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A b s t r a c t 

We extend work on difference identification and 
reduction as a technique for automated reason
ing. We generalise unification so that terms are 
made equal not only by finding substitutions 
for variables but also by hiding term structure. 
This annotation of structural differences serves 
to direct rippling, a kind of rewriting designed 
to remove differences in a controlled way. On 
the technical side, we give a rule-based algo
r i thm for difference unification, and analyze its 
correctness, completeness, and complexity. On 
the practical side, we present a novel search 
strategy for efficiently applying these rules. Fi
nally, we show how this algorithm can be used 
in new ways to direct rippling and how it can 
play an important role in theorem proving and 
other kinds of automated reasoning. 

1 I n t r o d u c t i o n 

M o t i v a t i o n a n d Con tex t 
Heuristics for judging similarity between terms and sub
sequently reducing differences have been applied to auto
mated deduction since the 1950s when Newell, Shaw, and 
Simon built their "logic machine" [NSS63] for a proposi-
tional calculus. Their intent was to simulate the be
havior of a human on the same task. More recently, 
in resolution theorem proving, a similar theme of dif
ference identification and reduction appears in [BS88; 
Dig85; Mor69]. In this work a partial unification results 
in a special kind of resolution step (E or RUE-resolution) 
where the failure to unify completely produces new in
equalities that represent the differences between the two 
terms. This leads to a controlled application of equal
ity reasoning where paramodulation is used only when 
needed. The intention was not to design a human ori
ented problem solving strategy, but rather, to use differ-

*This research was partially funded by the German Min
istry for Research and Technology (BMFT) under grant ITS 
9102 and a SERC postdoctoral fellowship. The responsibil
ity for the contents of this publication lies with the authors. 
We thank the Edinburgh Mathematical Reasoning Group for 
their encouragement and criticism, in particular Alan Bundy 
and Andrew Ireland. 

116 Automated Reasoning 

Toby Walsh 
Dept. of A I , University of Edinburgh, 

80 S. Bridge, Edinburgh, Scotland 
(tw@aisb.ed.ac.uk) 

ence identification and reduction as a means of reorder
ing a potentially infinite search space. 

Here we report on research sharing both these cog
nitive and pragmatic aims. We have developed a gen
eral procedure called difference unification for identify
ing differences between two terms. Difference unification 
extends unification in that it decides if terms are syntac
tically equal not only by giving assignments for variables 
but also by computing what incompatible term struc
ture must be removed. This incompatible term struc
ture, called wave-fronts, is marked by annotations which 
are used to direct a special kind of rewriting called rip
pling; rippling seeks to reduce the differences between 
the terms by moving the wave-fronts "out of the way" 
while not disturbing the unannotated parts of the terms 

Re la ted W o r k 
This research is the outgrowth of previous work at Ed
inburgh in inductive theorem proving. There Bundy 
[Bun88; BS+92] suggested that in proofs by mathemat
ical induction, the induction conclusion could be proven 
from the induction hypothesis by rippling on the in
duction conclusion. Rippling has been employed in the 
OYSTER/CLAM prover. A similar kind of rewriting 
was developed independently by Hutter [Hut90], from 
ideas in [Bun88], and employed in the INKA system. 
Both systems have enjoyed a high degree of success stem
ming from several desirable properties of rippling. These 
include (see [BS+92]) that rippling involves very l i t t le 
search and rippling always terminates since wave-fronts 
are only moved in some desired (well-founded) way — 
usually to the top of the term. 

