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Abstract

We describe a new approach for reasoning with belief
functions in this paper. This approach is fundamentally
unrelated to probabilities and is consistent with Shafer
and Tversky's canonical examples.

1 Introduction

Belief functions [Shafer, 1976; Smets, 1988] serve as a way
to quantify human beliefs. It is a non-additive formalism.
That is, Bet(A) + Bel{A®} < 1, where A is a set formalizing
some proposition and A° is A's complement with respect to
some underlying universe of discourse. This is different
from probability theory where P(A) + P(AS) = 1 is assumed.
The reasoning mechanism of belief functions consists of
two rules: Dempster's rule of conditioning allows us to
update a given belief function in light of new information
about the actual situation, whereas Dempster's rule of
combination allows us to combine "distinct" or
"independent" belief functions [Shafer, 1976; Smets, 1990].1

Researchers interested in belief functions often try to
understand this formalism from the perspectives of
probability theory (e.g., [Halpern and Fagin, 1990; Kyburg
1987; Nguyen, 1978; Pearl, 1988, Chapter 9]). This is
understandable, as the origin of belief functions lies in the
seminal paper of Dempster [1967], where he set out to study
a particular subclass of upper and lower probabilities.
However, Dempster's original view of belief functions is
nowhere to be found in Shafer's 1976 monograph, where he
offered a re-interpretation of Dempster's work and coined this
formalism the term "belief functions."

Nevertheless, three questions about belief functions are of
interests. One, why should human beliefs be quantified by
belief functions? Two, why should Dempster's rule of
conditioning be used for updating belief functions? Three,
when is Dempster's rule of combination applicable in

* This work was supported in part by the DRUMS project funded
by the Commission of the European Communities under the
ESPRIT IlI-Program, Basic Research Project 3085.

formally, Dempster's rule of conditioning is a special case of
Dempster's rule of combination. However, the underlying
intuitions are completely different. One is concerned with
belief updating, while the other is concerned with belief
combination.
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combining belief functions "representing" evidence?

Shafer and Tversky [1985] used canonical examples to
answer the first and third questions, and their approach is not
too far away from Dempster's original ideas.? In essence,
Shafer and Tversky's approach is that we first compute the
probability distribution on a space &1, and then, by
establishing a special relationship between € and a second
space &9, we obtain our belief (a belief function) on &2.

As we see it, there may be two drawbacks with Shafer and
Tversky's canonical examples. The first drawback is that
one may be tempted to question the legitimacy of using
Dempster's rule of conditioning for updating the belief
function on ©7. Because if we view the belief function on
83 as the lower bound of a family of probabilities on &2
(which is something we are not obliged to do, and both
Shafer [19901 and Smets [1990] have explicitly rejected this
idea), then we will have to use a different conditioning rule
[Dempster, 1967; Fagin and Halpern, 1990; Jaffray, 1990].
The second drawback is more pragmatic in nature: as Shafer
and Tversky only offered a pragmatic recommendation for
reasoning with belief functions, it does not make belief
functions adequately "protected" against potential misuse of
this theory. In other words, one might still use belief
functions (Dempster's rule of combination in particular) in a
way that does not correspond to the canonical examples (see,
for example, the analysis of [Pearl, 1990]).

In an attempt to remedy these drawbacks of the current
belief-function framework (in the sense of Shafer and
Tversky), we propose a radical "restructuring" of this
framework as follows. First, we take away Dempster's rule
of combination and make Dempster's rule of conditioning
the one and only way for making inferences. Then, we
suggest that we construct a belief function that is
"minimum committed" in characterizing our intuitions.®

The benefits of our approach for reasoning with belief
functions are four-fold. The first benefit is that we can now
use belief functions directly. No references to probabilities
are needed. The second benefit is that as belief functions arc
no longer linked to probabilities, there is no more reason
why we should reject the use of Dempster's rule of

2But see [Halpern and Fagin, 1990; Ruspini, 1987; Smets,
1990] for some alternative answers.

