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Abs t rac t 

This paper presents a region-based stereo 
matching algorithm, in which the regions are 
computed from the Gaussian (K) and mean 
(H) curvature information of the image inten­
sity surface. A region is defined as a connected 
area of constant K/H sign combination, and 
thus constitutes the footprint of a local section 
of the intensity surface, whose shape is a peak, 
a pit, a positive or a negative saddle. Region 
adjacency information is explicited by means 
of a Voronoi graph representation of the re­
gion map. Matching between nodes of iden­
tical shape types in the two region maps is es­
tablished by comparing the topological config­
uration of their immediate neighborhoods. The 
disparity map is established through a coarse-
to-fine strategy. 

1 I n t r o d u c t i o n 
Computing 3-D structure from two stereoscopic or con­
secutive images requires the establishing of one-to-one 
correspondences between images primitives originating 
from the same elements of the scene. It is therefore es­
sential to select, as primitives to be matched, image char­
acteristics which strongly correlate with significant scene 
descriptors. Experiments wi th random stereograms, first 
introduced by Julesz [Jule60], have demonstrated that 
binocular matching does not necessitate a preliminary 
stage of high-level monocular recognition and can be 
based on local image primitives only. They have also 
shown that human stereopsis can tolerate substantial dif-
ferences in intensity values and micropatterns between 
the two images. It is thus widely accepted that the cor­
respondence problem cannot be efficiently solved by di­
rectly matching intensity values. 

Techniques for solving the correspondence problem 
fall into two broad categories, namely the point-based 
and the region-based approaches. In the point-based 
category, Marr &: Poggio [MaPo79] proposed a theory 
of stereoscopic matching, using as primitives the zero-
crossings of the image convolved with a Laplacian of 
Gaussian operator at different spatial resolutions. False 
niatchings are minimized by means of a coarse-to-fine 

matching strategy, in which the disparity range is pro­
gressively reduced while the resolution is progressively 
increased. Mayhew & Frishy [MaFrSl] later showed that 
zero-crossings alone cannot explain the perception of 
stereograms corresponding to saw-tooth intensity grat­
ings and suggested using peaks of the intensity profile as 
additional matching primitives. Many other point-based 
matching algorithms were proposed. Some of them use 
correlation [GlRe83], some use edges [BaBi81; Grim85; 
OhKa85], others use segments [AyFa85], combinations 
of features [Weng89] or phase [jeJe89]. 

Region-based approaches involve extracting from the 
two images, areas which are uniform with respect to 
some image characteristics. Regions have been defined as 
areas of consistent grey-level intensity bounded by edges 
[LiBi87; CVSG89], of constant sign of the band-
pass operator, of morphologically detected local peaks 
and valleys [FuMa89], or of black and white intensity 
produced by the projection of a filtered random dot pat­
tern onto the scene [XuKT89]. 

Regional features possess certains advantages over 
points and lines. First, regions are more robust than 
edges because noise tends to perturb less a measurement 
taken over a region than one taken over its boundaries. 
This advantage was first noted by Nishihara [Nish83] 
who proposed a matching algorithm based on the re­
gions delimited by the zero-crossings contours of V 2 G * 7 . 
Second, the matching ambiguity problem should be less 
severe with regions because they give rise to a richer va­
riety of features than points and segments. Th i rd , occlu­
sions have a more radical effect on points and lines than 
on two-dimensional primitives and should thus be less 
detrimental to the matching performance of a region-
based matching algorithm. Finally, image descriptions 
in terms of regions implicit ly contain region-adjacency 
information, which can be captured in a graph represen­
tation and constitute a powerful means of matching and 
disambiguation. 

This paper presents a region-based matching algo-
r i thm, in which the regions are computed from the Gaus­
sian (K) and mean (H) curvature information of the im­
age intensity surface. A region is defined as a connected 
area of constant K/H sign combination, and thus con­
stitutes the footprint of a local section of the intensity 
surface, whose shape is a peak, a pi t , a positive or a 
negative saddle, depending on the particular K/H sign 
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combination [BeJa86]. Region adjacency information is 
explicited by means of a Voronoi neighborhood graph 
representation of the region map (or equivalently, the 
Delaunay triangulation) [PrSh88]. Each node is labelled 
wi th a feature vector which contains the shape type, 
the size and the mean intensity of the corresponding re­
gion , while the arc joining two adjacent nodes is labelled 
wi th the relative position of the corresponding regions. 
Matching, between nodes of identical shape types and 
similar average intensity, is established by comparing 
the topological configurations of their immediate neigh­
borhoods. The disparity map is established through a 
coarse-to-fine strategy: regions are first extracted and 
matched at a coarser resolution in order to compute a 
rough estimate of the disparity map, which is then used 
to drive the matching procedure and the disparity com­
putation at a finer level. 

