
Domain filtering can degrade intelligent backtracking search

Patrick Prosser
Department of Computer Science

University of Strathclyde
Glasgow G1 1XH

Scotland

Abstract
This paper presents an improved backjumping algonthm
for the constraint satisfaction problem, namely conflict-
directed backjumping (CBJ). CBJ is then modified
such that it can detect infeasible values and removes
them from the domains of variables once and for all. A
similar modification is then made to Gaschnig's
backjumping routine BJ and to Haralick and Elliott's
forward checking routine FC. Empirical analysis shows
that these modifications tend to result in an improve
ment in average performance. The existence of a pecu
liar phenomenon is then shown: the removal of infeasi
ble values may result in a degradation in the perfor
mance of intelligent backjumping algorithms, and con
versely the addition of infeasible values may lead to an
improvement in performance.

1. Introduction
In the binary constraint satisfaction problem (bcsp) we are
given a set of variables and a set of constraints, where
each vanable has a discrete and finite domain and each
constraint acts between a pair of variables. The problem is
to find an assignment of values to variables, from their
respective domains, such that the constraints are satisfied
[Dechter 1992, Kumar 1992, Mack worth 1992, Meseguer
1989]. This problem may be represented as a graph G,
where V(G) is the set of variables and A(G) is the set of
constraints. There are a number of tree search algonthms
that address this problem, most notably chronological
backtracking (BT) [Bitner and Reingold 1975, Golomb
and Baumert 1965], backmarking (BM) [Gaschnig 1977
and 1979], backjumping (BJ) [Gaschnig 1979], and for
ward checking (FC) [Haralick and Elliott 1980]. Al l these
algorithms perform a "depth first" search, and the most
primitive of these is BT. When BT instantiates a vanable
with a value (the current vanable Vt) it checks backwards
against variables that have already been assigned values
(the past vanables). If no value can be found for the
current variable that is consistent with all of the past van
ables, BT steps back to the previous vanable and
attempt a new instantiation for that vanable (and so on). It
may be the case that the value assigned to was not in
conflict with Vi, but some other variable higher up in the
search tree, Vh, precluded some value from the domain of

V,. If the search process could jump back directly to Vh

and find a new value for Vh, the search process might
then be able to move forward beyond Vi.

Gaschnig's backjumping routine (BJ) attempts to do
this. Given the cunent vanable V,, BJ records the
"deepest" variable with which Vi checked against. If all
values in the domain of Vi failed consistency checks with
past vanables, BJ then jumps back to the deepest variable
that Vi checked against, namely Vh , and if Vh is re-
lnstantiated with a new value we may then find a value
for Vi. Alternatively, if BJ successfully instantiates the
cunent vanable Vi, then the deepest past vanable that Vi

checked against will be Therefore, if later on in the
search process BJ jumps back from (where
i), and there are no more values remaining to be tried for
Vh , BJ wil l then "step" back to Therefore, we get
this mix of "jumping" and "stepping" back. This
behaviour can be rectified such that we can continue to
jump over constraint violations, and we do this by record
ing for each vanable Vi the set of vanables that were in
conflict with some instantiation of Vi.. We call this
modified routine conflict-directed backjumping (CBJ). A
further modification is then made such that CBJ can detect
infeasible values and remove them once and for all. This
modified version is called CBJ-DkC (conflict-directed
backjumping with directed k-consistency). One would
expect that in the worst case CBJ-DkC would perform no
worse than CBJ. We show that this is not so. The removal
of an infeasible value may result in a reduction in "thrash
ing" [Mackworth 1977], but this may result in a reduced
opportunity for jumping, and the reduction in jumping
may outweigh the saving in reduced thrashing.

