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Abs t rac t 

In this paper, we show how simple and par­
allel techniques can be efficiently combined to 
compute dense depth maps and preserve depth 
discontinuities in complex real world scenes. 
Our algorithm relies on correlation followed by 
interpolation. During the correlation phase the 
two images play a symmetric role and we use 
a validity criterion for the matches that elim­
inates gross errors: at places where the im­
ages cannot be correlated reliably, due to lack 
of texture or occlusions for example, the al­
gori thm does not produce wrong matches but 
a very sparse disparity map as opposed to a 
dense one when the correlation is successful. 
To generate dense depth map, the information 
is then propagated across the featureless areas 
but not across discontinuities by an interpola-
tion scheme that takes image grey levels into 
account to preserve image features. 
We show that our algorithm performs very well 
on difficult images such as faces and cluttered 
ground level scenes. Because all the techniques 
described here are parallel and very regular 
they could be implemented in hardware and 
lead to extremely fast stereo systems. 

1 I n t r o d u c t i o n 
Over the years numerous algorithms for passive stereo 
have been proposed, they can roughly be classified in 
two main categories [Barnard et al. 82]: 

1. Fea tu re Based. Those algorithms extract features 
of interest from the images, such as edge segments 
or contours, and match them in two or more views. 

*This research was supported in part under the Centre 
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These methods are fast because only a small sub­
set of the image pixels are used, but may fail if the 
chosen primitives cannot be reliably found in the 
images; furthermore they usually only yield very 
sparse depth maps. 

2. A r e a Based. In these approaches, the system at­
tempts to correlate the grey levels of image patches 
in the views being considered, assuming that they 
present some similarity. The resulting depth map 
can then be interpolated. The underlying assump-
tion appears to be a valid one for relatively tex­
tured areas; however if may prove wrong at occlu­
sion boundaries and within featureless regions. 
Alternatively the map can be computed by directly 
fitting a smooth surface that accounts for the dispar­
ities between the two images. This is a more prin­
cipled approach since the problem can be phrased 
as an optimization one; however the smoothness as­
sumptions that are required may not always be sat­
isfied. 

A l l these techniques have their strengths and weak­
nesses and it is difficult to assess their compared merits 
since few researchers work on similar data sets. How­
ever, one can get a feel for the relative performances 
of these systems from the study by Guelch [Guelch 88]. 
In this work, the author has assembled a standardized 
data set and sent it to 15 research institutes across the 
world. It appears that the correlation based system de­
veloped at SRI by Hannah [Hannah 88] has produced 
the best results both in terms of precision and reliabil­
ity. Unfortunately this system only matches a very small 
proportion, typically less than 1%, of the image points. 

In this paper we propose a correlation algorithm that 
reliably produces far denser maps with very few false 
matches and can therefore be effectively interpolated. In 
the next section we describe our hypothesis generation 
mechanism that attempts to match every point in the 
image and uses a consistency criterion to reject invalid 
matches. This criterion is designed so that when the cor-
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re la t ion fa i ls , instead of y i e l d i ng an incor rec t answer, the 
a l g o r i t h m re tu rns NO answer. As a resu l t , the dens i ty o f 
the compu ted d i spa r i t y m a p is a ve ry good measure of i ts 
re l iab i l i t y . T h e i n t e rpo la t i on techn ique descr ibed in the 
sect ion t h a t fo l lows combines the dep th m a p produced 
by cor re la t ion and the grey level i n f o r m a t i o n present in 
the image i t se l f t o i n t r oduce d e p t h d iscont inu i t ies and 
f i t a piecewise s m o o t h surface. These a lgo r i thms have 
proven ve ry effect ive on real da ta . T h e i r para l le l i m ­
p lemen ta t i on on a Connec t ion M a c h i n e t m 1 relies on ly 
on local opera t ions and on nearest ne ighbor commun ica ­
t i o n ; they cou ld be p o r t e d to a dedicated a rch i tec tu re , 
thereby m a k i n g fast and cheap systems possible. 

