Fitting Semantics for Conditional Term Rewriting

Chilukuri

K. Mohan

School of Computer and Information Science
Syracuse University, Syracuse, NY 13244-4100

Abstract

This paper investigates the semantics of con-
ditional term rewriting systems with negation,
which may not satisfy desirable properties like
termination. It is shown that the approach
used by Fitting [5] for Prolog-style logic pro-
grams is applicable in this context. A mono-
tone operator is developed, whose fixpoints de-
scribe the semantics of conditional rewriting.
Several examples illustrate this semantics for
non-terminating rewrite systems which could
not be easily handled by previous approaches.

1 Introduction

Conditional term rewriting systems (CTRS) have at-
tracted much attention in the recent past as a useful
generalization of the simpler formalism of term rewriting
systems (TRS). But CTRS have not been uncondition-
ally accepted, due to the absence of well defined seman-
tics for conditional rewriting mechanisms. This paper
suggests one remedy, following the approach of Melvin
Fitting, who suggested similar semantics for Prolog-style
logic programs [5].

Past work on the semantics of conditional term rewrit-
ing has followed three directions:

1. Impose restrictions on the syntax of the CTRS for-
malism to ensure termination and the existence of
a unique precongruence which is considered to de-
scribe the meaning of the rewrite relation [8]. This
approach does not define the meaning of rewriting
when the CTRS does not satisfy the relevant ter-
mination criterion. Also, the termination criterion
itself is undecidable, and is not a necessary condi-
tion for each rewrite step and all rewrite sequences
to terminate finitely.

2. Give logical semantics for a CTRS R as a set of
conditional equations £(R)) together with a set of
"default" negative equality literals [13]. This ap-
proach is useful if all rewrite sequences terminate or
if the CTRS is intended to describe a specification
based on a set of free constructor functions.

3. Transform CTRS into "equivalent" TRS, and iden-
tify the semantics of the CTRS with that of the

transformed systems [1]. Assign an "initial algebra"
semantics for TRS. The drawback of this approach
is that it does not adequately describe the oper-
ational use of CTRS with negative literals in the
antecedents of rules.

This paper attempts to fill the lacuna using an elegant
approach of Fitting, following Kripke[10] who brought
together Kleene's multivalued logics [9], and Tarski's
lattice-theoretical fixpoint theorem [16]. Fitting [5] uses
this approach to present an alternative to the semantics
of logic programming given by Apt and Van Emden [2].
The main contribution of this paper is to show that this
approach can also successfully explain the meaning of
conditional rewriting systems with negation, including
the problematic CTRS whose semantics have eluded the
grasp of previous approaches
{cg,.rF¥e=>p—g.p=g=>p—q).

Tn the next section, we introduce CTRS and point
out the deficiencies of a two-valued fixpoint semantics.
In section 3, following some mathematical preliminaries,
we describe the new semantics for conditional rewriting.
Several examples are then given in section 4 to illustrate
the semantics. References follow concluding remarks.

2 Preliminaries

2.1

We define the formalism and operational use of a lan-
guage for expressing data type and function specifica-
tions [13, 8].

Definition 1 Equational-Inequational-Conditional Term
Rewriting Systems (EI-CTRS) are finite sets of rules of
the general form

[81 = 1hiA. . Asp = L AP EQIA . . ADmFGm] = ths—rhs,

Conditional Rewriting

where |hs and rhs are two terms, and the antecedent
is a conjunction of zero or more equations s; = t; and
negated equality literals p; # q;. Every variable occur-
ring in each s;,t;, p;,q; and rhs must also occur in /hs.

Following the notation of [4], ‘p/j’ refers to the

subterm of p at position j, and 'p[q]; refers to
the result of replacing pfj by g in p. For in-
stance, when positions are described in Dewey dec-

imal notation, f(g(a,h(b,c)), d)/1.2 1s h(b,c), and
flgla, h(b, c}), d)[m}1 2 is f(g(a, m), d).