The algonthms are described in a pseudocode
modeled on Pascal and Common Lisp. A fuller description
of this language is given in Nadel [1989] and in Prosser
[1991]. The following variables are assumed to have been
globally declared, n is the number of variables in the
constraint satisfaction problem, v is an array of values,
such that is the value assigned to the van-
able Vh domain is an array of sequences, such that
domain[i] is the domain of the variable V,.
Note that domain[0] = nil. current-domain is an anay of
sequences, where cunent-domainfi] is the
sequence of values in domain[i] that have not yet been

262 Constraint Satisfaction Problems

shown to be inconsistent with respect to the ongoing
search process. current-domain[i] is initialised to be equal
to domain[i]. When v[i] is to be instantiated a value is
selected from current-domain[i], and if that value is found
to be inconsistent with respect to the current search state,
then that value is removed from current-domainfi]. When
backtracking takes place from v[i] to v[h] (where h < i)
cument-domainlj] is reset to domain[j] for all j, where h <
j < i. Note that current-domain[0] = nil. C is an n x n
array, where C[i j] is the name of a binary predicate (such
as <, =, >, ≠, etc) that holds between v[i] and v[j]. If
C[i j] = nil then there is no constraint acting between v[i]
and v[j]. Therefore we have an extensional representation
of constraints (rather than intensional, as a set of compati
ble pairs). The function check(i,,j) delivers a result of true
if C[i,j] = ni l , otherwise it delivers the result of applying
the relation C[i,j] between the instantiations of v[i] and
v[j] (and is counted as a consistency check).

Generally v[i] wil l be considered to be the current
variable, v[h] wil l be a past variable, and v[j] a future
variable (h < 1 < j). It is assumed that all arguments are
passed by reference and that the first occurrence of a vari
able corresponds to an implicit declaration. The algo
rithms are described in terms of a pair of mutually recur
sive functions (similar to the style of Dechter and Pearl
[1988], and Dechter [1990]). That is, we have a forward
move, such as bj-label, and a backward move, such as bj-
unlabel. In section 4, the number of "nodes visited" by the
search process X is taken to be the number of calls to the
forward move x-label. The algorithms address the binary
constraint satisfaction search problem [Nudel 1983]. That
is, they find the first solution.

2. Conflict-Directed Backjumping (CBJ)
Where BJ steps back from v[h] after jumping back from
v[i] , the conflict-directed backjurnper (CBJ) continues to
jump across conflicts which involve both v[h] and v[i].
CBJ achieves this by recording the set of past variables
that failed consistency checks with the current variable
(and we refer to this as a "conflict set" as in [Dechter
1990]). If no consistent instantiation can be found for v[i],
CBJ then jumps back to the deepest vanable, v[h], that
conflicted with v[i]. If on jumping back to v[h] CBJ dis
covers that there are no more values to be tried in
current-domain[h] CBJ then jumps back to v[g], where
v[g] is the deepest vanable that was in conflict with either
v[i] or v[h].

CBJ maintains a conflict set conf-set[i] for each
variable, where the array conf-set is declared globally. Ini
tially each element of conf-set[i] is set to be 10). When a
consistency check fails between v[i] and v[h], h is added
to the set conf-set[i]. Therefore, conf-set[i] is the subset of
the past variables in conflict with v[i]. If there are no
remaining values to be tned in current-domain[i], CBJ
jumps back to the deepest vanable v[h], where h € conf-
set[i] (that is h <-- max-list(conf-set[i]), where the function
max-list delivers the largest integer in a set of integers).

When jumping back from v[i] to v[h] the information in
conf-set[i] is earned upwards to v[h). The array element
conf-set[h] becomes conf-set[h] U conf-set[i] - h, the set
of variables in conflict with v[h] or v[i]. Therefore, when
further backtracking takes place from v[h], CBJ jumps
back to v[g], where v[g] is the deepest variable in conflict
with either v[h] or v[i].

In line 17 above, the call pushnew(h,conf-set[i]) adds h to
the set conf-set[i] if h is not already a member of conf-
set[i]. It is assumed that the loop variable h is available to
the statement in line 17, and that h is the value that
caused the call to check(i,h) to deliver false.

CBJ is then realised as cbj-label(l). If we move line 17 in
cbj-label to line 12.1 the array element conf-set[i] is
updated unconditionally, and CBJ behaves as BJ.