2 Cor re la t ion 
Mos t cor re la t ion based a lgo r i t hms a t t e m p t to f i nd in ter ­
est po in t s on wh ich to pe r f o rm the cor re la t ion . W h i l e 
th is approach is j us t i f i ed when on ly l i m i t e d c o m p u t i n g 
resources are avai lable, w i t h modern hardware archi tec­
tures and massively para l le l computers i t becomes possi­
ble to p e r f o r m the cor re la t ion over the whole image and 
re ta in on ly resul ts t h a t appear to be " v a l i d . " T h e ha rd 
p r o b l e m is then to p rov ide an effect ive de f in i t ion o f w h a t 
we cal l va l i d i t y and we w i l l propose one be low. 

In our approach , we compute cor re la t ion scores for ev­
ery p o i n t in the image by t a k i n g a f ixed w indow in the 
f i rs t image and a sh i f t i ng w indow in the second. T h e 
second w i n d o w is moved in the second image by integer 
increments a long the ep ipo lar l ine and an array of corre­
la t i on scores is generated. In th is wo rk we use cor re la t ion 
of grey level values and take the cor re la t ion score to be 
s = m a x ( 0 , 1 — c) where 

(1) 

I1 and I2 be ing the left and r i g h t image in tens i t ies, X 
the average value of X over the cor re la t ion w indow and 
dx,dy the d isp lacement a long the ep ipo lar l ine. 2 T h e 
measured d i spa r i t y can t hen be taken to be the one t ha t 
provides the highest value of s . In fac t , to compute the 
d ispar i t y w i t h subp ixe l accuracy, we f i t a second degree 
curve to the cor re la t ion scores in the ne ighborhood of 
the m a x i m u m and compu te the o p t i m a l d i spar i t y by in ­
t e rpo la t i on . 

2 . 1 V a l i d i t y o f t h e D i s p a r i t y M e a s u r e 

As shown by N ish iha ra [ N i s h i h a r a e t a l . 83], the p rob­
ab i l i t y of a m i s m a t c h goes d o w n as the size of the corre­
l a t i on w i n d o w and the a m o u n t o f t ex tu re increase. How­
ever, us ing large w indows leads to a loss of accuracy and 

1 T M C Inc. 
2 We remove the mean to offset transformations of the im­

ages that may result f rom slightly different settings of the 
cameras. 

Figure 1: Consistent vs inconsistent matches: the two rows 
represent pixels along two epipolar lines of I1 and I2 and the-
arrows go from a point in one of the images towards the point 
in the other image that maximizes the correlation score. The 
match on the left is consistent because correlating from l\ 
to I2 and from I2 to I\ yields the same match unlike the 
matches on the right that are inconsistent. 

the possible loss of important image features. For smaller 
windows, the simplest definition of validity would call for 
a threshold on the correlation score; unfortunately such 
a threshold would be rather arbitrary and, in practice, 
hard to choose. Another approach is to build a corre­
lation surface by computing disparity scores for a point 
in the neighborhood of a prospective match and check­
ing that the surface is peaked enough [Anandan 89]. It 
is more robust but also involves a set of relatively ar­
bitrary thresholds. Here we propose a definition of a 
valid disparity measure in which the two images play a 
symmetric role and that allows us to reliably use small 
windows. We perform the correlation twice by reversing 
the roles of the two images and consider as valid only 
those matches for which we measure the same depth at 
corresponding points when matching from I1 into I2 and 
I2 into I1. As shown in Figure 1, this can be defined as 
follows. 

Given a point P\ in I1, let P2 be the point of 
I2 located on the epipolar line corresponding to 
P\ such that the windows centered on P\ and 
P2 yield the optimal correlation measure. The 
match is valid if and only if P\ is also the point 
that maximizes the score when correlating the 
window centered on P2 wi th windows that shift 
along the epipolar line of I1 corresponding to 
P2 

For example, the validity test is likely to fail in pres­
ence of an occlusion. Let us assume that a portion of a 
scene is visible in I1 but not I2. The pixels in l\ cor­
responding to the occluded area in I2 wil l be matched, 
more or less at random, to points of I2 that correspond 
to different points of I1 and are likely to be matched with 
them. The matches for the occluded points wil l there­
fore be declared invalid and rejected. We illustrate this 
behaviour using the portion of the tree scene of Figure 2 
outlined in Figure 2(a). Different parts of the ground be-
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(a) (b) (c) 

F igure 2: (a) An outdoor scene wi th two trees and a stump. Tl 
different parts of the ground are occluded by the trees. 