3A belief function Bely is not as committed as a belief function
Bel2 if and only if for every proposition A, Bel{(A) € Bel2(A).



conditioning for updating belief functions.* The third
benefit is that we can now use Dempster's rule of
conditioning to justify Dempster's rule of combination,
thereby investigating the issue of "when is Dempster's rule
of combination applicable?". The fourth and final benefit is
that our restructured belief-function framework is more
"robust" against potential misuse of belief functions.
Because now whenever one wants to use Dempster's rule of
combination to combine belief functions within our
framework, he or she will have to explicitly justify the use
of this rule. Without such a justification, the use of
Dempster's rule of combination would only amount to what
we call "inappropriate use of Dempster's rule of
combination.”

The reader might rightfully ask at this point: is this
proposed reasoning approach consistent with Shafer and
Tversky's canonical examples? The answer is "yes", and we
will give more detail about this answer later in the paper.

The remainder of this paper is organized as follows.
Sections Two and Three describe our restructured belief-
function framework. Section Four shows that our approach
is consistent with Shafer and Tvcrsky's canonical examples.
Finally, Section Five concludes.

2 Basic concepts

The purpose of this section is to introduce the basic
concepts of belief functions. We wish to emphasize the fact
that only Dempsters rule of conditioning is introduced here,
as Dempster's rule of combination is no longer considered an
integrated part of our belief-function framework.

Let X = (X; X2, ..., XN) be a finite non-empty set of
variables and let ©,,02,..., ©ON be the respective frames of
these variables (each @i is a finite non-empty set of values
Xi can take; these values arc mutually exclusive and
exhaustive). Xi is boolean if © = [Yes, No). Let h be a

non-empty subset of X.©, is the Cartesian product of the
frames of the elements of h. ©x, the set of all possible
situations, is abbreviated as 0. By the "Xi-value" (1 <i <
N) of an element <ay, a,,..., aN> of @, we mean a;.

We will need to work with subsets of © in specifying a
belief function. However, it is often desirable that we only
work with some of the variables in specifying a particular
fragment of our belief. Therefore we allow the use of
logical formulas in referring to subsets of 0, and we list in
the appendix the formal correspondence between f, a
formula, and [fj, f s corresponding subset of 0. This allows
us to use a notation like [(Rain = Yes) = (Wet = Yes)] to
refer to © "minus" all those situations (elements of S) that
have Rain-value Yes and Wet-value No. It also allows us to
use [-.(Temp = high)] in referring to S "minus" all those
situations (elements of ©) that have Temp-value high. This

*We acknowledge that this does not make Dempster's rule of
conditioning any more feasible than any other updating rule one
might think of. However, the point here is that Dempster's rule
of conditioning now becomes as competitive as any other
updating rule. What we need to do, then, is perhaps to find some
axiomatic justification of this rule.

is a rather effective way to refer to subsets of 0. (In
addition, we will use "Rain" as a shorthand for "Rain = Yes"
in the case of boolean variables.) This way, we can
unambiguously refer to subsets of 0 without committing

ourselves to explicitly stating what variables are in x.

A belief function on 0 is a function Bel: 20 —» [0, 1]
which is characterized by an m-value function mge, (written
as "m" whenever confusions can be avoided; m is also called
"the m-values of Bel"), where m: 20 [0, 1] satisfies two

conditions:
(1) m(P) =0, and

@) XA, ace™A) = 1;

and for every subset B of 0, Bel(B) is defined as

A:Aggm(A).’E A subset A of 0 is called a focal element
of Bel if m(A) > 0. When Bel is such that m(0) = 1, we
call Bel the vacuous belief function.

Intuitively, Bel(A)= ¢ > () means that "I believe that the
actual situation is one of the situations in A, and c
corresponds to how confident | am in entertaining this
belief', Bel(A) = 0 means that "I do not entertain the belief
that the actual situation is one of the situations in A",® and
m(A) = d means that "in the course of establishing Bel, A is
found to be the most specific subset of O that deserves this
particular amount (d) of intuitive support." As such, Bel
serves to characterize (part of) some distinguished state of
mind, with m being the "internal structure" of Bel.