The reasoning behind CBJ might be better under
stood when viewed from the perspective of de Kleer's
ATMS [1986]. We can consider the past vanables as a set
of assumptions that are IN (currently believed), and the

Prosser 263

array element conf-set[i] as a conjunction of assumptions,
and therefore an environment. Let S be the set of indices
of the past variables ie. S = (1,2,3, ...,i-1), and
disallowed[i] = domain[i] - cunent-domain[i], the set of
values in domainfi] that have been discovered to be incon
sistent with the current search state. We then have the
assumed node
where disallowed[i] is the datum, and conf-set[i] is the
justification for datum, and consequently the single
environment within the label. If we then
believe that the current search state cannot be extended by
any instantiation of v[i] from the set disallowedfi]. Con
versely, if conf-setfi] is not subsumed by S we can no
longer believe disallowed[i] and we must reset current-
domain[i] to be domain[i]. When current-domainfi] is
empty (ie. disallowed[i] = domain[i]) we need to force
OUT some assumption in conf-set[i], and we choose the
most recent assumption, namely max-list(conf-set[i]).
This is done implicitly when CBJ backtracks from v[i] to
v[h].

CBJ is conservative when it jumps back from v[i] to
vfh]. As noted above we can believe disallowed[i] when
ever conf-set[i] is subsumed by S. However, when CBJ
jumps from v[i] , over vfj], to vfh] we automatically reset
current-domain[j]. It may be the case that max-list(conf-
setfj]) < h and we can continue to believe disallowed[j],
and thus prune the search space more efficiently. How
ever, in order to do this we would have to examine all
future conflict sets whenever backjumping takes place.
CBJ would then look even more like an ATMS. In fact,
such an algorithm is described by Rosiers and Bruynooghe
[1987] and by Prosser [1989].

CBJ has many features in common with Dechter's
graph-based backjumping algorithm GBJ [Dechter 1990].
When GBJ reaches a dead end on v[i] it jumps back to
the deepest variable amongst those connected to v[i] in
the constraint graph, namely vfh], and if there are no
values remaining to be tried for v[h] GBJ jumps back to
v[g] where v[g] is the deepest variable connected to either
vfi] or vfh]. Therefore we might say that when jumping
back BJ is directed by consistency checks that have been
performed, CBJ is directed by conflicts, and GBJ is
directed by the topology of the constraint graph.

3. Directed Consistency
CBJ can be modified such that it removes values from the
domains of variables once and for all, when it can be
deduced that these values are infeasible. We may add the
following conditional to procedure cbj-unlabel.

The above modification gives us CBJ-DkC, where DkC
stands for "directed k-consistency" [Dechter and Pearl
1988] (and is similar to nth order learning fDechter
1990]). The effect of this modification can be described
as follows. Let us assume that CBJ has successfully

instantiated v[i - l] and that CBJ moves forwards to v[i]. At
that point conf-set[i] = {0} , and current-domainfi] =
domainfi]. Further assume that the call to cbj-label(i) fails
to find any instantiation of vfi] that is consistent with the
past variables. If |conf-set[i]| = 2 then vfi] is in conflict
with the instantiation of vfh] and the pseudo variable v[0].
We can then deduce that vfh] is "are-inconsistent" with
respect to domainfi]. That is, an arc consistency algorithm
[Mackworth 1977, Deville and van Hentenryck 1991]
would have removed the value vfh] from domain[h].

Assume that it is not the first time that we have
visited vf i] , that we successfully instantiate vf i] , and that
all values in domainfi] are consistent with respect to the
past variables. Therefore conf-setfi] = {0}. Assume that
we then attempt to instantiate some future variable v[j]
and all values in domainfj] conflict with either vfh] or
vfi]. We then have conf-setfj] = {0,i,h}, ie. for all values
xj in domainfj], is inconsistent with vfh] or
vfi]. CBJ wil l then jump back to vfi] and instantiate vfi]
with the next value in current-domainfi]. Assume that this
process continues until we have exhausted current-
domainfi]. We then have conf-setfi] = {O,h}, ie. for all
values Xj in domainfj], is inconsistent with vfh]
or , for all values xi, in domain[i]. Therefore we
can remove the value vfh] from domainfh].

We can adopt the same approach with respect to FC
and to BJ. In FC we instantiate vfi] with the value k and
check forwards against the future variables. Assume that
vfi] checks against vfj] and this results in a "domain wipe
out" [Nadel 1989] for vfj]. If no other variable checks
against vfj] we can then remove k from domainfi] once
and for all. This corresponds to "directed arc consistency"
(and corresponds to 1st order learning fDechter 1990]),
and we can realise this by maintaining a count of the
number of variables forward checking against vfj] (as in
[Prosser 1991]). We wil l call this algorithm FC-D2C.

