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Abstract 
Inducing concept descriptions in First Order Logic 
is inherently a complex task. There are two main 
reasons: on one hand, the task is usually formulated 
as a search problem inside a very large space of 
logical descriptions which needs strong heuristics 
to be kept to manageable size. On the other hand, 
most developed algorithms are unable to handle 
numerical features, typically occurring in real-
world data. In this paper, we describe the learning 
system SMART+, that embeds sophisticated 
knowledge-based heuristics to control the search 
process and is able to deal with numerical features. 
SMART+ can use different learning strategies, 
such as inductive, deductive and abductive ones, 
and exploits both backgruond knowledge and 
statistical evaluation criteria. Furthermore, it can 
use simple Genetic Algorithms to refine predicate 
semantics and this aspect will be described in 
detail. Finally, an evaluation of SMART+ 
performances is made on a complex task. 

1 Introduction 

In the recent literature, inducing concept descriptions in 
First Order Logic is receiving an increasing interest 
[Bergadano et a/., 1988, Michalski, 1980, Quinlan, 1990, 
Gemello and Mana, 1991, Pazzani and Kibler, 1992]. 

In general, the task of learning concept descriptions (or 
relations) is formulated as a search problem inside a space of 
logical formulas, built up starting from a set of initial 
predicates, evaluable on the learning events. Two crucial 
points attract the attention of many researchers: the design 
of strategies that limit the search space, and the choice of the 
representation language. As discussed in [Utgoff, 1986] 
choosing inappropriate features for describing the learning 
events can prevent the induction algorithm from finding 
good concept descriptions. 

The system SMART+, described in this paper, proposes 
solutions for both problems and proved to be effective in 
coping with tasks more complex than the ones approached 
so far in the literature. SMART+ is an improved version of 

* This work has been partially supported by EEC, project 
BLEARN II,no.7274. 

ML-SMART [Bergadano et a/., 1988, Bergadano and 
Giordana, 1990], and offers sophisticated learning strategies 
that can either be selected in alternative or combined 
together, depending on the choice of the teacher. On the one 
hand, induction can be guided by a domain theory using 
deductive and/or abductive reasoning. On the other hand, 
besides the well known information gain rule [Quinlan, 
1990], other statistical criteria are available that can be more 
effective in complex problems. 

Moreover, SMART+ offers a mechanism for dealing with 
numerical features in order to help solving the hard problem 
of choosing an appropriate concept description language. In 
particular, it is able to infer a quantitative definition of 
numerical features according to the context in which those 
features are used. For instance, suppose we have a symbolic 
language in which terms such as short, medium and long are 
defined to characterize the length of an object: an object is 
considered short if its length is less than a given value k1 
long if its length is greater than a given value k2 and 
medium if its length is between k1 and k2. How to choose 
values for k1 and k2 depends on the context those features 
are used in: if we are dealing with bicycles, cars and 
airplanes, suitable values might be k1 = 7 feet, k2 = 30 feet, 
but if we are dealing with different kinds of aircrafts (pipers, 
military jets, passenger cargos), suitable values might be k1 
= 50 feet, k2 = 100 feet. In SMART+ the teacher is only 
requested to provide the system with a range of possible 
meaningful values for a given feature and the system itself 
should find the best assignments for the task at hand. 

The paper is organized as follows: an overview of the 
knowledge representation formalism in SMART+ is given in 
Section 2, whereas Sections 3 through 6 describe the 
available learning strategies. Finally, some experiments on a 
complex artificial domain, simulating a problem of pattern 
recognition, will be discussed in Section 7, and conclusive 
remarks follow in Section 8. 