Once we accept this intuitive view of Bel and m, it is
only natural that we extend this intuitive interpretation to
Bel(. | B) and m(. | B), where, for example, Bel(A | B) = c>
0 means that "given that the actual situation is in B, |
believe that the actual situation is in A, and c corresponds to
how confident | am in entertaining this belief." This gives
rise to the following conditioning rule known as Dempster's
rule of conditioning [Shafer, 1976]. Let Bel be a belief
function on 0 and m be its associated m-values. Let B be a

non-empty subset of 0 such that Bel(B®) =/1.
YCcO,ifCcB

then m(C | B) df= ZD: b pe MCUD) /K
else m(C | B) df= 0,

where K = 1 - Bel(B®) is the normalization constant.
(Note that for every subset § of 8, Bel(S m B | B) = Bel(S |
B), but in gencral, m(S ~ B | B) = m($ | B).) Inwitvely,
Dempster's rule of conditioning may be understood from two
perspectives.  First perspective (C < B): oniginally we

5This definition is consistent with [Shafer, 1976]. Smets
[1988] has a slightly more general definition (called an "open
world" definition) in which m(0) does not have to be 0 and
Bcl(A) is defined as the sum of the m-values of those non-empty
subsets of A.

Consider the belief that the actual situation is in A. Here,
according to our interpretation, an agent either entertains this
belief or does not entertain this belief. And when the agent does
entertain this belief, he/shel/it is entitled to a degree of
confidence (c) in doing so. In other words, we do not think of
Bel(A) as the extent to which an agent entertains this belief.
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committed m(CwD) = s to CuD, as we thought QD as a
whole deserves this much (s) intuitive support and we did
not want to further "split" s among the elements of CuD;
now we learn that the actual situation is in B; as a result, we
decide that C should "inherit" s, as we still think C as a
whole deserves this much intuitive support and we still do
not want to further "split" s among the elements of C.

Second perspective (C < B®): originally we considered C the
most specific subset of B that deserves m{C} = v; now we

learn that the actual situation is not in B®; as our intuitions
satisfy Bel(B | B} = 1 and Bel(C | B) = 0, rationality requires
that we make m({C { B) zero and redistribute v in some way;
what we do then is that we redistribute v among the focal
elements of Bel{. | B} by proportions - a normalization
process that is similar in spirit to what Bayes' rule of
conditioning does.

3 A reasoning paradigm

Now we are in the position to present our approach for
reasoning with belief functions. We start by posing the
following question: suppose we are able to come up with
fragmentary specifications of what our intuitions satisfy,
where a fragmentary specification is either a marginal (e.g.,
Bel([WET]) = 0), a conditional (e.g., Bel([RAIN] | [WET]) =
.3), or a mathematical relation among some of the marginals
and conditionals {(e.g., Bel{[PARTY]) = Bel([PARTY] |
[RAIN])), how should the system make inferences from
these fragmentary specifications?

In answering this question, we simply regard all
fragmentary specifications as constraints that a belief
function must satisfy, and we ask the system to identify or
construct a belief function that has the minimum
commitment property (defined below) among all belief
functions satisfying the specified constraints; if there is such
a belief function, the system uses it to make inferences (by
conditioning this belief function on the current context -
information we currently have about the actual situation); if
such a belief function does not exist, something else would
have to be done, and we will briefly discuss about this
problem in Section Five.

The principle of minimum commitment:’? Lel

€y, .... ¢ be an enumeration of fragmentary

specifications (i.e., constraints), and let B be the set of
belief functions {Bel: Bel satisfies ¢, ..., and cpqg}. If

there is an element 6 of B suchthatVte B,V A 8,

o(A) £ 1(A), then o should be preferred to all other

elements of B (i.e, o should be used for making

inferences), and we say ¢ is a characterization of (our
intuitions) ¢y, ..., and cp with minimum commitment.

