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Abstract 

We describe a new approach for reasoning with belief 
functions in this paper. This approach is fundamentally 
unrelated to probabilities and is consistent with Shafer 
and Tversky's canonical examples. 

1 Introduct ion 

Belief functions [Shafer, 1976; Smets, 1988] serve as a way 
to quantify human beliefs. It is a non-additive formalism. 
That is, where A is a set formalizing 
some proposition and Ac is A's complement with respect to 
some underlying universe of discourse. This is different 
from probability theory where is assumed. 
The reasoning mechanism of belief functions consists of 
two rules: Dempster's rule of conditioning allows us to 
update a given belief function in light of new information 
about the actual situation, whereas Dempster's rule of 
combination al lows us to combine "dist inct" or 
"independent" belief functions [Shafer, 1976; Smets, 1990].1 

Researchers interested in belief functions often try to 
understand this formalism from the perspectives of 
probability theory (e.g., [Halpern and Fagin, 1990; Kyburg 
1987; Nguyen, 1978; Pearl, 1988, Chapter 9]). This is 
understandable, as the origin of belief functions lies in the 
seminal paper of Dempster [1967], where he set out to study 
a particular subclass of upper and lower probabilities. 
However, Dempster's original view of belief functions is 
nowhere to be found in Shafer's 1976 monograph, where he 
offered a re-interpretation of Dempster's work and coined this 
formalism the term "belief functions." 

Nevertheless, three questions about belief functions are of 
interests. One, why should human beliefs be quantified by 
belief functions? Two, why should Dempster's rule of 
conditioning be used for updating belief functions? Three, 
when is Dempster's rule of combination applicable in 

* This work was supported in part by the DRUMS project funded 
by the Commission of the European Communities under the 
ESPRIT Il-Program, Basic Research Project 3085. 
f o r m a l l y , Dempster's rule of conditioning is a special case of 
Dempster's rule of combination. However, the underlying 
intuitions are completely different. One is concerned with 
belief updating, whi le the other is concerned with belief 
combination. 

combining belief functions "representing" evidence? 
Shafer and Tversky [1985] used canonical examples to 

answer the first and third questions, and their approach is not 
too far away from Dempster's original ideas.2 In essence, 
Shafer and Tversky's approach is that we first compute the 
probability distribution on a space and then, by 
establishing a special relationship between and a second 
space we obtain our belief (a belief function) on  

As we see it, there may be two drawbacks with Shafer and 
Tversky's canonical examples. The first drawback is that 
one may be tempted to question the legitimacy of using 
Dempster's rule of conditioning for updating the belief 
function on Because if we view the belief function on 

as the lower bound of a family of probabilities on 
(which is something we are not obliged to do, and both 
Shafer [19901 and Smets [1990] have explicitly rejected this 
idea), then we wi l l have to use a different conditioning rule 
[Dempster, 1967; Fagin and Halpern, 1990; Jaffray, 1990]. 
The second drawback is more pragmatic in nature: as Shafer 
and Tversky only offered a pragmatic recommendation for 
reasoning with belief functions, it does not make belief 
functions adequately "protected" against potential misuse of 
this theory. In other words, one might stil l use belief 
functions (Dempster's rule of combination in particular) in a 
way that does not correspond to the canonical examples (see, 
for example, the analysis of [Pearl, 1990]). 

In an attempt to remedy these drawbacks of the current 
belief-function framework (in the sense of Shafer and 
Tversky), we propose a radical "restructuring" of this 
framework as follows. First, we take away Dempster's rule 
of combination and make Dempster's rule of conditioning 
the one and only way for making inferences. Then, we 
suggest that we construct a belief function that is 
"minimum committed" in characterizing our intuitions.3 

The benefits of our approach for reasoning with belief 
functions are four-fold. The first benefit is that we can now 
use belief functions directly. No references to probabilities 
are needed. The second benefit is that as belief functions arc 
no longer linked to probabilities, there is no more reason 
why we should reject the use of Dempster's rule of 

2 But see [Halpern and Fagin, 1990; Ruspini, 1987; Smets, 
1990] for some alternative answers. 
3A belief function Bel1 is not as committed as a belief function 
Bel2 if and only if for every proposition  
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conditioning for updating belief functions.4 The third 
benefit is that we can now use Dempster's rule of 
conditioning to justify Dempster's rule of combination, 
thereby investigating the issue of "when is Dempster's rule 
of combination applicable?". The fourth and final benefit is 
that our restructured belief-function framework is more 
"robust" against potential misuse of belief functions. 
Because now whenever one wants to use Dempster's rule of 
combination to combine belief functions within our 
framework, he or she wi l l have to explicitly justify the use 
of this rule. Without such a justif ication, the use of 
Dempster's rule of combination would only amount to what 
we call "inappropriate use of Dempster's rule of 
combination." 

