this means that only those contrapositives are allowed 
to be used, which contain a positive literal in the head. The ap
proach from [Lobo etal, 1992] completely ignores this aspect 

by using SLI resolution which requires all contrapositives. 
There are proposals for first order proof calculi using pro

gram clauses only in this procedural reading, e.g. Plaisted's 
problem reduction formats [Plaisted, 1988], or the nearHorn-
Prolog family introduced by Loveland and his co-workers 
[Loveland, 1991]. These approaches introduce new calculi 
or proof procedures, for which efficient implementations still 
have to be developed. (For a thorough discussion we refer to 
[Baumgartner and Furbach, 1994a].) Our aim was to mod
ify ME such that it can be used for logic programming in 
the above sense. This gives us the possibility to use exist
ing theorem provers for disjunctive logic programming. As 
a first step towards this goal, we introduced in [Baumgartner 
and Furbach, 1994a] the restart variant of ME and proved 
its refutational completeness. In this paper, we introduce an 
answer computing mechanism into restart model elimination 
(proofs of all stated theorems can be found in the long version 
[Baumgartner et al, 1995]). Furthermore we define a variant 
called ancestry restart ME which allows extended regularity 
checking (i.e. loop checking) wrt. the ordinary restart ME. Ad
ditionally, this variant prefers proofs which allow for definite 
answers. 

For the second aspect, namely computing answers, we 
accommodated our PROTEIN system [Baumgartner and Fur-
bach, 1994b] for answer computing as described below. We 
demonstrate with some of Smullyan's puzzles [Smullyan, 
1978] that it is much more difficult to compute answers instead 
of only to prove unsatisfiability. For this we give a compar
ative study of high performance theorem provers, including 
OTTER, SETHEO and our PROTEIN system. 

1 From Tableau to Restart Model Elimination 

1.1 Tableau Model Elimination 
In this subsection we use the clause notation, mirroring the 
fact that we review a calculus which is, as it stands, not suited 
for programming purposes. We use a ME calculus that differs 
from the original one presented in [Loveland, 1968]. It is 
described in [Letz et al., 1992] as the base for the prover 
SETHEO. In [Baumgartner and Furbach, 1993] this calculus 
is discussed in detail by presenting it in a consolution style 
[Eder, 1991] and compared to various other calculi. ME (in 
this sense) manipulates trees by extension and reduction steps. 
In order to recall the calculus consider the clause set 

{{P, Q), {-P, Q},{-Q, P), {-P, -Q } } , 

BAUMGARTNER, FURBACH, AND STOLZENBURG 336 



A model elimination refutation is depicted in Figure 1 (left 
side). It is obtained by successive fanning with clauses from 
the input set (extension steps). Additionally, it is required that 
every inner node is complementary to one of its sons. Such 
sons are decorated with a "*" in Figure 1. A dashed arrow 
indicates a reduction step, i.e. the closing of a branch due 
to a path literal complementary to the leaf literal. Extension 
and reduction steps are allowed at any leaf of the tree and for 
extension steps any literal from an input clause can be used 
to form a complementary pair of literals. For example, in the 
right subtree of Figure 1 (left side) the clause {-P, Q} was 
used to extend the positive leaf P, i.e. we used the program 
clause Q <- P via the body literal P and hence did dissent 
with a procedural reading of the clause. 

In the right part of Figure 1 a refutation with the modi
fied version, the restart ME calculus, is displayed. The only 
difference is that extension steps at positive literals are not 
allowed; instead either a reduction step is carried out, or else 
the root literal — which is always ->goal — is copied, and 
then an extension follows. 

In a variant called strict restart model elimination not even 
reduction steps are allowed at positive leaves. Hence the cal
culus is forced to apply restart steps wherever possible. 

These simple modifications obviously allow only exten
sion steps with a positive, i.e. a head literal of a clause, and 
hence support a procedural reading of program clauses. In 
the following subsection we give a formal presentation of the 
calculus along the lines of [Baumgartner and Furbach, 1993]. 

1.2 Restart Model Elimination 
Instead of trees we now manipulate multisets of paths, where 
paths are sequences of literals. We will state some basic defi
nitions. 