Research C o n t r i b u t i o n s 
Motivated by a desire to apply rippling outside of induc
tive theorem proving, in BW92 we introduced differ
ence matching which extends matching to annotate the 
matched term so it can be rewritten using rippling. We 
list there, as well as in [WNB92] several applications of 
this idea. In this report we take another step forward. 
Our contributions are several fold. First we extend dif
ference matching to difference unification whereby sub
stitutions and annotations are returned for both terms. 
The rule based algorithm we give uses conventional uni
fication in a transparent way whereby other additions to 
unification, such as equations or higher order patterns, 



can be easily made. We prove the a l g o r i t h m given is 
b o t h sound and complete w i t h respect to i ts specifica-
t i o n . Second, un l i ke difference ma tch ing , difference un i 
f icat ion can re tu rn a large number of matches wh ich we 
are not interested i n ; there m a y be exponent ia l l y many 
ways to annota te two ident ica l te rms. Hence, we de
marcate two restr ic ted classes of useful answers (which 
we cal l strongly and weakly m i n i m a l ) . Fur ther , we give 
a novel search st rategy (a meta- in terpre ter ) t h a t f inds 
answers in these classes w i t h m i n i m a l search. T h i r d , 
we give a tho rough analysis of the complex i ty of dif
ference un i f i ca t ion and subproblems. F ina l l y , we p r o -
v ide examples of how difference un i f i ca t ion can be used. 
In do ing so, we present a new pa rad igm for theorem 
p r o v i n g / p r o b l e m so lv ing whereby p roo f proceeds by a l 
te rna t ing between anno ta t i ng differences and reducing 
t h e m . Th i s combina t ion is different f r om previous work 
comb in ing r i pp l i ng and difference ma tch ing since here 
successful r i pp l i ng does not guarantee successful rewr i t 
ing of one t e r m w i t h another; ra ther , i t must be seen as 
one step, in possibly many , of difference reduc t ion . Th i s , 
a long w i t h differences f r o m t r ad i t i ona l rewr i te based the
orem prov ing , is developed in the next section. 

2 Appl icat ions 
2 . 1 N o r m a l i z a t i o n 

We begin w i t h a s imple example t h a t bo th int roduces 
no ta t i on and i l lust rates how difference un i f i ca t ion can 
be used to apply r i pp l i ng in a new way: as an i tera
t ive difference reduct ion technique. In r ipp l ing 's o r ig ina l 
role in induc t ive theorem p rov ing , successfully r i pp l i ng 
the goal always al lows use of the i nduc t ion hypothesis. 
More par t i cu la r l y , in an induc t ive proo f the induc t ion 
conclusion is an image of the i nduc t ion hypotheses ex
cept for the appearance of certain f unc t i on symbols ap
pl ied to the i nduc t i on var iable in the conclusion. The 
rest of the i nduc t ion conclusion, wh ich is an exact i m 
age of the induc t ion hypothesis, is called the skeleton. 
The func t ion symbols t ha t must be moved are the wave-
fronts. For example, i f we wish to prove p ( x ) for al l 
na tu ra l numbers, we assume p (n ) and a t t e m p t to show 
p (s (n ) ) . The hypothesis and the conclusion are ident ica l 
except for the successor func t i on s(.) appl ied to the i n 
duct ion var iable n. We m a r k th is wave-front by p lac ing 
a box around i t and under l i n ing the sub te rm contained 

in the skeleton, R i p p l i n g then applies j us t 

those rewr i te rules, cal led wave-rules, wh ich move the 
difference ou t of the way leaving beh ind the skeleton. In 
thei r s implest f o r m , wave-rules are rewr i te rules of the 

f o r m By design, the skeleton 

a { y ) remains unal tered by thei r app l i ca t ion . I f r i pp l i ng 

succeeds then the conclusion is rewr i t t en us

ing wave-rules i n to some func t ion o f p ( n ) ; t ha t is, i n to 

may be the i den t i t y ) . At th is po in t we can 

cal l upon the i nduc t ion hypothesis. 
An analogous s i t ua t i on occurs in difference ma tch ing . 

I f we can m a t c h two te rms, anno ta t i ng one w i t h wave-
f ronts , then successful r i p p l i n g al lows rewr i t i ng one to 

the other . However, th is fa i ls w i t h difference uni f icat ion 
as b o t h te rms are annota ted . For example, consider the 
associative ( in f i x ) f unc t i on symbo l + . T h e fo l low ing are 
wave-rules(capi ta l let ters represent variables and lower 
case letters constants and bound variables). 