2 Knowledge Representation 
SMART+ is a problem solver designed for the task of 
learning concept descriptions from examples. Given a set 
Ho of concepts and a set Fo of labelled instances, SMART* 
generates as output a classification theory described in a 
Horn clause language L extended with functions, negation 
and numerical quantifiers. In particular, a well formed 
formula (wff) in the language L has the form: 
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(1) 
being predicates denoting sets of concepts and 
<p a logical formula stating a condition over the terms t1 , . . . , 
tn. Expression (1) actually means that if an event f, to be 
classified, is an instance of a concept h belonging to the set 
H i and the condition ( t 1 , ...,tn) is true of f, then h is 
included in H j . As the set of concepts Hj implied by a rule 
is, in general, in the body of another rule, the knowledge 
learned by SMART+ defines a structured classification 
theory, which can be described as a discrimination graph. In 
order to deal with noise, partially incorrect classification 
rules are allowed. The value of the weight w, in (1), is an 
estimate of the probability that the rule give the correct 
classification; it is evaluated as the ratio between the number 
of correct instances matched and the number of total 
instances matched to the learning events Fo. 

Formula is built up by using predicates in a set 
P, connectives A and -. and quantifiers A T M , ATL and EX. 
As described in [Yager, 1983], these quantifiers stand for 
ATMost, ATLeast and EXactly, respectively, and can be 
considered as an extension of the standard existential 
quantifier (similar to the numeric quantifiers used in the 
INDUCE system [Michalski, 1980]). 

In order to cope with the fuzziness inherent in real-world 
data, a continuous-valued semantics is adopted for the 
predicates in L. For each predicate a corresponding 
semantic f u n c t i o f p , mapping a numerical base variable to 
the interval [0,1], must be defined by the teacher in order to 
specify how to evaluate the truth of p on the learning events. 
As a matter of fact, fp is a function that evaluates the 
membership of a numerical feature Vp with respect to a 
trapezoidal fuzzy set Spt The value of Sp can be defined by 
means of parameters that w i l l occur in the predicate p as 
variable terms. Terms in a predicate p are subdivided into 
two categories: objects and parameters. The first ones, 
denoted by the symbols x 1 , . . . , x n , can only be bound to 
items corresponding to learning instances or components of 
them, whereas the second ones, denoted by the symbols k1, 
..., km, correspond to fuzzy set parameters and can only be 
bound to numerical constants. 

Trapezoidal fuzzy sets are considered and defined as in 
Figure 1(a), in a way that allows the fuzzy set to be 
identified by a pair of real parameters, k1 and k2. Special 
cases are reported in Figure 1(b) and 1(c), in which open 
intervals are represented; in these cases, one numerical 
parameter is sufficient to define the fuzzy set. 

Figure 1 - Example of trapezoidal fuzzy sets used to define 
the semantics of predicates. The ordinate represents the 
troth value, whereas the abscissa Vp represents the values of 
the base variable. 

For each parameter k, the teacher must specify the range 
in which k has to be searched for and the approximation 
requested for tuning i ts value. A default value can also be 

specified; this wi l l be used by the system in the case that this 
learning capability is explicitly disabled by the teacher. 

The semantics for the logical connectives can be chosen 
by the teacher, as well , in order to implement a specific 
evidential calculus. By default, SMART+ adopts a pair of t-
norm and t-conorm functions [Bergadano et a/., 1988] for 
the AND and OR connectives, respectively. The semantics 
of the quantifiers can be expressed by means of these 
connectives [Yager, 1983, Bergadano et a/., 1988]. 

3 Main Learning Strategy 

SMART+ shares with FOIL [Quinlan, 1990] a general-to-
specific search strategy for inductive learning, but it has a 
richer set of specializing operators and uses more 
sophisticated strategies. 

The basic search strategy has been combined with a policy 
of reduction to subproblems. The main goal of the reduction 
to subproblems is that of producing a structured knowledge 
base; in particular, it can be considered as a form of 
constructive learning, where intermediate concepts, 
corresponding to subsets of HO, are generated automatically. 
In fact, the classification rules are actually intended to be 
valid only in the context of already hypothesized concepts, 
as described in Section 2. Then, the learned rules do not 
constitute a "flat** set; on the contrary, they are organized 
into a graph G of rules, called subproblem graph. Nodes of 
G correspond to sets of concepts, and logical formulas label 
edges. A node (H,F) of G is called a "subproblem", because 
it represents the problem of discriminating among the 
classes it contains. The root (HO,FO) of the graph 
corresponds to the initial problem, i.e. the problem of 
distinguishing among the whole set of concepts. Notice that 
the sets of examples occurring in sibling nodes need not be 
disjoint. 