A clause is a multiset of literals, usually written as the dis
junction L\ V... V Ln. A program is a consistent set of clauses 
(thus possibly including negative clauses). A connection is a 
pair of literals, written as (K,L), which can be made com
plementary by an application of a substitution. A path is a 
sequence of literals, written as p — {L\,..., Ln). Ln is called 

336 AUTOMATED REASONING 



The inference rule restart is defined as follows: 

1. is a path multiset, and 
2. leaf(p) is a positive literal, and 
3. L=first (p). 
A strict restart ME derivation from the clause set S consists 

of a sequence and a substitution 
where 

1. Po is a path m u l t i s e t c o n s i s t i n g of paths 
of length 1, with L\ also called the goal 
clause), and for i = 1 . . . n 

2. Pi is obtained from Vi-\ by means of an extension step 
with an appropriate clause C from S and MGU 

3. Pi is obtained from Pi-\ by means of a reduction step 
and or 

4. Pi is obtained from Pi-1 by means of a restart step. 
The path p is called selected path in all three inference 

rules. A restart step followed immediately by an extension 
step at the just obtained path is also called a restart extension 
step. Finally, a refutation is a derivation where Vn = {}. 
(End Definition) 

Note that in extension steps we can connect only with the 
head literals of input clauses. Since in general this restriction 
is too strong, we have to "restart" the computation with a 
fresh copy of a negative clause. This is achieved by the restart 
rule, because refutations of programs in goal normal form al
ways start with -goal, i.e. the copied literal first(p) = -goal; 
furthermore, only extension steps are possible to -goal, in
troducing a new copy of a negative clause (cf. Figure 1, right 
side). 

The reduction operation is permitted from negative leaf lit
erals to positive ancestor literals only. This condition can be 
relaxed towards disregarding the sign, which then yields the 
non-strict calculus version. See [Baumgartner and Furbach, 
1994a] for a discussion of the differences. The reader aware of 
this work will notice that in the present text we define the cal
culus slightly different. This happens in order to conveniently 
express another calculus variant defined below. 

Note that the restart ME calculus does not assume a special 
selection function which determines which path is to be ex
tended or reduced next. Correctness and completeness of this 
calculus follows immediately from a result in [Baumgartner, 
1994]. From the definition of the inference rule extension, it 
follows immediately, that this calculus only needs those con-
trapositives of clauses which contain a positive literal in their 
heads. 

2 Computing Answers 
In this section we introduce the notion of computed answers 
and we state an answer completeness result for restart ME. We 
assume as given a program P together with one single query 

where the GiS are positive literals. We will 
often abbreviate such a query as <— Q, where Q stands for 
the conjunction of GiS. The clause set S is the transforma
tion of into goal normal form. In the following 
definition of computed answer we collect applications of the 

query clause, but not applications of negative clauses from 
the program P. 
Definition 2.1 (Answers) If <- Q is a query 
are substitutions for the variables from Q. then 
is an answer (for S). An answer is a correct 
answer if . Let now a restart ME 
refutation of S with goal clause <- goal and substitution a be 
given. Assume that this refutation contains m extension steps 
with the query, i.e. it contains m-times an extension step with 
the clause goal +- Qpi where pi, is the renaming substitution 
of this step. is a 
computed answer (for S). (End Definition) 
Theorem 2.2 (Lifting Theorem for Restart Model Elimi
nation) Let S' be a set of ground instances of clauses taken 
from a clause set S. Assume there exists a restart ME deriva
tion with goal clause C0 € S'. 
Then there exists a restart ME derivation D = Po, P1,..., Pn 
from S with some goal clause and substitution o such 
that Pn is more general than Pn. (A path set P is more general 
than a path set Q iff for some substitution 6 we have PS = Q.) 

Furthermore, there exists a substitution such that Pi is 
obtained from by an extension step with clause C E S' if 
and only if Pi is obtained from Pi-1 by an extension step with 
a clause such that , where p is the renaming 
substitution applied in that extension step. 