(1) 

(2) 

As previously no ted , r i p p l i n g terminates because wave-
f ronts in the rewr i te rules mus t ma tch those in the rewr i t 
ten t e rm and these are on ly moved in some wel l - founded 
d i rec t ion. We may therefore rewr i te w i t h the associativ
i t y o f + in b o t h direct ions. Consider p rov ing 

If we difference un i fy the left hand side of this equa
t i on w i t h the r i gh t , there are 10 annota ted answers cor
responding to the 6 ways of selecting any 2 constants 
f r o m the 2 terms and 4 ways of selecting any one. In 
general, we prefer on ly those w i t h m i n i m a l amounts of 
anno ta t ion . Fur thermore , as wave-rules only exist to r ip 
ple these m i n i m a l annota t ions, r i pp l i ng wou ld not f ind 
proofs for the others. P ick ing m i n i m a l annotat ions (for
m a l l y defined in §3) narrows the choice to 2: 

B o t h of these w i l l lead to proofs by r i pp l i ng ( the f i rs t 
g i v ing a left associative n o r m a l f o r m , the second g iv ing 
a r i gh t ) . In wha t fo l lows we concentrate on the f i rst . The 
left hand side of th is equat ion is complete ly r ipp led-out : 
no more wave-rules need (or can) be appl ied since the 
wave-fronts are already ou termost . T h e r igh t hand side 
r ipples w i t h (2) y ie ld ing 

and now bo th terms are r ipp led-out . Though r ipp l ing is 
done, we have not succeeded in p rov ing the terms equal 
since the wave-fronts themselves differ. 

One m i g h t conclude t h a t r i pp l i ng has not accom
pl ished any th ing bu t t ha t wou ld be false. I t has reduced 
the " inner difference" between these terms: each now 
conta in a copy of the previous skeleton a+ b in tac t . Di f 
ference un i f y ing ( (a + b) + c) + d against (a + b) + (c + d) 
reveals th is . There are 12 annotat ions in t o t a l , bu t on ly 
3 are m i n i m a l , and on ly one of these can be r ipp led : 

We have made progress since these terms have a larger 
skeleton. As before the left hand side is r ipp led-out ; r i p 
p l i ng on the r igh t w i t h (2) yields the left hand side, so 
we are done. Th i s example i l lust rates a general phe
nomenon: i t e ra t ing difference un i f i ca t ion and r i p p l i n g 
successively decreases the difference between two te rms. 

Th i s comb ina t ion can be very effective. In associa
t ive reasoning each i te ra t ion of difference un i f ica t ion and 
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r i pp l i ng increases the skeleton and hence terminates suc
cessfully. Of course, exhaust ive app l ica t ion of one of the 
associat iv i ty rules wou ld also suffice, b u t there are ad
vantages in us ing difference un i f i ca t ion and r i pp l i ng . To 
begin w i t h , one needn' t complete ly normal ize terms, r i p 
p l ing proceeds on ly as far as is required to reduce the 
difference. Moreover, as b o t h left and r igh t associat iv i ty 
may be used, fewer rewr i te steps may be requi red. More 
s igni f icant ly , there are theories where we need bo th and 
where no rma l i za t i on wou ld therefore loop. T h e combi 
na t ion of difference un i f i ca t ion and r i pp l i ng is of ten an 
effective heur ist ic in theories where rewr i te based proce-
dures do not exist ; the next example, aside f r o m being 
more general , i l l us t ra te th is . 

2 .2 S e r i e s 

Difference un i f i ca t ion and r i p p l i n g have proved also very 
useful in s u m m i n g series. Consider, for example, the 
p rob lem of f inding a closed f o r m sum for 

using the s tandard result (such results are computed au
toma t i ca l l y i n [ W N B 9 2 ] ) 

(5) 

We encode the p rob lem of f inding a closed f o r m sum as 
the task of p rov ing a theorem of the f o r m , 

where the ex is tent ia l witness S is restr icted to be in 
closed f o r m . To prove th is theorem, we f i rs t e l im ina te 
the ex is tent ia l quant i f ier . T h e standard form me thod 
[ W N B 9 2 ] then difference unifies the dequant i f ied goal 
w i t h (5) g i v ing the m i n i m a l annota t ions 

where C and D are constant w i t h respect to j . Note 
t h a t (6) could no t be used in a procedure based on ex
haust ive rewr i t i ng since, l ike associat iv i ty when used in 
b o t h d i rect ions, i t wou ld loop. 