A complete and consistent solution of a problem (HO ,FO) 
is obtained when all the rule weights are equal to 1, and the 
leaves of G contain sets Fi whose union equals FQ. This is 
the ideal case, when no noise and errors are present. 
However, in real-world problems this assumption cannot be 
accepted and the final solution turns out to be (in general) 
inconsistent and/or incomplete. 

The use of a subproblem graph, instead of flat 
classification rules, enhances classification efficiency, since 
common parts of different rules wi l l only be tested once. 
Moreover, it makes it easier to learn the rules, because it 
separates the task into smaller contexts which can be solved 
separately. Finally, this structure of the knowledge base is 
well suited for a diagnostic process based on a multi-stage 
refinement strategy. In Figure 2 the process of generating 
the subproblem graph is schematically represented. 

For each subproblem the learning process follows the 
same search scheme, as described in the following. The 
search within a subproblem SP; = (Hi,Fi) develops a 
specialization tree according to a general-to-specific 
strategy, similar to the one used in FOIL [Quinlan, 1990] or 
FOCL [Pazzani and Kibler, 1992]. The difference is that 
many search, strategies, going from best-first to beam-
search, are available in addition to the popular hi l l climbing 
one. Moreover, SMART+ has a reacher set of operators for 
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building a more specific formula; in particular it can use 
numerical quantification and numerical optimization. 

Figure 2 - Subproblem reduction process. 

When an inductive hypothesis of the type is found 
(being Hj a proper subset of H i ) , a rule of type (1) is created 
and the events belonging to the extension of are 
declared "solved". Consequently, the focus of the search is 
moved on those formulas, on the frontier of the tree, which 
contain in their extension not yet solved events. The 
development of the specialization tree is guided by 
combining reasoning about background knowledge, supplied 
to the system, and statistical criteria. The primary goal of the 
control strategy is to find rules that are both statistically 
significant, because verified by many learning events, and 
meaningful with respect to the background knowledge. In 
this phase only consistent rules (i.e. with w=l ) are accepted. 

The search stops when all the events Fi are covered by 
some rule of type (1) or when there is no more hope of 
discovering such rules. In this case the system can also 
decide to accept rules with weight Afterwards, all the 
events matched by rules having the same conclusion Hj are 
merged together into a single set Fj and a new subproblem 
(Hj,Fj) is defined. This process offers an important 
advantage: in every subproblem, all the events, which were 
previously subdivided among the extensions of many rules, 
are OR-ed into a single relation. In this way, the inductive 
strategy (relaying on statistical criteria) acquires new 
strength. A deeper description of this search procedure can 
be found in [Bergadano et a/., 1988]. 

4 Guiding Induction Using Domain Theories 

A fundamental characteristic of SMART+ is its ability of 
guiding induction by exploiting a (possibly incomplete) 
domain theory. This is achieved by integrating induction 

with deduction and/or with abduction. The mechanism far 
integrating induction and deduction has been described in 
[Bergadano and Giordana, 1990]. The specialization tree, 
generated by the induction process, has the same structure of 
the deduction tree generated by a theorem prover based on 
SLD. Therefore, a domain theory can be used to construct 
the initial part of the specialization tree, and, then, induction 
can be used to complete the proof, discovering information 
missing in the domain theory. If the theory is perfect, the 
method becomes an EBG [Mitchell et al., 1986, DeJong and 
Mooney, 1986]. 