The first part of the theorem will be used in the proof 
of refutational completeness (because for a refutation on the 
ground level, i.e. a derivation of P'n = {}, only the empty path 
set Pn — {} can be more general), while the second part will 
be used in the proof of answer completeness (Theorem 2.3). 
In particular, to obtain this we have to demand one single 
substitution 6 which maps any of the clauses used in 
extension steps to the respective clause on the ground level. 
Clearly, this result is harder to establish and more relevant than 
a lifting result for SLI-resolution in lLobo et al., 1992] which 
"moves the quantification inside": in our words, they state 
that for every application of an input clause at the ground level 
there exists an application at the first-order level, and there 
exists a substitution to map this instance to the ground level. 
Theorem 2.3 (Answer completeness of restart ME) // 

is a correct answer for a program P, then 
there exists a strict restart ME refutation from S with com
puted answer such that 
entails 

Informally, the theorem states that for every given correct 
answer we can find a computed answer which can be instanti
ated by means of a single substitution 6 to a subclause of the 
given answer (and hence implies it). Unfortunately we can not 
obtain a result stating that the computed answer contains less 
(or equal) literals than the given answer. 

All proofs are stated in the long version of this paper [Baum
gartner et al, 1995]. 

3 Definite Answers and Regularity 
From theorem proving with ME we know that the regularity 
check is an important means for improving efficiency. Reg
ularity for ordinary ME means that it is never necessary to 

BAUMGARTNER, FURBACH, AND STOLZENBURG 337 

where 



construct a tableau where a literal occurs more than once 
along a path. Expressed more semantically, it says that it is 
never necessary to repeat in a derivation a previously derived 
subgoal (viewing open leaves as subgoals). 

Unfortunately, regularity is not compatible to restart ME. 
In this section we will present a variant of restart ME, the 
ancestry restart variant, which allows for extended regularity 
checks. This variant is motivated by Loveland's UnH-Prolog 
[Loveland and Reed, 1992]. 

As an interesting side effect it turns out that this variant of
fers considerable benefits with respect to logic programming: 
occasionally one is interested in the question whether a given 
program with query admits a definite answer, i.e. an answer 
which is a single conjunction of atoms, but not a disjunction. 
Of course, in general, a non-definite program does not always 
admit a definite answer, but some programs do. It is the latter 
class of problems we are interested in now. 

The key idea to the direct computation of definite answers 
is to restrict the use of the query to one single application in 
the refutation, namely at its top. Then, by definition, definite 
answers are obtained. However, such a restriction is incom
plete. But if restart ME is modified in such a way that every 
negative literal along a branch, not only the topmost literal, 
may be used for the restart step then completeness is recov
ered. This follows from a more general result which states that 
we can restrict to globally regular refutations (i.e. no literal 
except the literal used for the restart occurs more than once 
along a branch). Let us now introduce all this more formally. 
Definition 3.1 (Ancestry Restart Model Elimination) The 
calculus ancestry restart ME is the same as strict restart ME 
(Definition 1.2), except that the inference rule restart is mod
ified by replacing the condition 3. by the new condition 3'.: 
3'. L is a negative literal occurring in p. In this context L is 

also called the restart literal. 
The modified rule is called ancestry restart. (End Definition) 
The term "ancestry" in the definition is explained by the use 
of ancestor literals for restart steps. Note that any reduction 
from a positive leaf literal to a negative ancestor literal can be 
simulated in ancestry restart ME by a restart step followed by 
a strict reduction step. Thus, non-strictness is "built-in" into 
ancestry restart ME. 

Note that the ancestry restart rule includes the restart rule 
since the first literal can be used for the restart as well. 

Clearly, in terms of a proof procedure the ancestry restart 
rule induces a larger local search space than the restart rule. On 
the other side, refutations may become much shorter. Indeed, 
this is the rationale for our proof procedure to search the restart 
literals from the leaf towards the top. As a further benefit of 
this search order note that a definite answer will be enumerated 
before a non-definite answer. 

Now we are going towards an appropriate completeness 
result wrt. definite answers. As mentioned above, this result 
shall be a consequence of a more general result concerning a 
regularity restriction. Let us define this notion precisely: 
Definition 3.2 (Regularity) Let p be path written as follows 
(the As and Bs are atoms): 

then p is called globally regular. A path set is called (block-
wise, globally) regular iff every path in it is (blockwise, glob
ally) regular. Similarly, a derivation is called (blockwise, glob
ally) regular iff every of its path sets is (blockwise, globally) 
regular. (End Definition) 

Condition 1 states that all positive literals along a path are 
pairwise different, and condition 2 states that negative literals 
inside blocks are pairwise different, where by a block we mean 
a smallest subpath delimited by positive literals or the ends 
of the path. Condition 3 means that a negative literal may 
be equal to one of its ancestors only if it follows a positive 
literal, i.e if it is used as a restart literal. Thus we have a global 
regularity condition, except for restart literals. In all example 
refutations given so far, all branches are blockwise regular. 
However, the refutation in Figure 1 (right side) is not globally 
regular, as can be seen by the two occurrences of -Q in the 
rightmost path. From this example we learn that restart ME is 
incompatible with the global regularity restriction. However 
it holds: 
Theorem 3.3 (Completeness of Ancestry Restart Model 
Elimination) Let f be a head selection function and S be an 
unsatisfiable clause set in goal-normal form. Then there exists 
a globally regular ancestry restart ME refutation ofS starting 
with <— goal and selection function f. 