T h e s tandard f o r m me thod f i rs t applies wave-rule (6) 
to the goal d i v i d i ng i ts wave-front in to two , 

We therefore re-difference uni fy goal and hypothesis to 
give, as w i t h the associat iv i ty example, a larger skeleton, 

R i p p l i n g , though unable to move the differences up com
pletely, has reduced the inner difference. Indeed, the dif
ference has been so reduced t ha t we can now subst i tu te 
the s tandard result i n to the goal , 

T h e standard form m e t h o d now difference unifies against 
the s tandard result for the sum of the f irst n integers, 
and r ipples w i t h (7) to complete the proof. 

2 .3 O t h e r a p p l i c a t i o n s 

We have explored a number of other appl icat ions of dif
ference un i f ica t ion t ha t , for lack of space, we cannot de
velop here. For example, in [BW92a ; BBH93 ] we show 
how difference un i f i ca t ion can be used to guide rewr i t i ng 
in so called proof by consistency techniques. Other re
searchers have also explored appl icat ions of these ideas. 
Hu t t e r has recent ly repor ted on app ly ing associative 
commuta t i ve difference un i f i ca t ion and r i p p l i n g to solve 
S A M s l e m m a in the I N K A system [CH92J. 

3 Specif icat ion 
To specify difference un i f i ca t ion we mus t be more precise 
about the representat ion o f annota t ions. As in [BW92] 
annota t ions are represented in a n o r m a l f o r m in wh ich 
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Figure 1: D U N I F Y : t rans fo rmat ion rules for difference un i f y ing s and t 

These rules have been imp lemented in Pro log. The 
fo l low ing table gives 8 out of the 24 results of difference 
un i f y ing ( X + Y ) + Z w i t h X + (Y + Z ) . Note t ha t for 
readabi l i t y we have merged adjacent wavefronts in the 
"box and hole" presentat ion. 

T h e f i rst three annotat ions are s t rongly m i n i m a l and 
give the only wave-rules (or iented appropr ia te ly ) . T h e 
f ou r t h , f i f th and s i x th annotat ions are neither weakly nor 
s t rongly m i n i m a l . T h e last two annotat ions are weakly 
bu t no t s t rong ly m i n i m a l . Th i s once again demonstrates 
t h a t difference un i f i ca t ion is no t un i ta ry , even when re
s t r ic ted to s t rong or weak m in ima l i t y . 

The fo l low ing is a sample execut ion trace of the f i rst 
result . I t results f r o m app ly ing the rules: H I D E L , 
D E C O M P O S E , D E L E T E , H I D E R , and D E L E T E . 

5 Lef t - f i rs t Search 

T h e t rans fo rma t i on rules, when exhaust ively and non-
determin is t i ca l l y app l ied , generate a l l possible difference 
un i f icat ions, no t j u s t those t h a t are weakly or s t rong ly 
m i n i m a l . T h i s i s b o t h t i m e consuming and a lmost always 
unnecessary. We have therefore imp lemented a search a l 
g o r i t h m ( i .e. , a meta- in terpre ter ) for t ravers ing the space 
defined by these rules so t h a t we are guaranteed to en
counter j us t the weakly or s t rong ly m i n i m a l difference 

uni f icat ions. In the strongly m i n i m a l case, potent ia l ly 
an exponent ia l amoun t of search is saved. 

