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Abstract 
GSAT is a randomized local search proce
dure for solving propositional satisfiability 
problems (Selman et al. 1992). GSAT can 
solve hard, randomly generated problems that 
are an order of magnitude larger than those 
that can be handled by more traditional ap
proaches such as the Davis-Putnam proce
dure. GSAT also efficiently solves encodings 
of graph coloring problems, N-queens, and 
Boolean induction. However, GSAT does not 
perform as well on handcrafted encodings of 
blocks-world planning problems and formu
las with a high degree of asymmetry. We 
present three strategies that dramatically im
prove GSAT's performance on such formulas. 
These strategies, in effect, manage to uncover 
hidden structure in the formula under consid
erations, thereby significantly extending the 
applicability of the GSAT algorithm. 

1 In t roduc t ion 
Selman et al. (1992) introduce a randomized greedy lo
cal search procedure called GSAT for solving proposi
tional satisfiability problems. Experiments show that 
this procedure can be used to solve hard, randomly gen
erated problems that are an order of magnitude larger 
than those that can be handled by more traditional ap
proaches such as the Davis-Putnam procedure or resolu
tion. GSAT was also shown to perform well on proposi
tional encodings of the N-queens problem, graph coloring 
problems, and Boolean induction problems. 

A common criticism is that GSAT might not do as 
well on problems with a much more intricate underlying 
structure. Similar criticism has been raised against other 
randomized local search type procedures, such as simu
lated annealing (Johnson et al. 1991). In exploring this 
issue, we found that GSAT indeed has problems on cer
tain classes of highly structured formulas. Examples are 
propositional encodings of blocks-world planning prob
lems (Kautz and Selman 1992), and graph coloring prob
lems with a high-degree of asymmetry (Ginsberg and 
J6nsson 1992).1 

1We thank Matt Ginsberg and Ari Jonsson for bringing 

After studying GSAT's difficulty on such problem 
instances, we discovered general, domain-independent 
extensions that dramatically improve GSAT's perfor
mance. In effect, these extensions manage to uncover the 
underlying structure in the formulas. For certain prob
lem classes, the extensions push GSAT's performance 
beyond that of backtrack type procedures, whereas on 
other classes GSAT becomes competitive with such pro
cedures. The extensions therefore significantly the en
large space of problems on which GSAT performs well, 
making it a promising general approach for dealing with 
hard computational problems in artificial intelligence. 

The paper is structured as follows. We first review 
the basic GSAT procedure and briefly discuss its per
formance. We then introduce the various extensions 
and give experimental data showing the improved per
formance. 

2 The GSAT Procedure 
GSAT performs a greedy local search for a satisfying 
assignment of a set of propositional clauses.2 The proce
dure starts with a randomly generated truth assignment. 
It then changes ('flips') the assignment of the variable 
that leads to the largest increase in the total number 
of satisfied clauses. Such flips are repeated until either 
a satisfying assignment is found or a pre-set maximum 
number of flips (MAX-FLIPS) is reached. This process 
is repeated as needed up to a maximum of MAX-TRIES 
times. See Figure 1. (For a related approach, see Gu 
(1992). Also, see Minton et al. (1990) for a very success
ful application of local search to scheduling problems.) 

GSAT mimics the standard local search procedures 
used for finding approximate solutions to optimization 
problems (Papadimitriou and Steiglitz 1982) in that it 
only explores potential solutions that arc "close" to the 
one currently being considered. Specifically, we explore 
the set of assignments that differ from the current one on 
only one variable. One distinguishing feature of GSAT, 
however, is the we also allow flips that do not directly 
improve the assignment (i.e., when the best possible flip 

these instances to our attention. 
2 A clause is a disjunction of literals. A literal is a proposi

tional variable or its negation. A set of clauses corresponds to 
a formula in conjunctive normal form (CNF): a conjunction 
of disjunctions. 
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Procedure G S A T 
I n p u t : set of clauses a, MAX-FLIPS, and MAX-TRIES 
O u t p u t : a satisfying truth assignment of a, if found 
begin 
for % := 1 to MAX-TRIES 

T := a randomly generated truth assignment 
for j := 1 to MAX-FLIPS 

if T satisfies a t hen r e t u r n T 
p := a propositional variable such that a change 

in its t ruth assignment gives the largest 
increase in the total number of clauses 
of a that are satisfied by T 

T :=T with the t ruth assignment of p reversed 
end for 

end for 
r e t u r n "no satisfying assignment found" 
end 

Figure 1: The GSAT procedure. 

does not actually decrease the total number of satisfied 
clauses. As discussed in Selman et al. (1992), such flips 
are essential in solving hard problems. Another feature 
of GSAT is that the variable whose assignment is to be 
changed is chosen at random from those that would give 
an equally good improvement. Such non-determinism 
makes it unlikely that the algorithm makes the same 
sequence of changes over and over. 