The abductive mechanism has been introduced more 
recently and, for some aspects, shares some ideas with 
systems like CIGOL [Muggleton and Buntine, 1988] and 
CLINT [De Raedt and Bruynooghe, 1991]. Given a Horn 
clause theory T and a formula 9, associated to a node n of 
the specialization tree, the formula obtained by 
exhaustively applying the absorption rule [Sammut and 
Bannerji, 1986] between and clauses in T, is said to be the 
generalization of <p through the theory T. Formula is said 
to be an explanation of with respect to T, in the sense that 
T, [Poole, 1989, Torasso and Console, 1989]. 
Therefore, the basic inductive procedure is modified as 
follows: 
(a) Let be the formula selected for specialization at a 

given step; SMART+ determines the set of literals 
that can be used to specialize with a non-negative 
information gain. 

( b )Fo r each literal Lj A, all the possible generalizations 
with respect to T, are computed for formulas qi ■ 

(c) Then, all the formulas are evaluated, using a criterion 
which takes into account both the information coming 
from the extension of on the learning set FO and the 
generalization obtained with respect to the theory T. 
The best N formulas are then added to the specialization 
tree. The value of N can be 1, if a greedy strategy is 
used, or greater than 1 if a beam-search or a best-first 
strategy is used. 

Using this abductive strategy, a domain theory wi l l bias 
only to a limited extent the choice of a literal, without 
imposing a determinate choice, as it happens using the 
purely deductive strategy. Our claim is that this abductive 
strategy could be a knowledge-based alternative to the one 
based on determinate literals, introduced to resolve the 
impasse of greedy algorithms. 

5 Search Control strategies 
A choice among several search control strategies, ranging 
from FOIL'S hill climbing to the best-first and beam-search 
ones, is offered by SMART+ for guiding the inductive 
process. The evaluation rule for each strategy is also a 
matter of choice. Given a formula in the specialization 
tree, the score of is computed as the sum of two 
independent terms: 

where is a measure of the quality of a hypothesis 
and is a measure that tries to capture how w e l l i s 
"explained" by a given domain theory T. The coefficients a 
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I rule (2). Of course, different literals can produce the same 
(target For each target, the literal with the best evaluation p. 
,f ( if a hi l l climbing strategy is used) or the best n ones (if a 

beam-search strategy is used) are selected for specialisation. 
The algorithm for searching the values of the parameters 

of a predicate p is reported in Figure 3. It receives as input 
arguments a formula a predicate p and, for each 
parameter k occurring in p, a triple <min, max, step> 
describing the range of variability and the granularity of k. 
A set of suitable values, to be used in order to specialise 
formula with predicate p, is returned as a result 

Informally, vectors m and m* are evaluated for all the 
possible assignments of values to the parameters of p, 
according to the range and the granularity. Then, the 
promising m's are identified and the corresponding targets 
are determined. Finally, for every target, the most suited 
setting of the parameters is selected. The FLOP algorithm 
has an exponential complexity in the number of parameters 
of the predicate p; therefore, a coarse granularity is used in 
order to l imit the size of the number of m and m* to be 
evaluated. 

Figure 3 - Algorithm to find locally optimal parameter 
assignments. 

However, the use of a coarse granularity can lead to 
inaccuracy in this learning phase. Furthermore, the 
specialisation process leads to learn parameter values for a 
given predicate when the ones of other predicates have been 
already chosen. In many cases this strategy prevents 
learning optimal values. On the other hand, a contextual 
optimisation of all the parameters in the multidimensional 
space of numerical features would be impossible in this 
learning phase. Therefore, the refinement step described in 
the following can be useful in order to increase the accuracy 
of the classification theory. 
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7 Evaluation on a Test Case 

The application domain is quite complex, even though 
artificial, and bears many features of a real-world one. Ten 
capital letters of the English alphabet have been chosen, a 
Horn clause theory has been invented and used by a random 
choice theorem prover in order to generate instances of these 
letters, some of which are shown in Figure 4. Each letter is 
represented as a set of segments that are described by the 
initial and final (x,y) coordinates in a Cartesian plane. From 
these attributes, other features can be extracted, such as the 
length of a segment, its orientation, its preceding and 
following segments, and so on. Some of these features are 
numerical by nature and then parameterised fuzzy semantics 
definition have been adopted for the corresponding symbolic 
literals. 

optimisation plus the global optimisation performed by 
Genetic Algorithm, hil l-climbing, theory T2 and rule (2) 
(a=0,B=l, Local+GA OPT and T2). 