We f irst describe the s t ructure of the search space. 
Nodes correspond to the quadruples g iv ing the current 
state. Arcs to the left result f r o m app ly ing one of the 
un i f i ca t ion rules: D E L E T E , D E C O M P O S E , I M I T A T E L , 
I M I T A T E R , E L 1 M I N A T E L , and E L I M I N A T E R . Arcs to 

the r igh t result f r o m app ly ing a h id ing ru le: H I D EL and 
H I D E R . The key t o re tu rn ing m i n i m a l difference un i f i 
cations is observing t ha t a n o n - m i n i m a l difference un i 
f icat ion uses more appl icat ions of the h id ing rules t han 
a m i n i m a l one, though it may use a greater, lesser or 
equal number of un i f ica t ion rules. Thus , in searching 
the tree we want to m in im ize r igh t arcs since each adds 
more anno ta t ion . We cal l a search a l go r i t hm which does 
th is left-first search. At the n + 1-th p ly of the search 
we explore a l l those nodes whose pa th back to the root 
includes n r ight arcs. Th i s search strategy returns m i n 
i m a l cost solut ions where h id ing rules (r ight-ru les) have 
(un i t ) cost and other rules ( left-rules) hav ing no cost. 
We have implemented a meta- in terpreter t ha t per forms 
th is search as fo l lows. Given a set of nodes TV, left*(N) 
returns the set of nodes reachable f r o m the nodes in N by 
t ak ing any number of left arcs. The func t ion right(N) 
returns the set of nodes reachable f r o m the nodes in N 
by tak ing one r ight arc. F ina l ly solutions{N) returns 
any answers in the set of nodes N. Figure 2 gives the 
a lgo r i t hm and i l lustrates the order in which nodes in a 
b inary tree are explored under lef t - f i rst search. 
For s t rongly m i n i m a l difference uni f icat ions, th is algo-
r i t h m returns the f i rst set of answers and stops. For 
weakly m i n i m a l difference uni f icat ions, we mus t save the 
answers generated, and continues to search compar ing 
new answers for weak m i n i m a l i t y against previous ones. 
Un fo r tuna te ly , to re tu rn a l l the weakly m i n i m a l differ
ence uni f icat ions we mus t search the whole tree. T h e 
advantage of lef t - f i rs t search is t h a t we can immed ia te l y 
te l l whether an answer is weakly m i n i m a l . 

6 Proper t ies 

Let us in t roduce some no ta t i on t h a t w i l l be used to prove 
propert ies o f difference un i f i ca t ion and the D U N I F Y rule 

set. We wr i t e ) to i n 
dicate t h a t there is a der iva t ion D ( t ha t is, a possi
b ly emp ty sequence o f D U N I F Y rule appl icat ions) which 
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Figure 2: Algorithm and Search Tree 

in turn follows from our restrictions on the deletion and 
elimination rule; they guarantee that every term posi
tion in Pos(B) and Pos(t) eventually appears in some 
equation in the derivation D. Since elements of A, are a 
subset of Pos(s) corresponding to addresses of function 
arguments in s, and likewise for At, appropriate hiding 
rule can always be applied. 

The soundness and completeness arguments only rely 
on the underlying unification algorithm being sound, 
complete, and "decompositional" in the sense that ev
ery position in the original terms eventually appears in 
the course of the derivation. Hence, if we replace the un
derlying unification algorithm with something stronger, 
e.g., incorporating equations that preserve these proper
ties for some equational theory, then again we wil l have a 
sound and complete algorithm with respect to that the
ory. We suspect that there are many natural applications 
of equational difference unification, e.g., the previously 
mentioned work of Hutter. 

T h e o r e m 3 ( T e r m i n a t i o n ) The DUNIFY rule set al
ways terminates. 

P r o o f (sketch) : Given input s and i, use a lex
icographic ordering on the triple ( I , V, F) were / is 
|Pos(s)| + |Pos()tI — / ' , V is the number of imitation 
steps performed in a sequence of rule applications, V is 
the number of distinct variables in the (current) equation 
set, and F is the number of function symbols (including 
constants) in the (current) equation set. 