tween the t w o trees and between the trees and the s t u m p 
are occ luded in Figures 2 (b ) and (c ) . In Figures 3 (a) 
and (b ) , we show the compu ted d ispar i t ies for th is image 
w indow after cor re la t ion w i t h the images shown in F i g ­
ures 2(b) and 2(c) respect ively. T h e po in ts for wh ich no 
val id m a t c h can be found appear in wh i te and the areas 
where the i r densi ty becomes very h igh correspond very 
closely to the occluded areas for bo th pairs of images. 
These resul ts have been ob ta ined using 3x3 cor re la t ion 
w indows; these sma l l w indows are suff ic ient in th is case 
because the scene is very t ex tu red and gives our va l id i t y 
test enough d i s c r i m i n a t i n g power to avoid er rors . 

We use the face shown in F igure 4 to demonst ra te an­
other case in wh ich the va l i d i t y test rejects false matches. 
T h e ep ipo lar l ines are ho r i zon ta l and in F igure 4 (d ) we 
show the resu l t ing d i spa r i t y image, using 7x7 w indows , 
in wh ich the i nva l i d matches appear in black. In F igure 
4(e) we show another d ispar i t y image compu ted after 
hav ing sh i f ted one of the images ver t i ca l l y by t w o pixels, 
thereby degrad ing the ca l ib ra t ion and the cor re la t ion . 
Note t h a t the d i spa r i t y map becomes much sparser bu t 
t h a t no gross errors are i n t roduced . In pract ice, we take 
advantage of th is behav iour for poor ly ca l ib ra ted images: 
we compute several d ispar i t y maps by sh i f t i ng one of 
the images up or down and re ta in ing the same epip>olar 
l ines,3 thereby rep lac ing the l ine by a b a n d , and re ta in 
the highest scor ing va l id matches. 4 

In the two examples descr ibed above, we have shown 
tha t when the cor re la t ion between the t w o images o f 
a stereo pa i r is degraded our a l g o r i t h m tends, instead 
of m a k i n g mis takes, to y ie ld sparse maps. Genera l ly 

3assumed not to be exactly vertical 
4The precision of the computed distance is then obviously 

degraded, but remains qual i tat ively correct for large enough 
baselines. 

. The same scene seen from the left (b) and the r ight (c) so that 

speak ing, cor re la t ion based a lgo r i t hms rely on the fact 
t ha t the same tex tu re can be found at cor responding 
po in ts in the two images of a stereo pa i r and are k n o w n 
to fa i l when : 

• T h e areas to be corre lated have l i t t l e t ex tu re . 

• T h e d ispar i t ies va ry rap id l y w i t h i n the cor re la t ion 
w indow . 

• The re is an occ lus ion. 

I f we consider the local image t e x t u r e as a s ignal to be 
found in b o t h images, we can mode l these prob lems as 
noise t h a t co r rup ts the s ignal . In a compan ion repor t 
[Fua 9 l ] , we use syn the t i c d a t a to formal ize th is argu-
ment and show t h a t as the noise to s ignal r a t i o increases, 
or equiva lent ly , as the prob lems ment ioned above be­
come more acute, the per fo rmance of our cor re la t ion a l ­
g o r i t h m degrades gracefu l ly in the fo l l ow ing sense: 

As the s ignal is be ing degraded, t he dens i ty o f 
matches decreases accord ing ly b u t the r a t i o of 
correct to false matches remains h igh u n t i l th is 
p r o p o r t i o n has d ropped very low. 

In o ther words, a re la t i ve ly dense d i spa r i t y m a p is a guar-
antee t h a t the matches are correct , at least up to the pre­
cision al lowed by the reso lu t ion be ing used. In the repor t 
[Fua 9 l ] , we also show the effectiveness of a very s imple 
heur is t ic : i f we reject no t on ly inva l id matches b u t also 
isolated va l id matches we can increase even more the 
ra t i o co r rec t / i nco r rec t matches w i t h o u t losing a large 
number o f the correct answers. 