Why this principle? Well, assuming that the user was
serious in providing the fragmentary specifications (i.e.,
constraints that his or her intuition satisfies), we think that
the principle of minimum commitment can serve as a useful
"general agreement" between the user and the system. In

'Formally, the principle of minimum commitment is a variant
of the principle of minimum specificity [Dubois and Prade,
1986a].
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essence, what this agreement says is that “Bel{A) is, by
default, as small as it is formally allowed.” In other words,
the principle of minimum of cotnmitment formalizes the
following intuition: if I (the user) do not say whether ]
entertain a belief (or how confident I am in entertaining this
belief), then it would be an error in inferring that the exten
to which I am confident in entertaining this belief (if 1
entertain this belief at all) is larger than what it formally has
to be the case. Thus, for example, if the user only specifies
an empty set of constraints {(and clearly any belief function
satisfies these constraints), then according to the principle of
minimurm commitment, what the user actually means is thai
Bel{A) should be O for every subset A of @ (and for obvious
reasons, the user simply did not bother to specify it).
To recap, we summarize our reasoning approach as a two-
step process below.
Step One - knowledge solicitation: the user specifics
what his or her intuition satisfies. The resulting
specifications are ¢y, ..., CM.
Step Two - reascning: given the fragmentary
specifications c1, ..., cM, the system tries to identify a
characierization of the ¢;'s with minimum commitment; if
there is such a belief function, the system uses it to make
inferences (by conditioning the constructed belief function
on the current context).

4 Relation with the canonical examples

One interesting aspect of our reasoning approach is that it is
consistenl with Shafer and Tversky's cancnical examples,
We now show that this is the case. We first introduce some
terminology. Then, we give a general independence resull.
As it urns out, Shafer and Tversky's canonical examples arc
special applications of this general indcpendence result.

4.1 Some definitions
We start by introducing Dempsier's rule of combination
(®y). which is regarded as a purely syntactical operation by
itself in cur framework.
Let h be a non-cmpty subset of X. Let Bel; and Bel be
two belief functions on 8y, (and let my and m2 be their
respective m-valucs). Bely @y Bels is defined 10 be the
following belief function Bel on 6y,

V'S C O, MBai(S) = X p g AnposMI(A)M(B) /K,

where K = z’A.B: AnBzoM1{A)M2(B) is the

renormalization constant.

(In what follows, @y is abbreviated as @)

Next come the notions of belief projection and belief
exiension. Let h and g be two subscts of X such thath c g
(g is X by default).

The projection of an element x of 8, (e.g.. g = (X, X2,

X3, X3, X7} and x = <al, 42, a3, a5, a7>) 0 &y, denoted

as x™, is simply this element with the extra coordinates

dropped (e.g., h = {X1, X3, X5} and x* = <al, a3, a5>).

The projection of a subsct A of Gy 10 By, denoted as A“'.



is {x*":x € A).

Let Bel be a belief function on 85 (and let m be its
associated m-valucs), Ihfhprojeclion {or marginalization)
af m to h, denoted as m ", is defincd as

m™(A) = ZB: pin_,M(B).

Bel“’lgthe projection of Bel (o h) is, as usual, characterized
by m™,

The extension of S (S © &) o Oy, denoted as S '™, is the
set {x:x € Bsandxu‘e S].

Let Bel be a belief function on 8y, (and let m be its
associated m-values), the extension of m to g, denoted as
m &, is defined as

¥ A g8y, m3A™) = m(A), and m"¥(B) = 0 for all
other B C 8,

BclT'tgthe extension of Bel to g) is, as usual, characterized

by m *

With all these notations in place, we now have the
problem of specifying sequences of conditioning,
projections, and extensions (i.e., which occurs before
which). As a convention, we use m“‘(A | B) to mean first
conditioning and then Erojecl.ion {and then the value of A).
The mecaning of m’ {A | B) is similar. To signify a
particular sequence, parentheses are also used. For example,
(m**)(A | B) means projection first and conditioning second,
whereas ((mT‘)(A | B))*" means extension first, conditioning
second, and projection last This clumsiness in the notation
is very unfortunate, and we ask the reader to bear with us,

In what foll?ws, we will be using a notation such as
®xyz (or Bel**Y) instead of its corresponding "legal”
notaton (¢.g.. Sx,vz) or Bel“x‘”) whenever confusions

can be avoided. It is also convenient (o write Bclm, mTe,

or Am insicad of Bc!Tx, me, or ATx.