Similarly in backjumping, if no instantiation for v[i]
can be found, and all consistency checks from vfi] failed
against the single instantiation we might then
remove k from domainfh]. We can do this by maintaining
a flag for each variable, call it instantiated[i], which is ini
tialised to false, and is set to true when bj-label finds an
instantiation for vfi] which is consistent with the past vari
ables. If we jump from vfi] to vfh], when length(conf-
set[h]) = 2 and instantiatedfi] = false, we can remove the
value vfh] from domainfh] (and when we jump from vfi]
to vfh] we reset instantiated[j] to false for all
This gives us the algorithm BJ-D2C. If we perform the
following edits to cbj-label and cbj-unlabel we get BJ-
D2C:

(a) In cbj-label move line 17 to line 12.1

(b) In cbj-label replace line 21 with the following seg
ment

264 Constraint Satisfaction Problems

21.3 END

(c) In cbj-unlabel add the following lines

More generally, since FC and BJ only reason over failures
that occur between pairs of variables we can only detect
directed arc inconsistencies (1st order learning). On the
other hand, since CBJ reasons over failures within a set of
variables, it can detect directed k-inconsistencies (nth
order learning).

4. Experimental Evaluation
The following algorithms were compared against each
other: BT (naive/chronological backtracking), BJ
(Gaschnig's backjumping routine), GBJ (Dechter's graph-
based backjumping routine), CBJ (described here), BM
(Gaschnig's backmarking routine), FC (Haralick and
Elliott's forward checking routine), BJ-D2C, CBJ-DkC,
and FC-D2C (again, described here).

The algorithms were applied to 450 instances of the
zebra problem, described in [Dechter 1990 and Smith
1992]. That is, 450 different instantiation orders of the
zebra were created, and each algorithm was applied to
those problems in turn. Table 1 shows the average number
of consistency checks performed by an algorithm, the
standard deviation, the minimum number of consistency
checks performed, and the maximum number performed
over the 450 problems. Table 2 shows the same informa
tion but with respect to nodes visited.

Table 1. Consistency Checks

Table 2. Nodes Visited

If we take consistency checks performed as a measure of
search effort we may rank the algorithms as follows: FC-
D2C, CBJ-DkC, FC, CBJ, BJ-D2C, BM, BJ, GBJ, BT.
With respect to nodes visited the algorithms are ranked:
FC-D2C, FC, CBJ-DkC, CBJ, BJ-D2C, BJ, GBJ, (BM and
BT).

The algorithms were then applied again to 100
instances of the zebra problem, and the cpu time was
measured. Table 3 below shows the average cpu time used
(on a SPARCstation IPC, with 24 mega-bytes of memory,
using Sun Common Lisp 4.0) by the algorithms for solv
ing an instance of the problem, and the average number of
consistency checks performed in a second.

Table 3. CPU Time

Although BT performed on average 8 times as many con
sistency checks as BM (Table 1) BT took only 20%
longer to run than BM (Table 3). This is due to the poor
"checking rate" of BM (and this is explained more fully in
[Prosser 1991 and 1993]) CBJ has a higher checking rate
than BJ. Therefore, not only does CBJ perform less
checks than BJ, it performs these checks with less over
heads (these tests used the more efficient version of BJ
described in [Prosser 1991], rather than the derived ver
sion here). This is because CBJ updates conf-set[i] condi
tionally, and BJ updates max-check[i] unconditionally.
Generally, there is an insignificant overhead associated
with the modifications performed to BJ (to give us BJ-
D2C), CBJ (giving CBJ-DkC, and FC (to FC-D2C).
These modifications resulted in a reduction in consistency
checks performed, nodes visited, and a reduction in run
time. Therefore, with respect to run time the algorithms
may be ranked: FC-D2C, CBJ-DkC, FC, CBJ, BJ-D2C,
BJ, BM. With the exception of BM, this ranking agrees
with those above, and in fact there is little to choose
between CBJ-DkC and FC-D2C.