O the r stereo systems inc lude a va l i d i t y c r i te r ion s im­
i lar to ours b u t use i t as on ly one among many others. 
In our case, because we corre late over the whole image 
and no t on ly a t in terest or con tour po in ts , we do not 
need the other c r i t e r i a and can rely on densi ty alone. 
However, our va l i d i t y test depends on the fact t h a t i t is 
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Figure 3: (a) The result of matching 2(a) and 2(b) for window of 2(a) delimited by the white rectangle, (b) The result of 
matching 2(a) and 2(c) for the same windows, (c) The merger of four disparity maps computed using the image of Figure 2 
(a) as a reference frame, the two other images of 2 and two additional images. Invalid matches appear in white and become 
almost dense in occluded areas of (a) and (b). The closest areas are darker; note that they are few false matches although the 
correlation windows used in this case are very small (3x3). 

improbable to make the same mistake twice when cor­
relating in both directions and can potentially be fooled 
by repetitive patterns, which is a problem we have not 
addressed yet. 

2.2 H i e r a r c h i c a l A p p r o a c h a n d A d d i t i o n a l 
Images 

To increase the density of our potentially sparse dispar­
ity map, we use windows of a fixed size to perform the 
matching at several levels of resolution,5 which is al­
most equivalent to matching at one level of resolution 
with windows of different sizes as suggested by Kanade 
[Kanade et al. 90] but computationally more efficient. 
More precisely, as shown by Burt [Burt et al. 82], it 
amounts to performing the correlation using several fre­
quency bands of the image signal. 

We then merge the disparity maps by selecting, for ev-
ery pixel, the highest level of resolution for which a valid 
disparity has been found. In Figure 4 (c) we show the 
merger of the disparity maps for two levels of resolution 
that is dense and exhibits more of the fine details of the 
face than the map of figure 4 (e) computed using only 
the coarsest level of resolution. The reliability of our 
validity test allows us to deal very simply wi th several 
resolutions without having to introduce, as in [Kanade 
et al. 90] for example, a correction factor accounting for 
the fact that correlation scores for large windows tend 
to be inferior to those for small windows. 

The computation proceeds independently at all lev­
els of resolution and this is a departure from traditional 
hierarchical implementations that make use of the re­
sults generated at low resolution to guide the search at 

5Computed by subsampling gaussian smoothed images. 

higher resolutions. While this is a good method to reduce 
computation t ime, it assumes that the results generated 
at low resolution are more reliable, if less precise, than 
those generated at high resolution; this is a questionable 
assumption especially in the presence of occlusions. For 
example in the case of the trees of Figure 2, it could 
lead to a computed distance for the area between the 
trunks that would be approximately the same as that of 
the trunks themselves, which would be wrong. Further-
more, it can be shown [Fua 9 l ] that, in the absence of 
repetitive patterns, the output of our algorithm is not 
appreciably degraded by using the large disparity ranges 
that our approach requires. 

As suggested by several researchers, more than two im­
ages can and should be used whenever practical. When 
dealing wi th three images or more, we take the first one 
to be our reference frame, compute disparity maps for 
all pairs formed by this image and one of the others and 
merge these maps in the same way as those computed 
at different levels of resolution. In this way we can gen­
erate a dense disparity map, such as the one of Figure 
3 (c): the three images of Figure 2 belong to a series of 
five taken by an horizontally moving camera. Taking the 
image of 2(a) as our reference frame, we merge the four 
resulting disparity maps, each of them relatively sparse, 
to produce a dense map with few errors. 

In this section we have presented an hypothesis gener­
ation mechanism that produces depth maps that are cor­
rect where they are dense and unreliable only where they 
become very sparse. Typically these sparse measure­
ments occur in featureless areas that are usually smooth 
and at occlusion boundaries where one expects to find an 
image intensity edge. To fit a surface, one must therefore 
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Figure 4: (a) (b) Left and right 256x256 images of a face, (c) The disparity map obtained by merging the results computed 
at two levels of resolution, (d) Disparity map computed at the highest resolution, (e) Disparity map computed at the highest 
resolution after shifting the right up by one pixel, (f) Disparity map computed at the lower resolution. 

interpolate those measures in such a way as to propa­
gate the depth information in the featureless areas and 
preserve depth discontinuities. In the next section, we 
describe the model and algorithm we use to perform the 
interpolation. 

3 In te rpo la t i on 

We model the world as made of smooth surfaces sep­
arated by depth discontinuities. We also assume that 
these depth discontinuities produce gradients in grey 
level intensities due to changes in orientation and sur­
face material. We first describe a simple interpolation 
model that is well suited to images with sharp contrasts 
and then propose a refinement of that scheme for lower 
contrast scenes. 