4.2 General independence

The notion of gencral independence is the belief-function
counterpart of the notion of stochastic independence in
probability theory. It formalizes what we mean by two
"independent domains.” In essence, the following definition
of general independence says: whatever information we learn
rcgarding the Y domain (i.c., 8y), as long as we are not
expecling the coatrary with total confidence, this
information will not have any effect on our (marginal) belief
regarding the X domain (i.e., 8X); similarly, our belief
regarding the Y domain is unaffected by information
conceming the X domain.
Let X and Y be two variables (or, allemnatively, two
disjoint sets of variables g and h). Let Belx be a belief
function on ®y and Bely be a belief function on Oy. A
belief function Bel (on ©) satisfies general independence
with respect to X and Y, with Bely and Bely being the
two corresponding marginals, if and only if
(1) Bet** = Bely,
(2) Bel*Y = Bely,
3)VBgOysuchthatIB' ¢ Oy, B g B and

Bely(B") # 0, we have Bel'*(. | B™®) = Bely, and
HVACOBxsuichthat 7 A' Oy, Ac A'and

Belx(A) # 0, we have Bel'Y(. | A™®) = Bely.

What Theorem 1 below tells us, then, is that we can use
Dempsier's rule of combination to obtain rhe marginal belief
on Oxy if our belief satisfies general independence with
respect to X and Y, with Beixy and Bely being the two
comresponding marginals,

Theorem 1 Let B be the set (Bel: Bel satisfies general

independence with respect to X and Y, with Bely and Bely

being the two commesponding marginals}. The minimum
committed belief funclion in B is (Bely Xy Sxvy

Bely™%)®,

Proof of Theorem 1: given in the appendix.

4.3 Shafer and Tversky's canonical examples

We mentioned earlier that Shafer and Tversky's canonical
examples may be viewed as special applications of our
reasoning approach. In this section, we describe such an
application. It is slightdy more general than Shafer and
Tversky's canonical examples, however - instead of working
with probabilities Py and Py (as Shafer and Tversky do), we
work with belief functions Bely and Bely,

The first pant of the (slightly generalized) canonical
examples is that we specify, through the use of fragmentary
specifications, a marginal belief Bely on some space &x. If
this is all we specify, the system will construct Belx ' and
uses it to make inferences, and (I-?Iel;.;'e)12 (= (Belexz).l.z)
is vacuous. Suppose we now receive some information
regarding the actual situation and this information comes in
the form of a compatibility relation ¥ {defined below)
between @y and 87, then the updated (and projected) belief
on 8z will be ((Belx '®)(. | TTOYZ (= ((Belx *¥)(. |
C))Lz). In general, this updated belief is not the same as
the original (Bclexz)Lz.

A compatibitity relation G between 8x and 97 is a

subset of @x x @z suchthat Vae 8y, 3ce 87, (a,c)

et

The second part of the canonical examples involves a third
frame By. So let us change the story a little bit. We still
specify, through the use of fragmentary specifications, a
belief Bely on 8y. But now we also specify, again through
the use of fragmentary specifications, another belief Bely on
@y. On top of that, we tell? the system that what we really
want to specify is BelxTXY @xy Bely ™Y on ©xy, as our
intnitions satisfy general independence with respect 1o X and
Y, with Bely and Bely formalizing the two corresponding
marginals. Upon receiving this instruction, the system
replaces Bely and Bely with Belx ™Y @yy Bely™Y,