The GSAT procedure requires the setting of two pa
rameters MAX-FLIPS and MAX-TRIES, which deter
mine, respectively, how many flips the procedure will 
attempt before giving up and restarting, and how many 
times this search can be restarted before quitting. As 
a rough guideline, setting MAX-FLIPS equal to a few 
times the number of variables is sufficient. The setting 
of MAX-TRIES wil l generally be determined by the to
tal amount of time that one wants to spend looking for 
an assignment, which in turn depends on the application. 
In our experience so far, there is generally a good setting 
of the parameters that can be used for all instances of an 
application. Thus, one can fine-tune the procedure for 
an application by experimenting with various parameter 
settings. 

2.1 Summary of Prev ious Resul ts 

In Selman et al. (1992), we showed how GSAT substan
tially outperforms backtracking search procedures, such 
as the Davis-Putnam procedure, on various classes of for
mulas. For example, we studied GSAT's performance on 
hard randomly generated formulas. (Note that generat
ing hard random formulas for testing purposes is a chal
lenging problem by itself, see Cheeseman et al (1991); 
Mitchell et al (1992); Larrabee and Tsuji (1993); and 
Crawford and Auton (1993).) Table 1 summarizes the re
sults. The table shows how GSAT is indeed much faster 
than the Davis-Putnam (DP) procedure on such hard 
random formulas.3 

3During the last year, we have collected data on other 
backtrack procedures. Using special heuristics, the most ef
ficient ones can handle up to around 350 variable formulas 

Selman et al also showed that GSAT performs well 
on propositional encodings of the N-queens problem, 
hard instances of graph coloring problems (Johnson et 
al 1991), and Boolean induction problems (Kamath et 
al 1992). Results on encodings of blocks-world planning 
problems were not as good though (Kautz and Selman 
1992), especially compared with DP's performance. 

The problem with the blocks-world planning formu
las appears to be their highly structured character. Such 
structure leads to large numbers of very fast unit prop
agations in backtrack search procedures, which dramat
ically reduces the search space.4 GSAT has no explicit 
mechanism for handling unit propagation. Its bit flip
ping strategy implicitly propagates unit clauses but not 
as efficiently as a specialized procedure. We tried to ex
tend GSAT with an explicit mechanism for handling unit 
propagation. This extension did not improve GSAT's 
overall performance, presumable because the unit prop
agation mechanism does not match well with the ran
domized local search strategy. We did however find other 
extensions that do dramatically improve GSAT's perfor
mance on the planning problems, and other challenging 
formulas. These extensions are described in the next 
section. 

3 Extensions and exper imental results 
3.1 A d d i n g Weights 
Ginsberg and J6nsson (1992) supplied us with some in
stances of graph coloring where GSAT did not manage 
to find a solution, even after a large number of tries each 
with many flips.5 Their dependency-directed backtrack
ing method could find solutions to these problems with 
little effort (Jonsson and Ginsberg 1993). 

In running GSAT on these problems, we discovered 
that at the end of almost every try the same set of clauses 
remained unsatisfied. As it turns out, the problems con
tain strong asymmetries. The effect of asymmetry is best 
illustrated with the graph shown in Figure 2. Consider 
trying to color this graph with three colors, using a lo
cal search procedure. Initially each node is randomly 
assigned one of the three colors. The algorithm then 
starts adjusting colors in order to minimize the num
ber of conflicts. (A conflict occurs when two connected 
vertices have the same color.) Since the constraints be
tween the large group of nodes and the single nodes at 
the bottom far outnumber the single constraint between 
the two bottom nodes, the algorithm gets quickly stuck 
in a state where the bottom two nodes have the same 

in about one hour (Buro and Kleine Biining 1992; Crawford 
and Auton 1993) on a MIPS machine. Nevertheless, the run
ning time clearly scales exponentially, for example, hard 450 
variable formulas are undoable. Our current GSAT runs over 
10 times faster than the one used for generating the data in 
Table 1. Moreover, using the random walk option discussed 
in section 3.3, we can now solve hard 1500 variable formulas 
in under an hour. 