The reader might rightfully ask at this point: is this 
proposed reasoning approach consistent with Shafer and 
Tversky's canonical examples? The answer is "yes", and we 
wi l l give more detail about this answer later in the paper. 

The remainder of this paper is organized as follows. 
Sections Two and Three describe our restructured belief-
function framework. Section Four shows that our approach 
is consistent with Shafer and Tvcrsky's canonical examples. 
Finally, Section Five concludes. 

2 Basic concepts 

The purpose of this section is to introduce the basic 
concepts of belief functions. We wish to emphasize the fact 
that only Dempsters rule of conditioning is introduced here, 
as Dempster's rule of combination is no longer considered an 
integrated part of our belief-function framework. 

Let X = (X1 X2, ..., XN) be a finite non-empty set of 
variables and let Θ 1 ,Θ2, . . . , ΘN be the respective frames of 
these variables (each Θi is a finite non-empty set of values 
Xi can take; these values arc mutually exclusive and 
exhaustive). Xi is boolean if Θ = [Yes, No) . Let h be a 

non-empty subset of X.Θh is the Cartesian product of the 
frames of the elements of h. Θx, the set of all possible 
situations, is abbreviated as 0. By the "Xi-value" (1 < i < 
N) of an element <a1, a 2 , . . . , aN> of Θ, we mean ai. 

We wi l l need to work with subsets of Θ in specifying a 
belief function. However, it is often desirable that we only 
work with some of the variables in specifying a particular 
fragment of our belief. Therefore we allow the use of 
logical formulas in referring to subsets of 0, and we list in 
the appendix the formal correspondence between f, a 
formula, and [ f j , f s corresponding subset of 0. This allows 
us to use a notation like [(Rain = Yes) (Wet = Yes)] to 
refer to Θ "minus" all those situations (elements of S) that 
have Rain-value Yes and Wet-value No. It also allows us to 
use [-.(Temp = high)] in referring to S "minus" all those 
situations (elements of Θ) that have Temp-value high. This 

4We acknowledge that this does not make Dempster's rule of 
conditioning any more feasible than any other updating rule one 
might think of. However, the point here is that Dempster's rule 
of conditioning now becomes as competitive as any other 
updating rule. What we need to do, then, is perhaps to find some 
axiomatic justification of this rule. 

is a rather effective way to refer to subsets of 0. (In 
addition, we wi l l use "Rain" as a shorthand for "Rain = Yes" 
in the case of boolean variables.) This way, we can 
unambiguously refer to subsets of 0 without committing 

ourselves to explicitly stating what variables are in x. 

A belief function on 0 is a function Bel: 2Θ —» [0, 1] 
which is characterized by an m-value function m B e l (written 
as "m" whenever confusions can be avoided; m is also called 
"the m-values of Bel"), where m: 2Θ -* [0, 1] satisfies two 
conditions: 

and for every subset B of 0, Bel(B) is defined as 
m(A).5 A subset A of 0 is called a focal element 

of Bel if m(A) > 0. When Bel is such that m(0 ) = 1, we 
call Bel the vacuous belief function. 

Intuitively, means that "I believe that the 
actual situation is one of the situations in A, and c 
corresponds to how confident I am in entertaining this 
belief', Bel(A) = 0 means that "I do not entertain the belief 
that the actual situation is one of the situations in A",6 and 
m(A) = d means that "in the course of establishing Bel, A is 
found to be the most specific subset of 0 that deserves this 
particular amount (d) of intuitive support." As such, Bel 
serves to characterize (part of) some distinguished state of 
mind, with m being the "internal structure" of Bel. 

Once we accept this intuitive view of Bel and m, it is 
only natural that we extend this intuitive interpretation to 
Bel(. I B) and m(. I B), where, for example, Bel(A I B) = c> 
0 means that "given that the actual situation is in B, I 
believe that the actual situation is in A, and c corresponds to 
how confident I am in entertaining this belief." This gives 
rise to the following conditioning rule known as Dempster's 
rule of conditioning [Shafer, 1976]. Let Bel be a belief 
function on 0 and m be its associated m-values. Let B be a 
non-empty subset of 0 such that Bel(Bc) =/1. 