Mohan 857

Besides matching and replacement, conditional rewrit-
ing requires checking that the antecedent of a rule holds.
The basic idea underlying the definition of El-rewriting
is to conclude that two terms are equal if they have
converging reduction sequences, and not equal otherwise
(for ground terms). Not surprisingly, the attempt to find
a valley-prooffor an equality does not always terminate.
But if reduction sequences from two ground terms p, q do
terminate without converging, then we can assert that
p = q has no 'valley-proof using the given rewriting
system.

Variables in different rules are first renamed to be dis-
tinct from each other and from those in the term to be
El-reduced.

Definition 2 A term m EI-Reduces (or El-Rewrites)
to n using an EI-CTRS R (written m-—vﬁn) if R con-
tains a rule cond=rlhs—rhs and there is a substitution
a matching /hs with a subter wm/j of , such that each
of the following conditions hold:

1. Match and Replace: (ths)e=wm/j and n=m{(rhs)o];.
2.Demonstrable Convergence: For each equality & =
i; € cond, there is a common term to which §;& and
tio can be El-reduced in a finite number of steps.
3. Demonstrable Non-Convergence: For every negated
equality Iiterals.‘#t; € cond, it can be demonstrated
by finite El-rewriting sequences that &;¢ and f;r are
ground terms with no common reduct. More pre-
cisely, the following conditions must hold:
(i) 8¢ and ¥¢;er are ground terms;
(ii) all El-rewriting sequences from & and t;or ter-
minate; and
(iii) the set of all reducts of sj& is disjoint from that
of t;er.

For a more detailed description of El-rewriting with
examples, see [14].

2.2 Fixpoint Semantics

Definition 3 If/ is a function (ofone argument) whose
domain and range are the same, then S is a fixpoint (or
fixed point) of / whenever f(S) = 5. If the domain el-
ements are partially ordered, / may have zero or more
partially ordered fixpoints:
- a fixpoint S is minimal if there is no other fixpoint T
such T'< & in the ordering;
- a minimal fixpoint S is the least fixpoint if 8§ < T for
every fixpoint;
- a fixpoint S is maximal if there is no other fixpoint T
such that I > S in the ordering;
- two fixpoints S, T are compatible if they have a com-
mon upper bound which is a fixpoint,

IS (S < SYA (T < SYA(f(S) = §);
- a fixpoint is intrinsic [10] (or optimal [12]) iff it is com-
patible with every fixpoint of /.

In the fixpoint semantics approach, the 'meaning* of a
program is considered to be the least fixpoint of a func-
tion/relation which represents the behavior of the pro-
gram on some input. The following fixpoint semantics
can be suggested for conditional rewriting, as in [8]. A
function ¥R is associated with each CTRS R such that
if S is a binary relation, and §* is its reflexive transitive

856 Logic Programming

closure, then Wg(S) is a binary relation which is the
set. of all two-tuples {p,¢) such that for some rule [s =
LA Asy = tJA[PIFOA . . APmFEGm] = I—rin R, we
have 3k, 3e. p/k = lo, ¢ = plrole, Vi, 3 {sio, 7} € §*
and {t;o,r;) € S, and ¥j, there is no r; such that
{pjo,7;) € S, {g;¢,r;) € S*. In Lhis approach, the
‘meaning’ of rewriting with R is identified with the least
fixed point of ¥ g, if it exists,

But such a least fixed point exists only when the CTRS
satisfies certain stringent (and undecidable} conditions
that ensure the decidability and finite termination of
all rewrite sequences. The following is an example of
a CTRS R such thai ¥z has no fixpoint according to
the above definition: {a # b = a — b}. Note that
{{a,b)} is not a fixpoint because the antecedent a # b of
the conditional rule is such that 3z.{e,z}) and (b, z} are
members of {{a,a}, {a, b}, {6,)}, the reflexive symmetric
closure of {{a, b)

The problems with the above approach can be pin-
pointed to the following reasons:

}. The use of a two-valued logic precludes distinguish-
ing between cases when we know that a rewrite
doesn't occur, and cases when we do not know
whether a rewrite can occur, particularly cases
involving non-terminating reductions arising from
terms in the antecedent of an invoked rewrite rule.