4Unit propagation is a efficient mechanism for dealing 
with Horn clauses. A Horn clause is a clause with at most 
one positive literal. 

5A try is one execution of the outer-loop of the GSAT 
procedure; see Figure 1. 
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Table 1: Results for GSAT and DP on hard random 3CNF formulas. Data from Selman et a/. (1992). ("choices" is 
the number of nodes in the DP search tree, and "depth" the average depth of the tree.) The timings reported here 
and in the rest of this paper are based on C implementations running on a MIPS R6000, unless stated otherwise. 

Figure 2: A gerrymandered graph. 

color and each node in the larger set has one of the other 
two colors. This coloring satisfies all but one constraint! 
In other words, the single constraint between the bottom 
two nodes simply gets out-voted by the other nodes. We 
call such graphs gerrymandered graphs. 

To overcome asymmetries, we added a weight to each 
clause (constraint). A weight is a positive integer, in
dicating how often the clause should be counted when 
determining which variable to flip next. Stated more 
precisely, having a clause with weight L is equivalent 
to having the clause occur L times in the formula. Of 
course, we don't know exactly what weights to assign to 
the clauses. We use the following strategy for dynami
cally adjusting the clause weights during the search.6 

Strategy I : Clause Weights 
Initialize all clause weights to 1. 
At the end of each try, increment by K the weights of 

those clauses not satisfied by the current assignment. 

We usually set K equal to 1. This strategy automati
cally "discovers" hidden asymmetries of the formula un
der consideration. Using the weights, GSAT solves a 
typical instance of Ginsberg and J6nsson's asymmetri-

6Paul Morris has independently proposed a similar ap
proach (Morris 1993). 

Table 2: Unsatisfied clause distribution for GSAT with 
and without weights on an asymmetrical graph coloring 
problem (Ginsberg and J6nsson 1992). It is a 50 node 
graph with a 4 coloring. The encoding has 200 variables 
and 2262 clauses. 

cal coloring problems in 1.3 seconds (after only 11 tries 
with 1000 flips per try). This is comparable with the 
time used by efficient backtrack style procedures. Ta
ble 2 shows the distribution of the number of unsatisfied 
clauses that remain at the end of each try for GSAT with 
and without weights. We used a total of 1000 tries with 
1000 flips per try. For example, with weights, 213 tries 
led to an assignment with only one unsatisfied clause, 
and 80 tries led to a satisfying assignment (no unsatis
fied clauses). The results show a substantial improve
ment when using the weights. 

Using this weighing strategy, we can also easily solve 
the kinds of formulas discussed in section 4 of Selman et 
al. (1992). Those formulas were introduced to show some 
of the limitations of basic GSAT. They were handcrafted 
to repeatedly steer GSAT in the wrong direction. The 
weighing strategy again compensates quite easily. 

Figure 3 illustrates the effect the weighing strategy 
on the search space for GSAT, GSAT searches for a 
global minimum in the number of unsatisfied clauses as 
a function of the truth assignments. Figure 3 abstractly 
represents this function, with the number of unsatisfied 
clauses along the vertical axis and truth assignments 
along the horizontal axis. The weights, in effect, are 
used to "fi l l in " local minima while the search proceeds. 
This general strategy may also be useful in avoiding lo-
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Figure 3: Fil l ing in local minima using clause weights. 

cal minima in other optimization methods. The strategy 
provides an interesting alternative to the standard use 
of random perturbations ("noise") to escape from local 
minima, as used in, for example, in simulated anneal
ing. For more discussion on the relation to simulated 
annealing, see Selman and Kautz (1993). 

3.2 Averag ing in Prev ious Near Solut ions 
After each try, GSAT picks a completely new random as
signments as its next starting point. The following strat
egy is an attempt to use some of the information that 
may be contained in the previous near-solution (i.e., the 
truth assignment at the end of the previous try). Let 
T t

in i t and Ti
best be, respectively, the assignment at the 

beginning of the iih try and the best assignment (i.e., 
fewest unsatisfied clauses) found during the ith try. 