5This definit ion is consistent wi th [Shafer, 1976]. Smets 
[1988] has a slightly more general definition (called an "open 
world" definition) in which m ( 0 ) does not have to be 0 and 
Bcl(A) is defined as the sum of the m-values of those non-empty 
subsets of A. 
6Consider the belief that the actual situation is in A. Here, 
according to our interpretation, an agent either entertains this 
belief or does not entertain this belief. And when the agent does 
entertain this belief, he/she/it is entitled to a degree of 
confidence (c) in doing so. In other words, we do not think of 
Bel(A) as the extent to which an agent entertains this belief. 

Hsia 1185 



committed as we thought as a 
whole deserves this much (s) intuitive support and we did 
not want to further "split" s among the elements of 
now we learn that the actual situation is in B; as a result, we 
decide that C should "inherit" s, as we still think C as a 
whole deserves this much intuitive support and we still do 
not want to further "split" s among the elements of C. 
Second perspective originally we considered C the 
most specific subset of B that deserves now we 
learn that the actual situation is not in B c ; as our intuitions 
satisfy rationality requires 
that we make zero and redistribute v in some way; 
what we do then is that we redistribute v among the focal 
elements of by proportions - a normalization 
process that is similar in spirit to what Bayes' rule of 
conditioning does. 

3 A reasoning paradigm 

Now we are in the position to present our approach for 
reasoning with belief functions. We start by posing the 
following question: suppose we are able to come up with 
fragmentary specifications of what our intuitions satisfy, 
where a fragmentary specification is either a marginal (e.g., 
Bel([WET]) = 0), a conditional (e.g., Bel([RAIN] I [WET]) = 
.3), or a mathematical relation among some of the marginals 
and conditionals 
[RAIN])) , how should the system make inferences from 
these fragmentary specifications? 

In answering this question, we simply regard all 
fragmentary specifications as constraints that a belief 
function must satisfy, and we ask the system to identify or 
construct a belief function that has the minimum 
commitment property (defined below) among all belief 
functions satisfying the specified constraints; if there is such 
a belief function, the system uses it to make inferences (by 
conditioning this belief function on the current context -
information we currently have about the actual situation); if 
such a belief function does not exist, something else would 
have to be done, and we wi l l briefly discuss about this 
problem in Section Five. 

Why this principle? Wel l , assuming that the user was 
serious in providing the fragmentary specifications (i.e., 
constraints that his or her intuition satisfies), we think that 
the principle of minimum commitment can serve as a useful 
"general agreement" between the user and the system. In 

'Formally, the principle of minimum commitment is a variant 
of the principle of minimum specificity [Dubois and Prade, 
1986a]. 
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8Shafer [1987] also requires that  
9That is, we assume that the system has some pre-processing 
ability and, as such, it can assist us in making fragmentary 
specifications 
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5 Conclusion 

So what have we achieved? We have restructured the current 
belief-function framework in such a way that belief 
functions are no longer linked to probabilities. We have 
also provided some ingredients that we feel arc necessary in 
order to reason with belief functions. Our reasoning 
approach, as we have demonstrated in the last section, is in 
line (at least on the formal level) with Shafer and Tverskys 
recommendation for reasoning with belief functions. It is 
also not terribly limited, as formally both propositional 
logic and (Bayesian) probability may be viewed as special 
applications of this reasoning approach [Hsia, 1990].10 

Nevertheless, we did not provide a specification 
methodology that, when followed, would allow the system 
to obtain a minimum committed belief function from the 
specified constraints. This, however, does not render our 
belief-function framework useless. In fact, what we have 
achieved is the setting up of a formal framework that would 
allow researchers to identify various specification 
methodologies (e.g., a generalized canonical example) that 
can be used under different circumstances. 

As for the problem of finding a genera! specification 
methodology that we can use in tackling any problem, we 
do not consider it feasible in pursuing in this direction. The 
now famous Republican-Quaker-Pacifist problem is a good 
example. What should the system do if the user does not 
specify As it is 
entirely possible that the user himself/herself cannot make 
up his/her mind about these two values, there is no reason 
why the system should come up with an "answer". How, 
then, should we go about it in performing reasoning in such 
cases? One possible alternative may be to ask the system to 
infer properties that are shared by all minimally committed 
belief functions satisfying the same set of constraints. This 
appears to be an issue that is worthy of further explorations. 

essence, propositional logic corresponds to the case in 
which we only specify constraints of the form 
whereas Bayesian probability corresponds to a complete 
specification of prior probabilities and conditional 
probabilities. 
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