We can use this result to obtain the desired completeness 
result for definite answers. 
Theorem 3.4 (Answer completeness of ancestry restart 
ME) Ancestry restart ME is answer complete in the sense 
of Theorem 2.3. In particular, if is a correct definite an
swer for a program P, then there exists an ancestry restart 
ME refutation from P with computed answer such that 

for some substitution Furthermore, the input 
clause goal <— Q is used exactly once, namely at the first 
extension step of <— goal. 

The last theorem enables us to enumerate definite answers 
only, by simply restricting the use of goal <— Q to one exten
sion step at the beginning. So we have the desirable properties 
of loop checking by regularity and the computation of definite 
answers. 

4 Implementation 
All variants and refinements of ME discussed so far, i.e. the 
restart, strict and ancestry variants (possibly with selection 
function), loop checking by regularity and factorization, are 
implemented in the PROTEIN system [Baumgartner and Fur-
bach, 1994b]. It is a first order theorem prover based on the 
Prolog technology theorem proving (PTTP) technique, imple
mented in ECLiPSe-Prolog. 

Since ME is a goal-oriented, linear and answer complete 
calculus, it is well suited as an interpreter for disjunctive 

338 AUTOMATED REASONING 



logic programming. PROTEIN facilitates computing disjunc
tive and definite answers. In its newest release their is also a 
flag which allows us to look for definite answers only. 

5 Comparative Theorem Prover Study 
In the sequel, we want to tell about our experiences in com
puting answers by using theorem provers. First of all, we 
had to overcome some technical problems because theorem 
provers usually do not supply answers besides "yes" or (pos
sibly) "no". - We will illustrate our experiences with a puzzle 
example which allows for indefinite and definite answers. 

5.1 Knights and Knaves 
The example follows problem #36 in [Smullyan, 1978]. A 
similar example is studied in [Ohlbach, 1985]. The natural 
language description of the problem is stated below. There, 
the last two pieces of information 5 and 6 explicitly state some 
knowledge about inferencing. We need them in order to be 
able to cope with the information in 2 because our description 
language is first order. 

1. On an island, there live exactly two types of 
people: knights and knaves. 2. Knights always tell 
the truth and knaves always lie. 3.1 landed on the 
island, met two inhabitants, asked one of them: "Is 
one of you a knight?" and he answered me. 4. What 
can be said about the types of the asked and the 
other person depending on the answer I get? - 5. 
We assume, that either a proposition or its negation 
is true. 6. If the disjunction of two propositions is 
true then at least one of them must be true. 

In our formalization of the problem below, the formulae in 
1 and 2 express the corresponding pieces of information from 
above. Depending on the case considered, we choose one of 
the formulae (a) or (b) in 3. We view the fact that a person 
denies a question as that he says that the thing in question is 
not true using the binary predicate says (instead of a ternary 
predicate). Formula 4 can be considered as the query. We 
have to express the pieces of information 5 and 6 explicitly by 
introducing the unary predicate true. The transformation of 
the formulae below into clausal form is straightforward and 
therefore omitted here. It consists of 11 clauses. - The symbol 

denotes exclusive or. 

We can prove the query in many different ways. As a con
sequence we get many trivial and hence useless answers. The 
(most) trivial one - a four part disjunction - can be obtained 
in both cases. We only need formula 1 and the query in order 
to infer it. But it only says that each of both persons are either 
knights or knaves. In case (a) (if the asked person says yes) we 
can get an indefinite answer consisting of only three disjuncts. 

In the other case (b) there exists a definite answer. It follows a 
list of these possible answers where X / Y is an abbreviation 
of true(isa(asked X)) true(isa(other, Y)). 