The bitwise average of two truth assignments is an as
signment which agrees with the assignment of those let
ters on which the two given truth assignments are iden
tical; the remaining letters are randomly assigned truth 
values. After many tries in which averaging is performed, 
the initial and best states become nearly identical. We 
therefore reset the initial assignment to a new random 
assignment every RESET-TRIES (useful reset values are 
between 10 and 50).7 

To evaluate this strategy, we consider some of the 
hardest problems in our test suite. These problems are 
based on hard graph coloring problems used by Johnson 
et al. (1991) to evaluate specialized graph coloring al
gorithms. Table 3 shows GSAT's performance on these 
instances. 

We see a marked improvement by using our averag
ing strategy. In particular, note that we were unable to 
solve at all two of the instances without using averag
ing. (Our Davis-Putnam procedure cannot solve any of 

7We thank Geoffrey Hinton and Hector Levesque for sug
gesting this strategy to us. The strategy has some of the 
flavor of the approaches found in genetic algorithms. 

these instances, and we do not know of any other back
track style satisfiability procedure that can solve these 
problems.) 

The table also shows that GSAT's performance com
pares favorably with some of the best specialized graph 
coloring algorithms as studied by Johnson et a/.8 This is 
quite remarkable because GSAT does not use any special 
techniques for graph coloring: it is basically unaware of 
the fact that it is dealing with encodings of graph color
ing problems. 

3.3 R a n d o m Wa lk 

Consider the following algorithm for testing the satis
fiability of CNF formulas. Start with a random truth 
assignment; randomly select an clause not satisfied by 
this assignment; flip the truth assignment of one of the 
letters occuring in this clause (the clause becomes sat
isfied); repeat the last two steps until the assignment 
satisfies all clauses. 

Papadimitriou (1991) shows that such a surprisingly 
simple randomized strategy finds assignments of 2CNF 
formulas (satisfiable ones, of course), in 0 (n 2 ) steps with 
probability approaching one, where n is the number of 
prepositional letters. His proof exploits properties of 
random walks (Feynman et al. 1989). Note the differ
ence with GSAT: simply flipping the assignment of any 
variable in some unsatisfied clause may actually increase 
the total number of unsatisfied clauses. We found that 
this strategy by itself does not solve the hard satisfi
ability problems, but it does provide a another useful 
mechanism for escaping local minima. 

Strategy I I I : R a n d o m walk 
With probability p, pick a variable occuring in some 

unsatisfied clause and flip its t ruth assignment. 
With probability 1 - p, follow the standard GSAT scheme, 

i.e., pick randomly from the list of variables 
that gives the largest decrease in the total number 
of unsatisfied clauses. 

The probability p is fixed in advance; we used p = 0.35 in 
our experiments.9 We first consider the effect of the walk 
strategy on the Boolean induction problems as studied 
by Kamath et al. (1992). The task under consideration 
is to derive ("induce") a logical circuit from its input-
output behavior. Kamath et al. encode this problem 
as a satisfiability problem. They give test results for 
various instances of this problem using a satisfiability 

8We should note that we have not yet been able to solve 
the hardest coloring problem in Johnson et al. (1991). This 
problem involves a 500 node graph, and was solved by only 
one of the Johnson's coloring algorithms using many hours 
of cpu time. The very large size of the Boolean encoding of 
this instance exhausts memory of our current hardware. 

9Note the difference between random walk and random 
noise as used in simulated annealing. Random noise can per
turb the truth assignments of any of the variables. In the 
random walk strategy, the perturbation is closely tied to the 
unsatisfied clauses (the "problem spots"). Preliminary ex
periments show the latter to be much more effective. 
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Table 3: The effect of averaging in of previous near-solutions (strategy I I ) . The problems considered are propositional 
encodings of graph coloring problems (Johnson et al. 1991). The "best methods" times are for the best and the second 
best specialized graph coloring algorithm as reported by Johnson et al We have reduced Johnson's times by a factor 
of 20 to compensate for differences in cpu speed. (Johnson used a Sequent Balance 21000.) 

Table 4: Using the random walk stategy on Boolean 
induction problems. (Timings in seconds.) 

Table 5: Using the random walk stategy on planning 
formulas. 

algorithm based on integer programming. We consider 
some of their hardest instances as are given in Table 
4.5 in Kamath et al. (1992). In Selman et al. (1992), 
we showed how GSAT's performance is competitive with 
their results. However, using our walk strategy, we can 
still substantially improve GSAT's performance on these 
formulas, as is shown in Table 4. 