7 Complex i t y 
DUNIFY has been given as a set of rules. If they are ap
plied non-deterministically, it is easy to see that it can 
take exponential time to find a solution to a problem as 
we may, using the hide and imitate rules, consider all 
the ways of hiding function symbols.1 A term of size 
n (n function symbols) has O(n) interior (neither con
stants or variables) function symbols that can be hidden 
in 0 ( 2 n ) different ways; hence, naive execution can be 
exponential. It is natural to ask whether this the best 
that we can do, and which are the tractible cases. In 
asking such questions we must distinguish between the 

1Also note that unification algorithms which explicitly 
represent substitutions are not efficient. This can, how
ever, be avoided by using a rule-based approach such as 
[JK9l] at the cost of rules with rather more complicated side-
conditions. 
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prob lem of generat ing al l solut ions and tha t of generat
ing a so lu t ion or knowing i f one exists. The f i rst p rob lem 
is easily seen to require exponent ia l size even in the very 
restr icted of case of g round difference match ing . 

T h e o r e m 4 There are difference matching problems re
qui r ing exponential t ime. 

Problems generat ing exponent ia l numbers of solut ions 
are except ional as they involve unusual amounts of re
peated s t ructure. In general, there are far fewer matches 
and unif iers; so i t is interest ing to investigate the com-
p lex i ty of re tu rn ing a single so lu t ion , or de termin ing i f 
one exists. The f i rst p rob lem is po l ynomia l t ime solvable 
for g round terms. 
T h e o r e m 5 Given terms s and t we can determine if s 
difference matches t (s may be annotated wi th skeleton 
t) or s difference unif ies wi th t in po lynomia l t ime. 

P r o o f ( s k e t c h ) : In [NS87] an a lgo r i t hm based on dy
namic p rog ramming is given for so lv ing the homomor-
phic embedding prob lem of one ground te rm in to another 
in po l ynomia l t ime . Th i s p rob lem is the same prob lem 
as ground difference ma tch ing . I t is easy to mod i f y th is 
idea to provide an a lgo r i t hm for g round difference un i 
f ica t ion. Fur thermore, these a lgor i thms can be easily 
modi f ied to re tu rn sets of answers as well as ind ica t ing 
if answers exist [BW92a] . . 

As a side note, observe t ha t whi le the above ground 
difference un i f ica t ion a lgo r i t hm can be easily modi f ied to 
y ie ld m i n i m a l answers, there is a t r i v i a l l inear t i m e a l 
g o r i t h m for de te rmin ing difference un i f i ab i l i t y a l though 
i t does not give m i n i m a l answers. T h a t is, s and t w i l l 
difference un i fy i f f they share at least one constant (of 
a r i t y 0) . In the non-ground case, s and t are difference 
uni f iable i f f they share one constant or i f either contains 
a var iable. In th is respect, difference un i f ica t ion is, per
haps surpr is ingly, easier than difference ma tch ing . 

In general, difference un i f ica t ion and a l l i ts subprob-
lems are t r i v i a l l y in NP since we can guess annotat ions 
and then un i fy or ma tch resu l t ing skeletons in po lyno
m i a l t ime . In the nonground case, when variables are 
added de termin ing the existence of a so lu t ion is NP hard . 

T h e o r e m 6 Difference un i fy ing s and t , wi th annota
t ion on only one side is NP hard. 

The p roo f is given in [BW92a] and uses a reduct ion f r o m 
3SAT s imi lar to t h a t used in the proof o f the NP hard
ness of set -match ing given in [KN86] . 

8 Conclusions 
In [Rob89], J .A . Robinson presented a s imple account of 
un i f i ca t ion in te rms of difference reduct ion. He observed: 

"Uni f iers remove differences ... We repeatedly re
duce the difference between the two given expressions 
by applying to them an arb i t ra ry reduct ion of the d i f -
ference and accumulate the product of these reductions. 

This process eventually halts when the difference ts no 
longer negotiable [v ia an assignment] f at which point the 
outcome depends on whether the difference is empty or 
nonempty . " 

In th is l i gh t , our research can be seen as a direct ex
tension of Robinson's no t ion of difference reduct ion: we 
reduce differences no t j u s t by var iable assignment, bu t 
also by t e rm st ructure anno ta t ion . W h a t makes our ex
tended no t ion of un i f ica t ion tenable, indeed a t t rac t ive , 
is t h a t th is anno ta t ion is precisely wha t is required for 
r i pp l i ng to remove th is difference. 
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