1. knave/knave V knave/knight V knight/knave V 
knight / knight (trivial) 

2. knave /knave V knight /knave V knight / knight 
(indefinite) 

3. knave /knight (definite) 
Before turning to our experiments we want to mention some 

interesting facts. Firstly, answer completeness requires that we 
are able to compute the indefinite and definite answer in the 
respective cases. Secondly, to derive these answers we need a 
clause set which is not minimal unsatisfiable; notice that the 
clauses of 1 and 4 together are (minimal) unsatisfiable yielding 
the trivial answer. Thirdly, 9 extension steps are needed to 
derive the indefinite or the definite answer respectively, while 
only 7 extension steps are needed to derive the trivial answer 
(in both cases). - These remarks indicate that it should be 
more difficult to find the more precise answers. 

5.2 Experimental Results 
We tried to get the answers from above automatically by us
ing the theorem proving systems OTTER [McCune, 1994] 
which is a resolution-style theorem proving program coded 
in C for first order logic (with equality), SETHEO [Letz et 
a/., 1992] which is a top-down prover for first order predi
cate logic based on the calculus of the so-called connection 
tableaux which generalizes weak ME, implemented in C, and 
PROTEIN [Baumgartner and Furbach, 1994b] which we al
ready introduced in Section 4. - We used the clause ordering 
given by the problem description, but our experiments show 
that the (run time) results depend on the ordering. 

OTTER has some problems with computing answers be
cause it enumerates resolvents but not all (refutational) proofs. 
Especially during the subsumption test, it did not take the an
swer literals into account which are provided for computing 
answers. That is the reason why OTTER with (forward and 
backward) subsumption is not answer complete. An example 
which illustrates this is case (a) where the search stops after 
finding 15 times only the trivial answer with binary resolu
tion. However, we find a proof by using hyper-resolution with 
factorization immediately within 0.4s. - There is a solution 
to the problem with subsumption; it can be shown that we 
only have to take the answer literals into account during the 
subsumption steps. Unfortunately, it is not (yet) possible to 
test OTTER in this setting and find out whether this improves 
the behaviour, because it is not built in. 

We generate answers with SETHEO by using global vari
ables. The answers are kept in a list. By this and other tech
nical tricks, we find the indefinite answer within 1.0s and 
the definite answer within 0.6s. That is quite good and may 
be explained by the subgoal reordering heuristics built into 
SETHEO, which are not (yet) incorporated into our sys
tem. But in addition, SETHEO also has subsumption con
straints which are used in the default setting. It is not quite 
clear, whether these constraints destroy answer completeness 
in SETHEO. - Table 2 shows the timings for OTTER and 
SETHEO. All timings are measured on a Sparc 10. The sym
bol oo denotes the fact that no proof was found within 1 hour; 
that is true for OTTER applied to case (b) of our example. 

BAUMGARTNER, FURBACH, AND STOLZENBURG 339 



PROTEIN is answer complete; that has been stated in this 
paper. It finds out the indefinite and definite answer for the 
respective case. The table in Figure 2 also shows some timings 
for finding these answers with PROTEIN. We tried both, plain 
and restart ME. In case of the restart variant we also tried 
its refinements: with or without ancestry restart or selection 
function (no contrapositives). We tried to compute the desired 
answers with settings where all solutions are computed in 
case (a) (indefinite answer). For the case (b) (definite answer) 
we used the setting where only definite answers are searched 
for. By this, we get a significant speed up of the search. -
As one can see, using restart helps for this problem, since 
plain ME does not find the desired answers quickly, although 
it does so for trivial answers. But it is not quite clear which 
flags should be used in addition. 

We investigated more puzzle examples from [Smullyan, 
1978]. All our experiments corroborate the following facts: 
resolution has difficulties in solving puzzles because of the 
problem with subsumption; model elimination is better suited 
although it could not solve all puzzles that we tested. For ex
ample, OTTER needs 281.8s on puzzle #35 while PROTEIN 
only needs 153.1s. Further investigations are necessary. It 
seems that also a model generation approach is very adequate 
[Manthey and Bry, 1988] for these kind of problems because 
they often allow for finite models. Last but not least, we want 
to point out that both, OTTER and SETHEO do not support a 
procedural reading of program clauses - they need all contra
positives - but PROTEIN does; and that is useful if we want 
to use logic as a real programming language. 