As a second example of the effectiveness of the walk 
strategy, we consider encodings of various blocks-world 
planning problems (Kautz and Selman 1992). As we 
discussed above, such formulas are very challenging for 
basic GSAT. Examination of the best assignments found 
when GSAT fails to find a satisfying assignment indicates 
that difficulties arise from extremely deep local minima. 
For example, in the "towers of Hanoi" problem, the ini-
tial state is encoded by a conjunction of propositional 
literals corresponding to the assertion that block A is on 
B, B is on C, and C is on Peg 1; the final state is encoded 
by asserting that the blocks are stacked in the same or
der, except that C is on Peg 3. In addition, there are 
clauses that ensure that all moves are legal: for exam
ple, that only clear blocks are moved, that a larger block 
is never placed on a smaller one, and so on. The ba
sic GSAT procedure would often find assignments that 
violated very few constraints, but were quite far from 
a satisfying assignment. For example, one such assign
ment would correspond to a plan which simply moved C 
directly to Peg 3, with all the other blocks on top of it; 
this would only violate the clause that asserted that C 
must be clear in order to be moved. Another such as
signment just moves the top block back and forth a few 
times, and ends up with the final state the same as the 
initial state. This assignment violates the single clause 
asserting that C is on Peg 3 in the final state. 

The use of weights and averaging greatly improves 
the performance of GSAT on these formulas, as many of 
the local minima are filled in or at least elevated. How

ever, it still requires many more retries to solve these 
problems than is required for similar-sized random or 
coloring problems. As shown in Table 5, combining the 
random walk strategy with both weights and averaging 
allows GSAT to almost always climb out of the local 
minima and find a solution in a reasonable amount of 
time. The performance is comparable to that of ba
sic backtracking search procedures, though highly op
timized procedures with special heuristics can still solve 
these problems about a 10 times as fast. Nevertheless, 
the table shows that these strategies come a long way in 
improving GSAT's performance on problems that appear 
much more suited for the use of backtrack style search 
algorithms.10 

4 Conclusions 

We have described three strategies that greatly enhance 
the power and applicability of GSAT, a randomized 
greedy local search procedure for propositional satisfi
ability testing. The effectiveness of these strategies was 
empirically determined. (We also tested a number of 
other intuitively plausible strategies which in practice 
failed to improve GSAT's performance.) The clause 
weighing strategy and the random walk strategy are use
ful in escaping from local minima. The weighing strategy 
is particularly well-suited for dealing with problems with 
hidden asymmetries. The averaging-in strategy reduces 
the number of tries necessary to solve certain classes of 

10Currently we are investigating alternative representa
tions of planning problems that would be more amenable to 
a local search procedure, in that assignments that violated 
few constraints would be likely to be close to a satisfying as
signment, in terms of the number of flips necessary to reach 
it. The overall goal is to develop representations that are less 
fragile than the "classic" logical representations developed 
by McCarthy and Hayes (1969) and extended to planning as 
satisfiability by Kautz and Selman (1992). 
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instances. It does so by re-using some of the informa
tion present in previous near-solutions. Each of these 
strategies, in effect, helps uncover hidden structure in 
the input formulas. Given the success of these strate
gies and the fact that they are not very specific to the 
GSAT algorithm, it appears that they also hold promise 
for improving other methods for solving hard combina
torial search problems, such as, simulated annealing and 
genetic algorithms (Davis 1987). 

In our future research we hope to develop a precise 
formal understanding of the benefits and applicability 
of each technique. While some theoretical results, such 
as those of Papadimitriou (1991) on random walks, sug
gest that the strategies are plausible, it is likely to be 
extremely difficult to prove formally that they are effec
tive in practice.11 

Finally, we should note that we do not claim that 
GSAT will be able to outperform backtracking search 
methods on all possible problems. We do, in fact, believe 
that certain highly structured problems lend themselves 
better for exhaustive search approaches and domain-
specific heuristics (such as means-end analysis in plan
ning). Nevertheless, with the extensions described here, 
we have considerably enlarged the class of problems on 
which GSAT performs well, thereby making GSAT a vi
able general procedure for solving hard computational 
problems in artificial intelligence.12 
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