5. The Bridge (and the Long Jump)
It was expected that CBJ-DkC would always perform at
least as well as CBJ. However, on analysing the experi
mental results it was discovered that out of the 450 prob
lem instances there were 2 cases where CBJ performed
better than CBJ-DkC. This was a surprise. One of these
problems was then examined in detail. This was the prob
lem with the instantiation order: <Water, Tea, Coffee,
Japanese, Kools, Blue, Ukranian, Chesterfield, Old-Gold,
Zebra, Horse, Fox, Orange-juice, Yellow, Snails, Red,

Prosser 265

Green, Englishman, Lucky, Dog, Spaniard, Parliament,
Ivory, Norwegian, Milk>. During the search process CBJ-
DkC discovers, amongst other infeasibilities, that there is
no solution to the problem when Spaniard is assigned the
value 1 Therefore, the value 1 is removed
from domain[21]. In some latter stage in the search pro
cess v[21] again becomes the current variable and CBJ-
DkC considers the instantiation At the same
point in the search space CBJ considers the instantiation

The two search trees now differ significantly,
and in CBJ's search tree it is possible to jump back to a
conflicting variable higher up in the search tree than
CBJ-DkC.

More generally, CBJ-DkC may remove an infeasible
value k from the domain of a variable v[i]. At some later
stage in the search process CBJ may move forwards from
v[i - l] to v[i] , and be unable to re-instantiate v[i] with the
value k. CBJ-DkC may then jump back to v[h]. At the
same point in the search tree CBJ is allowed to make the
instantiation and move forwards to v|j] . CBJ
may then jump back from v[j] to v[g], where g < h.
Therefore, the value k has acted as a bridge that allows
the search process to move from one area of the search
space to another, where it can then make a "long jump"
back to a conflicting variable.

To confirm this analysis, the value 1 was removed
from domain[21], the problem was reset, and CBJ and
CBJ-DkC were re-run. It was expected that CBJ would be
unable to "cross the bridge" and unable to make "a long
jump". With the bridge in place CBJ performed 10,746
checks, and visited 1,974 nodes (and CBJ-DkC performed
13,097 checks, and visited 2,390 nodes). With the bridge
removed CBJ performed 13,798 checks, and visited 2,532
nodes (CBJ-DkC performed 13,029 checks and visited
2,385 nodes). This implies that the removal of an infeasi
ble value from the domain of a variable may result in a
degradation in the performance of an algorithm that jumps
back to the cause of a conflict (such as BJ, CBJ, or any of
the hybrid derived from these algorithms [Prosser 1991
and 1993]).

6 . C o n c l u s i o n

A new algorithm has been presented, CBJ. It has been
shown that BJ can be derived from CBJ, and that BJ
might be considered to be a degenerate form of CBJ. CBJ
was then modified (the addition of a single conditional
expression) such that infeasible values can be detected and
removed once and for all. A similar technique was applied
to backjumping and forward checking. Empirical evidence
suggests that these modifications result in an improvement
in the performance of these algorithms on average

The removal of infeasible values has revealed a dis
turbing phenomenon, namely that this can lead to a degra
dation in the performance of a "conflict directed"
backjumping algorithm. It has (almost) become an article
of faith that if we remove infeasible values [Mackworth
1977, Deville and van Hentenryck 1991, Freuder 1982] or

redundant values [Benson and Freuder 1992, Freuder
1991] from the domains of variables, the subsequent
search algonthm will be presented with an easier task. We
have been lead to believe this because "the subsequent
search algonthm" is generally assumed to be a chronologi
cal backtracker (BT, BM, FC), or the effect of removing a
bndge has been masked by a reduction in thrashing. We
should now assume that increased consistency, or the
removal of redundancies, can only guarantee a reduction
in search effort if that search is unintelligent (such as a
chronological backtracker). Conversely, we should expect
that we can improve the performance of an intelligent
backjumping algorithm by adding an infeasible value to
the domain of a variable.