Again, if this is all we specify, the system will construct

¥Shafer [1987] also requires that ¥ ¢ € Bz, Ia € B, (s.c)€ T.
“That is, we assume that the system has some pre-processing
ability and, as such, it can assist us in making fragmentary
specifications
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(Belx XY ®yxy Bely™Y)"® and uses it 10 make inferences,
and ((Belx XY ©xy Bely X¥)'®)*% (= (Beix *Y @xy
BelYTxY)TXYZ)LZ - (Bclexvz Sxyz Bc]YTXY?‘)u) is
vacuous. Suppose we now receive some information in the
form of two compatibility relations Uxz and Gy, where
Txz is between Oy and 87 and T yz is between Oy and
e7. 'I;hx%n the updaled (and pro;qrcled) behef on a7 is
((Belx ™ @xy Bety ™" ) ) "1 Bxz"®  Byz )

= (@elx™ @y Bely "X, [Cx2™ By ™)
= (@elx (. 1Bxz ") Oxvz (Bely ™K Tyz )
= (@eix " 1Tx2) ™ Bxyz (@ely By

= (Belx "AX. | Bx2) & (Bely ). | Ty2)'-
Of course, this apdated (and pro;g:lcd) belicf is, in ,ﬁcnfral
not the same as the original (Belx @x vz Bely

5 Conclusion

So what have we achieved? We have restructured the current
belief-function framework in such a way that belief
functions are no longer linked to probabilities. We have
also provided some ingredients that we feel arc necessary in
order to reason with belief functions. Our reasoning
approach, as we have demonstrated in the last section, is in
line (at least on the formal level) with Shafer and Tverskys
recommendation for reasoning with belief functions. It is
also not terribly limited, as formally both propositional
logic and (Bayesian) probability may be viewed as special
applications of this reasoning approach [Hsia, 1990].10

Nevertheless, we did not provide a specification
methodology that, when followed, would allow the system
to obtain a minimum committed belief function from the
specified constraints. This, however, does not render our
belief-function framework useless. In fact, what we have
achieved is the setting up of a formal framework that would
allow researchers to identify various specification
methodologies (e.g., a generalized canonical example) that
can be used under different circumstances.

As for the problem of finding a genera! specification
methodology that we can use in tackling any problem, we
do not consider it feasible in pursuing in this direction. The
now famous Republican-Quaker-Pacifist problem is a good
example. What should the system do if the user does not
specify Bel([P] | [R A Q)) and Bel([-P] | [R A Q])? As itis
entirely possible that the user himself/herself cannot make
up his/her mind about these two values, there is no reason
why the system should come up with an "answer". How,
then, should we go about it in performing reasoning in such
cases? One possible alternative may be to ask the system to
infer properties that are shared by all minimally committed
belief functions satisfying the same set of constraints. This
appears to be an issue that is worthy of further explorations.

essence, propositional logic corresponds to the case in
which we only specify constraints of the form Bel(A) =
whereas Bayesian probability corresponds to a complete

specification of prior probabilities and conditional
probabilities.
1186 Qualitative Reasoning
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Appendix A: Logical formulas and subsets

letx € ® anda e 8; (1 £i < N), we recursively define
what a formula f is and whether x satisfies the formula f.

Case 1. fis "X; =a": x satisfies { if and only if the X;-
value of x is a.

Case 2. fis "—g", where g is a formula: x satisfies [ if
and only il x does not satisfy g.

Case3. fis"gwv h", where g and h are formulas: x
satisfies f if and only if x satisfics al least one of
g and h,

Cased. fis"ga h", where g and h are formulas: x
satisfies 1 if and only i x satisfies the formula
"—1(-1g v —lh)".

Case 5. fis"g > h", where g and h are formulas: x

satisfies 1 if and only il x satisfies the formula
“—|g V h'!-
Let 1 be a formula. By the subset (of @) the formula f refers
to (or, alicrnatively, the subser (of @) the formula |
corresponds to), we mean the set {x: x € @ and x salisfies
f}, which we denoie as [f].

Appendix B: Proof of Theorem 1

Basically whal we need P show is that for  every clement Bel
of B, Bel*XY = Bely ' *¥ @xy Bely X¥. Once this is
proved, it follows that (Beix TXY ®xy Bely ' X")®isa
minimum clement in B with respect 10 a partial ordering
concepl originally proposed by Yager [1985] (see also
[Moral, 1985]) and later discussed in detail in [Dubois and
Prade, 1986b]. Morcover, Dubois and Prade | 1986b} showed
that whenever B has a minimum element, that element {a
belief function) must be the minimum committed belicf
function in B. The intcrested reader is referred to [Hsia,
1990] for the details of Yager's ordering and Dubois and
Prade's lemma.