The second column in Table I refers to the number of 
formulas in the learned knowledge. The next three columns 
refer to the recognition rate (the correct label is assigned to a 
sample), the error rate (cases in which a wrong label is 
assigned to a sample) and the ambiguity rate (cases in which 
no label is assigned to a sample), respectively, evaluated on 
an independent test set of 5000 events (500 per class). 

As can be noted from Table I, the use of even incomplete 
domain theories greatly help the inductive search, by letting 
the system perform significantly better. Moreover, the 
capability of learning numerical parameters, i.e. adjusting 
the concept description language semantics as needed, 
appears determinant to the success of the application. In 
fact, using the default values the performances achieved 
were very poor, whereas by only using local optimisation 
the recognition rate doubled, and raised up to 98% with the 
use theory T2. A further significant improvement is then 
added by the global optimisation algorithm that brings the 
recognition rate to 99.7%. On the other hand the simplicity 
and compactness of the knowledge base increases in 
accordance with the performances, as it is possible to grasp 
from the values reported in the second column, of course, at 
the cost of a greater computation time (Smart+ using 
Local+GA OPT and theory T2 took twice as much as 
without Genetic Algorithm). 

A second experiment concerns the use of theory T2: it 
should be pointed out that when the domain theory is used to 
initialize the search tree in an EBL fashion and, then, pure 
induction is applied, the performances obtained are quite 
poor, as shown in Table I I . This is probably due to the 
incompleteness of the domain theory which led the system 
too far in wrong directions. If the theory is also used to bias 
the inductive search, as done by using rule (2) to score 
hypotheses, after the initial EBL process, the results are 
closer to the ones obtained without theory. Thus, abductive 
bias turned out to be more reliable than the deductive one in 
the case of weak domain theories. 

Table II - Results of Smart+ using an initial EBL process + 
Inductive Search. 
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A last comment concerns the comparison between hill-
climbing and beam-search strategies, in absence of theory. 
Even though extensive tests have not been performed at this 
time, the beam-search strategy seems to be more effective, 
by letting the system explore a smaller part of the search 
space but converging more quickly towards robust 
knowledge. 

However, this test is not enough for stating the superiority 
of one strategy with respect to the other; on the other hand, 
what can be said (also on the basis of other applications) is 
that in learning structured concepts a global evaluation rule 
like (2), associated with a best-first or beam-search strategy, 
may result in a more effective and simpler knowledge base. 

8 Conclusion 

As an alternative to the empirical strategy based on 
determinate literals, we suggested the use of a domain 
theory to guide the induction algorithm. Such a theory does 
not need to be complete or consistent and can be limited to a 
rough description of the structural aspects of the problem. 
An abductive reasoning mechanism has been embedded in 
SMART+ in order to guide the induction process. Moreover, 
a new evaluation rule, combining both information coming 
from data with information coming from the theory, has 
been proposed. In this way, bias on induction due to the 
theory is much more gentle than when a top-down deduction 
is used as in a previous version of the system. 

Furthermore, SMART+ has been equipped with a method 
for learning fuzzy set values in first order logic 
environments, which combines an extension of the 
methodology developed for learning relations with genetic 
algorithms. In particular, genetic algorithms can be an 
effective tool for refining numerical parameters such as 
thresholds, weights and coefficients which control the 
flexible matching of a symbolic expression against a real 
world instance. The applicability of the method has been 
demonstrated on a non-trivial learning problem of pattern 
recognition. 

However, the conclusion we can make from this 
experiment is that the symbolic approach proposed by 
Artificial Intelligence can be extended in order to be 
effective in dealing with patterns of the real world such as 
complex signals. In particular this approach can compete 
quite well with other methods, such as Neural Networks, in 
domains where structural knowledge is relevant and where 
there exists background knowledge which can be exploited. 
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