The use of Gaussian and mean curvature information 
to define the region primitives can be justified in several 
ways. First, since regions are areas of constant K/H 
sign combinations, their boundaries partially consist of 
the zero-crossings that would be used by an edge-based 
matching algorithm. However region boundaries are not 
l imited to zero-crossings, and thus constitute a denser 
set of image elements. Second, the fact that K/H re-
gions implicit ly contain information about peaks of the 
intensity surfaces fits well with the argument that peaks 
of the intensity signal are useful primitives for stereopsis 
[MaFr8l] . Th i rd , since Gaussian and mean curvatures 
constitute surface characteristics which remain invariant 
under a change of viewpoint, they should provide a sta­
ble description of the image intensity surface, in areas of 
quasi-Lambertian behavior. 

Section 2 of this paper gives a brief outline of the com­
plete matching algorithm, while sections 3 and A describe 
in more details the computation of the region map and 
the matching strategy respectively. Section 5 presents 
and discusses results obtained wi th real image pairs. 

2 A l g o r i t h m Ou t l i ne 
The matching algorithm uses a coarse-to-fine strategy, 
which progressively increases the resolution and refines 
the disparity map estimation, using the local disparity 
obtained at a coarser level to drive the correspondence 
search at the next finer level. Each of the resolution 
stages consists of three different steps: (1) a region map 
extraction step, (2) a region matching step, and (3) a 
disparity map computation step. 

The region map extraction step consists of all the pro-
cessing operations required to select the proper level of 
resolution (Gaussian fi ltering), to compute the signs of 
the Gaussian and mean curvature of the intensity surface 
at each pixel location, to establish the modified Voronoi 
diagram of the curvature regions, and to label the nodes 
and the arcs of the diagram wi th the necessary intra-
regional (shape type, size, mean intensity) and inter­
regional (relative position) parameters respectively. The 
modified Voronoi diagram, together wi th the node and 
arc labels, constitute the region map. 

The region matching procedure is applied to regions of 
the two images which are of the same shape type and of 

similar average intensities. It starts with an init ial, possi­
bly ambiguous, matching of regions based on a similarity 
measure of their neighborhood topology. In accordance 
wi th other multi-resolution strategies, the search for a 
match is conducted in a window, whose size is propor­
tional to the current Gaussian parameter, centered at the 
local disparity value inherited from the coarser resolution 
level (a zero disparity value is assumed at the coarsest 
level). This first attempt may produce three types of re­
sults: a one-to-one match, an ambiguous (one-to-several) 
match, or a no-match result. For a one-to-one match, a 
disparity vector is computed. Ambiguous (one-
to-several) matches are further treated by a recursive 
disambiguation procedure, which consists of choosing, 
among all the matching alternatives for a node, the one 
whose disparity best agrees wi th those of the currently 
validated (i.e. one-to-one) matches within the Voronoi 
neighborhood. An attempt is then made to reduce the 
amount of unmatched nodes, using a relaxed procedure 
(i.e. reduced search window and more tolerant dissim­
i larity test) which tries to find, for each such node, a 
one-to-one match around a disparity value in agreement 
wi th those of its Voronoi neighbors. 

The disparity computation step consists of establish­
ing, through interpolation, a dense disparity map at the 
current resolution stage. In order to prevent undesirable 
blurring across discontinuities, the interpolation proce­
dure uses both the node disparity map established at the 
preceding step and an edge map obtained by means of a 
recursive edge detection operator [ShCa86]. 

The next two sections give details concerning the map 
extraction and the region matching steps. 