6 Conclusion 
To conclude, it seems to be very promising to use ME as 
a base calculus for computing answers in disjunctive logic 
programming. In this paper, we introduce (among others) the 
ancestry restart variant which is quite well suited for this 
purpose. We also give some practical evidence. Nevertheless, 
further investigation is necessary in order to find out yet more 
efficient calculi and to incorporate nonmonotonic extensions. 

Acknowledgements 
We would like to thank Francois Bry, Jurgen Dix, Bertram 
Fronhofer, Reinhold Letz and William W McCune for helpful 
discussions, and Olaf Menkens and Dorothea Schafer for their 
implementational work. 

References 
[Baumgartner and Furbach, 1993] P. Baumgartner and U. Furbach. 

Consolution as a Framework for Comparing Calculi. Journal of 
Symbolic Computation, 16(5), 1993. Academic Press. 

[Baumgartner and Furbach, 1994a] P. Baumgartner and U. Furbach. 
Model Elimination without Contrapositives and its Application to 
PTTP. Journal of Automated Reasoning, 13:339-359,1994. Short 
version in: Proceedings of CADE-12, Springer LNAI 814, 1994, 
pp 87-101. 

[Baumgartner and Furbach, 1994b] P. Baumgartner and U. Fur-
bach. PROTEIN: A PROver with a Theory Extension /nterface. 
In A. Bundy, editor, Automated Deduction - CADE-12, volume 
814 of LNAI, pages 769-773. Springer, 1994. 

[Baumgartner et al, 1995] Peter Baumgartner, Ulrich Furbach, and 
Frieder Stolzenburg. Model elimination, logic programming and 
computing answers. Fachberichte Informatik 1/95, Universitat 
Koblenz-Landau, Koblenz, 1995. 

[Baumgartner, 1994] P. Baumgartner. Refinements of Theory 
Model Elimination and a Variant without Contrapositives. In A.G. 
Cohn, editor, 11th European Conference on Artificial Intelligence, 
ECAI94. Wiley, 1994. (Long version in: Research Report 8/93, 
University of Koblenz, Institute for Computer Science, Koblenz, 
Germany). 

[Eder, 1991 ] E. Eder. Consolution and its Relation with Resolution. 
In Proc.IJCAI'91, 1991. 

[Letz etal, 1992] R. Letz, J. Schumann, S. Bayerl, and W. Bibel. 
SETHEO: A High-Performance Theorem Prover. Journal of Au
tomated Reasoning, 8(2), 1992. 

[Lobo et ai, 1992] Jorge Lobo, Jack Minker, and Arcot Rajasekar. 
Foundations of Disjunctive Logic Programming. MIT Press, Cam
bridge, MA, London, England, 1992. 

[Loveland and Reed, 1992] D. Loveland and D. Reed. Near-Horn 
Prolog and the Ancestry Family of Procedures. Technical Report 
CS-1992-20, Department of Computer Science, Duke University, 
Durham, North Carolina, December 1992. 

[Loveland, 1968] D. Loveland. Mechanical Theorem Proving by 
Model Elimination. J ACM, 15(2), 1968. 

[Loveland, 1991] D. Loveland. Near-Horn Prolog and Beyond. 
Journal of Automated Reasoning, 7:1-26, 1991. 

[Manthey and Bry, 1988] Rainer Manthey and Francois Bry. 
SATCHMO: a theorem prover implemented in Prolog. In Ewing 
Lusk and Ross Overbeek, editors, Proceedings of the 9th Inter
national Conference on Automated Deduction, Argonne, Illinois, 
USA, May 1988, pages 415-434. Springer, Berlin, Heidelberg, 
New York, 1988. LNCS 310. 

[McCune, 1994] William W. McCune. OTTER 3.0 reference man
ual and guide. Technical Report ANL-94/6, National Laboratory, 
Argonne, IL, January 1994. 

[Ohlbach, 1985] Hans JUrgen Ohlbach. Predicate logic hacker 
tricks. Journal of Automated Reasoning, 1:435-440, 1985. 

[Plaisted, 1988] D. Plaisted. Non-Horn Clause Logic Program
ming Without Contrapositives. Journal of Automated Reasoning, 
4:287-325, 1988. 

[Smullyan, 1978] Raymond M. Smullyan. What is the name of this 
book? The riddle of Dracula and other logical puzzles. Prentice-
Hall, Englewood Cliffs, NJ, 1978. 

340 AUTOMATED REASONING 