3.1 S imp le I n t e r p o l a t i o n M o d e l 

Ideally, if we could measure with absolute reliability the 
depth, w0, at a number of locations in the image, we 
could compute a depth image w by minimizing the fol­

lowing criterion: 

(2) 

where cx and cy are two real numbers that control the 
amount of smoothing. 

As discussed in the previous section, when a valid dis 
parity can be found it is reliable and can be used, along 
with the camera models, to estimate ; we then take .s 
to be the normalized correlation score of Equation 1. As­
suming that changes in reflectance can be found at depth 
discontinuities, we replace the and of Equation 2, 
by terms that are inversely proportional to the image 
gradients in the x and y directions. In fact, we have ob­
served that the absolute magnitudes of the gradients are 
not as relevant to our analysis as their local relative mag 
nitudes: boundaries can be adequately characterized as 
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the locus of the strongest local gradients, independent of 
the actual value of these gradients. We therefore write: 

interpolated image: 

(3) 

where FNorm is the piecewise linear function defined by 

(4) 

and x0 and x1 are two constants. In all our examples, 
x0 IS the median value of x in the image and x1 its max-
imum value . The result is quite insensitive to the value 
chosen for x0 as long as it does not become so large as 
to force the algorithm to ignore all edges. What really 
matters is the monotoniaty of FNorm that allows the 
depth information to propagate faster in the directions 
of least image gradient and gives to the algorithm a be­
haviour somewhat similar to that of adaptative diffusion 
schemes (e.g [Perona et al. 87]). 

To compute W, the vector of all values of w, we dis-
cretize the quadratic criterion C of Equation 2; we then 
solve, using a conjugate gradient method [Szeliski 90; 
Terzopoulos 86], the linear equation 

(70 
In Figure 3.1, we show the depth map computed by in­
terpolating the disparity map of Figure 4(c). Note that 
the main features of the face, nose, eyebrows and mouth 
have been correctly recovered. 

This simple interpolation technique is appropriate for 
the face of Figure 4 that presents few low-contrast depth 
discontinuities but produces a somewhat blurry result for 
the tree scene of Figure 2, as can be seen in Figure 6(a) 
To improve upon this situation, we propose a slightly 
more elaborate interpolation scheme that takes depth 
discontinuities explicitly into account. 

3.2 I n t r o d u c i n g D e p t h D i scon t i nu i t i es 
The and coefficients defined by Equation 3 in­
troduce "soft" discontinuities: when the contrast is low, 
some smoothing occurs across the discontinuity. The 
depth image, however, is less smoothed than in the com-
plete absence of an edge resulting in a strong w gradient. 
We take advantage of this property of our "adaptative" 
smoothing by defining the following iterative scheme: 

1. Interpolate using the and defined above. 

2. Iterate the following procedure: 

(a) Recompute and as functions of both the 
intensity gradient and the depth gradient of the 

(6) 

where is a constant equal to 2 in our exam­
ples. 

(b) Interpolate again the raw disparity map using 
the new and coefficients 

The algorithm converges after a few iterations resulting 
in a much sharper depth map such as the one of Figure 
6(h). This algorithm can be regarded as a continuation 
method on the depth discontinuities. We start without 
knowing their location, use the grey level information to 
hypothesize them and then propagate the results. 

4 Conclus ion 
In this work we have described a correlation based algo­
r i thm that combines two simple and parallel techniques 
to yield reliable depth maps in the presence of depth 
discontinuities, occlusions and featureless areas: 

• The correlation is performed twice over the two 
images by reversing their roles and only matches 
that are consistent in both directions are retained, 
thereby guaranteeing a very low error rate 

• The disparity map is then interpolated using a tech­
nique that, takes advantage of the grey level infor-
mation present in the image to preserves depth dis­
continuities and propagate the information across 
featureless areas. 

The depth maps that we compute are qualitatively cor-
rect and the density of acceptable matches provides us 
with an excellent estimate of their reliability. Because 
of the great regularity and simplicity of the techniques 
described here,6 we hope to be able to build dedicated 
hardware that would implement them and could, for ex­
ample, be used by a mobile robot in an outdoor environ­
ment. 
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