3 Region M a p Ex t rac t i on 
3.1 C o m p u t a t i o n o f Gauss ian and M e a n 

C u r v a t u r e s 
Scale selection is accomplished by Gaussian filtering of 
the intensity values, i.e. by convolving the image inten­
sity wi th the gaussian kernel: 

(1) 

The Gaussian ( A ) and the mean (H) curvatures are 
computed from the values of the first and second deriva­
tives of the filtered intensity surface, according to the 
expressions: 

Computation of the derivatives requires a continuously 
differentiable intensity function. This can be accom­
plished by least-squares f i t t ing a quadratic surface over 
a 5 x 5 neighborhood centered at each location. The 
derivatives needed to calculate K and H are then given 
by the coefficients of the basis functions obtained in per­
forming the fit [BoCo84]. 

Audette, Cohen, and Weng 1287 



(a) image 1 image 2 

(b) image 1 image 2 

Figure 1: Region map extraction: (a) Original monocu­
lar pair; (b) Regions obtained at coarse resolution level 

The four shape types are represented by four 
different grey-levels. 

3.2 D e f i n i t i o n o f C u r v a t u r e Regions 

Regions of constant K/ H signs are then extracted by 
thresholding. Each region is the footprint of one among 
four possible shape primitives: a peak , a 
p i t a negat ive saddle  
and a pos i t i ve saddle In fact, H and 
K values must be thresholded in order to confer to the 
region map some immunity to insignificant changes in 
curvature sign, caused by viewpoint changes in nearly 
flat areas of the intensity surface. In general, regions 
corresponding to positive or negative saddle shapes tend 
to be more elongated than those corresponding to peaks 
or pits. Since the later step of region matching will result 
in the association of a disparity value to a central loca-
tion of each region (its centroid or maximum curvature 
location), it is desirable to keep all regions reasonably 
compact. Consequently, the thresholds on K/H must 
be selected so as to generate saddle regions whose com­
pactness remains comparable to that of peaks and pits. 
Once properly detected, all the curvature regions Rn of 
each image are indexed by means of a component la­
belling routine. Figure 1 (a), (b) shows a temporal pair 
of images and the corresponding regions extracted at the 
coarsest level of resolution. 

3.3 D e f i n i t i o n o f Reg iona l Features 

Four intra-regional features are associated with each re­
gion Rn: its shape type its average intensity  

its area Sn and the position (xn,yn) of its extremum 
of Gaussian curvature (called region principal point in 
the rest of the text). This last feature is not used dur­
ing the matching procedure, but serves as anchor point 
of the region, in the computation of the local disparity. 
The location of curvature extremum is a better anchor 
point than the region centroid, because it tends to be 
less affected by changes of the region shape, induced by 
variations of the curvature threshold. A f i f th regional 
feature, called the Neighborhood Matr ix NMn is de­
fined in order to summarize information about the re­
gion immediate neighborhood. Its computation requires 
the transformation of the set of regions into a graph in 
which region adjacency is explicited. A natural choice 
for this graph is the modified Voronoi diagram [ToY088; 
PrSh88] of the curvature regions. Each node of the graph 
corresponds to a particular curvature region Rn and co-
incides with the location of its principal point. 
It is labelled with the set of the four regional features 

The aspects of the neighborhood information which 
are conveyed by the Neighborhood Matr ix NMn are the 
locations of Voronoi neighbors, as well as their own in-
traregional characteristics, namely their shape type, area 
and average intensity. This choice of characteristics is 
justified by the consistency of the relative position and 
orientation of each neighbor under changing viewpoint, 
as noticeable in the example of Figure 1. The area 
around the region under consideration is divided into 
16 sectors and the neighbors are sorted according to the 
sector in which they fall. The matrix NMn consists of 
16 rows: the kth row enumerates the four characteristics 
of the closest neighbor whose principal point falls in the 
kth sector, namely 

: an integer (between 1 and 4) indi­
cating the shape type of the neighbor, 

: its area, 
: its distance from the central region 

: its average intensity. 

If no Voronoi neighbor falls into a sector, its corre­
sponding row is empty. 