Our task now is reduccd l.o showing Lhal for every element
Bel of B, Bel* -.Belx Y dxy Bcl

Let Bel be an element of B, m be the m-values associated
with Bel, and m**" be the m-valucs associated with Bel™*¥.
Let COREy be the union of all A ¢ &y such that mx(A) #
0, and let COREy be the union of all B ¢ @y such that
my{B) = 0. We know the following are satisfied.

Bel'® = Bely, Bel®” = Bely,

V be COREy, Bel*X(. | {b)®) = (@e1™*¥)(. | {b) ")
= Belx, and

Y ae COREx, Bel'*(.| (a}™®) = (Bet™™)(. | {a)™)*Y
= Bely.

Thercfore Bel**Y must satisf y the following property:



V S c Oxy, m**¥(S) # 0 if and only if 3 S ¢ @y,
38y Oy, mx(Sx)# 0, my(Sy)#0,and S = Sx x Sy
(my and my are the m-values associated with Bely and
Bely, respectively).
Suppose A ¢ O and B ¢ @y arc such that mx(A) = 0,
my(B)} # 0, and either A # COREx or B # COREy.
Without loss of generality, assume it is the case that B #
COREy. We havc (duc to the stated mdcpcndcncc

conditions) Bel(A ") =Bel(AT® | COREY "AB™®) = Bcl(AT"

| 8\B™®) = (Bel(AT® L B'®) - Bel(B"®)/(1 - Bel(B®) (see

[Shafer, 1976, p. 67] for this equivalent formulation of

Dempster’s rule of condmomng)

We expand Bcl(A Te o B e) by obscrving the following:
VS];;A mB ® (1 mayormaynotbc@) VS?;
AT™A™ ~ B"®) (57 2 2). VS3c B®AT® B
(S1=20),itis not the case that A C c 8y, 3 D ¢ By,
such that C x D = 81 u 89w 8.

In other words, ¥V S < A'® U B'® (S # @), if neither A"®

nor B'® is a superset of S, then S #* Cx D,V C ¢ Oy, V

D ¢ @y {(and therefore § must have 0 as its m- valuc (I e,

m{S)=0)- due 10 l.hc above dc.scnbed property of Bel™* )

Thg).«,, Bel(A'® U B"®) = Bel(A"®) + Bel(B™®) - Bei(A™® A

B

Replacing this n*w the pl‘(:VTIOI.lS congditioning formula, we

get Bel(A'® ~ B'®) = Bel(A'®)Bel(B'®), and this is true for

any A ¢ Oy and B ¢ 8y where mx (A} # 0 and my(B) = 0,

and either A # COREy or B # COREy.

We observe further that Bel(CORExTQ ~ CORE T“) =

Bel(COREx ®)BeCOREY ™),

Thus, forevery A ¢ 6)$ and every B¢ TY where mx(A) *

0 and my(B) # 0, Bel(A'® ~ B'®) = Bel(A ®Bel(B™®).

Since the only subsets of @y vy that are "eligibie” (in Bel J"”)

for non-negative m-values are those that are the Cartesian

product of some A in &y and some B in ©y where my{A) =
0and my(B) # 0 and,

for any such subset A x B, Bcl““"m X B) = Bel(A x R)T")

=BelA'® A B'®) = Bel(A"®)Bel(BT®) = Bel**(A)Bel

= Belx(A)Bely(B),

it follows that m**¥(S) (wherc S ¢ 8xy) must be such that
il Sx c ©x, 3 Sy c By such that § = Sx % Sy,
then m*X¥(S) = mx(Sx)my(Sy) else m**¥(S) = 0.

This means Bel'XY = Belx ¥ @xy Bely'*¥.  Q.E.D.
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