References
[Benson and Freuder 1992] B.W. Benson and E.C.
Freuder, Interchangeability preprocessing can improve for
ward checking search. Proceedings ECAI-92 28-30
(1992)

[Bitner and Reingold 1975] J.R. Bitner and E. Remgold,
Backtrack programming techniques, Commun. ACM, 18
(1975)651-656
[Dechter and Pearl 1988] R. Dechter and J. Pearl,
Network-based heuristics for constraint-satisfaction prob
lems, Artif. lntell. 34(1) (1988) 1-38

[Dechter 1990] R. Dechter, Enhancement schemes for
constraint processing: backjumping, learning, and cutset
decomposition, Artif. lntell. 41 (3) (1990) 273-312

[Dechter 1992] R. Dechter, Constraint Networks, In:
Encyclopedia of Artificial Intelligence, Second Edition,
Volume 1, 276-285, Wiley-Interscience Publication,
editor-in-chief S.C. Shapiro, 1992.

[de Kleer 1986] J. de Kleer, An assumption-based TMS
Artif lntell. 28(1986)127-162

[Deville and van Hentenryck 1991] Y. Deville and P. van
Hentenryck, An efficient arc consistency algorithm for a
class of csp problems, Proceedings IJCA1-91, (1991) 325-
330

[Freuder 1982] E.C. Freuder, A Sufficient Condition of
Backtrack-Free Search, J. ACM 29 (1) (1982) 24-32

[Freuder 1991] E.C. Freuder, Eliminating interchangeable
values in constraint satisfaction problems, Proceedings
AAAJ-91 (1991) 227-233

[Gaschnig 1977] J. Gaschnig, A General Backtracking
Algonthm that Eliminates Most Redundant Tests,
Proceeding IJCA1-77 (1977) 457

[Gaschnig 1979] J. Gaschnig, Performance measurement
and analysis of certain search algonthms, Tech. Rept.
CMU-CS-79-124, Carnegie-Mellon University, Pittsburgh,
PA (1979)

[Golomb and Baumert 1965] S.W. Golomb and L.D. Bau-
mert, Backtrack Programming, /. ACM, 12 (1965) 516-
524

266 Constraint Satisfaction Problems

[Haralick and Elliott 1980] R.M. Haralick and G.L.
Elliott, Increasing Tree Search Efficiency for Constraint
Satisfaction Problems, Artif. Intel l 14 (1980) 263-313

[Kumar 1992] V. Kumar, Algorithms for constraint satis
faction problems: a survey, AI magazine 13 (1) (1992)
32-44

[Mackworth 1977] A.K. Mackworth, Consistency in Net
works of Relations, Artif. Intel l 8 (1) (1977) 99-118

[Mackworth 1992] A.K. Mackworth, Constraint Satisfac
tion, In: Encyclopedia of Artificial Intelligence, Second
Edition, Volume 1, 285-293

[Meseguer 1989] P. Meseguer, Constraint satisfaction
problems: an overview, AICOM 2 (1) (1989) 3-17

[Nadel 1989] B.A. Nadel, Constraint Satisfaction Algo
rithms, Computational Intelligence 5(4): 188-224, 1989

[Nudel 1983] B.A. Nudel, Consistent Labelling Problems
and their Algorithms: Expected Complexities and Theory
Based Heuristics, Art i f Intell. 21 (1983) 135-178

[Prosser 1989] P. Prosser, A reactive scheduling agent,
Proceedings UCA1-89 (1989) 1004-1009

[Prosser 1991] P. Prosser, Hybrid algorithms for the con
straint satisfaction problem, Tech. Rept. AISL-46-91,
Department of Computer Science, University of Strath-
clyde, Glasgow, Scotland (1991). To appear in Computa
tional Intelligence 9(3), August 1993

[Prosser 1993] P. Prosser, BM+BJ=BMJ, Proceedings
CA1A-93, (1993)257-262

[Rosiers and Bruynooghe 1987] W. Rosiers and M
Bruynooghe, Empirical study of some constraint satisfac
tion algorithms, in Artificial Intelligence I I : Methodology,
Systems, Applications Edited by P. Jorrand and V.
Sgurev, Elsivier Science Publishers B.V. (North-Holland)
1987

[Smith 1992] B.M. Smith, How to solve the zebra prob
lem, or path consistency the easy way, Proceedings
ECAI-92 (1992) 36-37