4 Region M a t c h i n g and D ispa r i t y 
C o m p u t a t i o n 

4.1 M a t c h i n g C r i t e r i o n 
The matching strategy consists of associating regions Rn 
and Rn' of the two images (i.e. nodes of the two region 
maps) which are of the same shape type and have highly 
similar neighborhoods: 

(4) 
where enn* is a measure of the dissimilarity between the 
two neighborhood matrices NMn and NMn', and ynn' 
represents the absolute difference in average intensity be­
tween the two regions. Comparing the two neighborhood 
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matr ices cou ld consist o f compar ing each row of the f i rs t 
m a t r i x to the cor respond ing row in the second one, wh i ch 
wou ld a m o u n t to compar i ng Vorono i neighbors wh i ch fa l l 
in i den t i ca l sectors in t he lef t and r i gh t images. Such a 
compar ison w o u l d be t o o s t r i c t however, since i t wou ld 
no t a l low any va r i a t i on in ne ighborhood o r i en ta t i on un ­
der v i e w p o i n t change. In order to confer some f lex ib i l i ty 
to the compar ison , the d i ss im i l a r i t y measure is defined 
as: 

(5) 

where 

C is a normalizing constant and designates modulo-16 
addition operator. The min operator in expression (6) is 
used to allow a relative rotation of one sector in either 
direction, when comparing neighbors in the two region 
maps. (k) is a penalty measure which takes into ac-
count differences in shape type, size, relative distance 
and mean intensity between the two neighbors under 
comparison. It uses threshold-type compatibil ity func­
tions defined as follows: 

(7) 

T y p e c o m p a t i b i l i t y is t hus assumed i f and on ly i f 
the shape types of the t w o neighbors under consid­
e ra t ion are i den t i ca l . 

(8) 

where tarea is a relative area threshold (typically 
30 %) which l imits the acceptable size discrepancy 
between compatible neighbors. 

D is tance C o m p a t i b i l i t y F u n c t i o n  

(9) 
where tdist is an absolute threshold (typically 5 pix­
els) which l imits the tolerable discrepancy of dis­
tance to the two central regions. 

• I n t e n s i t y C o m p a t i b i l i t y F u n c t i o n  

(10) 
where tint is an absolute threshold (typically 8 grey 
levels, out of 256) which l imits the tolerable dis-
crepancy between average intensity of compatible 
neighbors. 

Figure 2 : S ta t i s t i ca l d i s t r i bu t i ons o f the d iss im i la r i t y 
measure under m a t c h and no -ma tch assumpt ions 

The abil i ty of the dissimilarity measure to cor­
rectly match regions of the two images is illustrated in 
Figure 2, which represents the statistical distributions 
of for matching and unmatching regions. A dis­
criminating threshold can be easily defined to minimize 
the probability of misclassification. The inclusion in the 
matching criterion (4) of a test on the average intensities 
of the central regions Rn and Rn, aims at increasing the 
robustness to occlusion errors, which would otherwise oc­
cur if type and neighborhood alone were used. 

4.2 M a t c h i n g P r o c e d u r e 

As mentioned in section 2, a first step of the matching 
procedure consists of selecting, for each region (node) 
of the first image, all potential matching nodes in the 
second image within a search window whose size de­
creases with increasing resolution. Potential matches are 
selected on the basis of the dissimilarity measure En n ' , 
using a decision threshold established by analysis of the 
distributions of Figure 2 (typically set to 0.80). At coarse 
resolution, a large search window (128-pixel wide for a 
512x512 image) is used, since no a priori disparity infor­
mation is available at this level. A square window is used 
in the case of temporal image pairs, while in the stereo 
case the epipolar constraint allows a reduction of the 
window height. Since matching is done between regions 
and not point features, the window cannot be reduced 
to one line segment but necessitates a height of a few 
pixels (typically 12), in order to allow for fluctuations in 
the position of the region principal points. 

An efficient search strategy is an important consid­
eration when matching discrete primitives. A bucket­
ing technique is used to sort each region node according 
to the location of its principal point. The image plane 
is first divided into tiles, each of 4 x 4 pixels. A re­
gion whose principal point falls wi thin a tile has its label 
stored in a memory location corresponding to this tile. 
The search window is centered at the tile which coincides 
with either the position of the region to be matched (at 
coarse resolution), or with this position offset by the cur-
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Table 1: Matching score sensitivity to parameters varia-
tions (upper left: number of good matchings; lower right: 
number of false matchings; total number of regions: 481) 

(a) (b) 

rent disparity estimate (at higher resolutions). 
In order to disambiguate between multiple potential 

matches, a disparity continuity constraint is applied, us­
ing neighboring information within an iterative proce­
dure. For each region, a disparity estimate is established 
using the median of the disparity values of the currently 
validated neighboring matches. Taking the median of 
x- and y-components of the disparity values rather than 
their mean provides some immunity to outliers. Compar­
ing then the disparity estimate with all corresponding 
potential matches allows us to select the match whose 
actual disparity is the closest to the estimate. This dis­
ambiguation step is allowed to iterate unti l there is no 
change in the number of validated matches. 

The disparity continuity constraint is also used to force 
additional matches at the same resolution. For each un-
matched region, a disparity estimate is established by 
taking a weighted average of the disparity values of the 
validated neighbors. Each weight is inversely propor-
tional the distance and is normalized so 
that all weights sum to 1. The search window is centered 
on the tile corresponding to the principal point position 
offset by this new estimate, the window size radius is 
reduced, and the dissimilarity threshold is increased. 

5 R e s u l t s a n d D i s c u s s i o n 

Table 1 illustrates the performance of the matching pro-
cedure, in the case of the temporal image pair of Figure 1, 
under variations of the dissimilarity measure parameters, 
and shows that the choice of such parameters does not 
critically affect the performance of the algorithm. 

Figure 3 illustrates the kind of results obtained with 
a stereo pair and with the temporal pair of Figure 1, at 
a finer resolution level . The left original stereo 
image is featured in (a), and its corresponding disparity 

(c) (d) 

Figure 3: Disparity map: (a) original left image (stereo 
pair), (b) finer level dense disparity map (stereo 
pair); (c) finer level sparse disparity map, with 
edge map used to inhibit interpolation (temporal pair); 
(d) finer level dense disparity map (temporal pair) 

map is plotted in (b). To demonstrate the density of the 
results extracted at this scale, a sparse density map for 
the temporal pair is shown in Figure 3 (c), where inten­
sity is inversely proportional to the disparity value and 
thus proportional to range. The edge map used to in­
hibit interpolation is also shown in Figure 3 (c). Finally, 
Figure 3 (d) features a plot of the dense disparity map, 
for the temporal pair. The disparity values extracted for 
every region at the coarsest resolution are used to drive 
the matching at the finer one. 

The interpolation scheme used here is based on Sinha 
& Schunck's method [SiSc89; SiSc90], which uses a 
least-median-squares approximation stage followed by a 
weighted bicubic spline interpolation stage. The approx­
imation performs a fit at each point defined on a regular 
grid, using nearby (irregularly spaced) sparse disparity 
data. This f i t t ing provides regularly spaced disparity 
values, which are necessary for a spline-based surface in­
terpolation. 

We modify the approximation stage as follows: we dis­
count any disparity value defined at a point which lies 
across a discontinuity from the point where we are per­
forming the fit. The motivation for this modification to 
the approximation scheme is that least-median-squares 
f i t t ing provides noise immunity by ignoring outliers in 
the disparity data, but near discontinuities the number of 
outliers approaches the number of disparity values over 
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which it is desirable to perform the fit. The f i t t ing step 
yields a value consistent with the majority of neighbor­
ing points, and this would produce an incorrect disparity 
estimate if this value were dictated by undesirable points 
(e.g.: points lying outside of the boundary of an object 
over which we are f i t t ing), if they were not eliminated. 

6 Conclusion 
This paper has described a region-based stereo matching 

algorithm, in which the regions are defined as areas of 
the intensity surface having constant-sign Gaussian (K) 
and mean (H) curvatures. Region adjacency information 
is explicited by means of a Voronoi graph representation 
of the region map. Matching between nodes of identi­
cal shape type in the two region maps is established by 
comparing the topological configuration of their imme­
diate neighborhoods. The disparity map is established 
through a coarse-to-fine strategy. A l l operations con­
cerning region map extraction and regional feature cal­
culation involve simple local computations, and make the 
algorithm suitable for efficient parallel implementation. 
Results presented indicate that the algorithm is reliable 
and produces dense disparity maps. Further experiments 
are under way in order to assess the performance in a 
wide range of situations. 
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