2. The relation ¥ g is not ‘monotone’.

Definition 4 A mapping ® is monctone iff for all the el-
ements in the (partially ordered) domain, $ € T implies
2(5) < ¥(T).

2.3 Kleene’s 3-valued logic

Kleene [9] presented a three-valued logic, partly mo-
tivated by the desire to give truth-valuc meanings to
partial recursive functions. The logic lends itself easily
to explain non-deterministic and infinite computations.
Kleene's third truth value represents the indeterminate
or unknown nature of statements. The truth, falsehood,
or indeterminacy of statements may be captured by us-
ing Smaullyan’s notation of ‘signed statements”;

Definition 5 If ¢ is a statement, 7' is a signed state-
ment which is to be understood as asserting “1 is true”.
Similarly, F¢ is a signed statement which is to be un-
derstood as asserting “i is false”, which is contradictory
to Ty, A set of signed statements is consistent if it does
not contain the pair T4, F'y for any statement .

Imphecitly, if a set of signed statements contains nei-
ther Ty nor Fy for some formula v, it is understood that
¥ is indeterminate or has Kleene’s third truth value.

‘Saturated’ consistent sets of signed statements are in-
tended to serve as models for logic programs. To sum-
marize a lengthy definition in [5], a set S of signed
statements is saturated iff it contains the intuitive con-
sequences of the members of 5; e g.,

-T(X AY) € S implies T(X) € S and T(Y) € S,

- F(Vz.P(z)) € S implies F(P(1)) € S for some closed
term ¢,

- FX € 5 implies T(—~X) € S,

-FXeSand FY € Simply F(X V¥)€ S,

el celera.

3 New Semantics

Unlike Prolog-style logic programs, the operational use
of CTRS involves iterated rewrites ensuing from the
antecedents of conditional rules. So the definition of
conditional rewriting recursively involves that of iter-
ated rewriting. A careful definition of what it means
for “p —% ¢” to be “false” is needed, since this is
needed when evaluating negated equality literals in the
antecedents of rules.

Let S be a consistent set of signed two-tuples; intu-
itively, S is a potential description of a rewrite relation.
T{p,q} € S is an abbreviation for T(Rewrites(p, ¢}),
intended to mean that p rewrites to ¢; and similarly
F{p,q}) € S means p is known not to rewrite to ¢. If
neither of these is present in 5, that means the reduc-
tion from p to ¢ is not known to be true or false, i.e.,
“p — ¢” has the third truth vajue.

A new set of signed statements S*, describing the it-
eration of rewrites in 5, is defined as follows. For con-
venience, let 5* = S3 W 5%, distinguishing sets of state-
ments with prefixes T and F, respectively. S} is just
the reflexive transitive closure of the true statements in
S, which is the least set satisfying the following three
conditions.

1. Ya. T{ae,a}) € Sy,

2. ¥a,b,if T{a,b) € 5, then T{a, b} € S}, and

3. Ya,b,¢, if T{a,b) € Sy and T(b,c) € 57, then
T'{a,c) € St.

The construction of S is slightly more compli-
cated; note that F{a,d) € S does not necessarily im-
ply that F(e,b) € S*: a rewrite sequence from a
to b might exist through some other terms, e.g., if
{F{a,b), T{a,c}, T'{c,b}} € 5, then T{a,b) € S*.

To conclude the absence of rewrite sequences, there
sheuld be no intermediate term from which a reduction
sequence can occur. lt is sale to assert that (p —% q)
is false iff it can be determined that there is no rewrite
sequence of finite length from p to ¢. This aspect can be
described by an iterative construction as follows, where
S represents 2 tuples among which there is no reduction
qequenoe of length < i.

S% = {F(a,D)a# §)
S = {F(a,b)|F{a,b) € S% A F(a,b) € S}
S'*'1 = {Fla,b}|F(a, b} & S'F

- VYy[F{y,b) € Sp- V Fla,y) € 5]}
S;» = lim S‘p

i—0oo
Note: Vi, .S']l;."'l C Sf,., thus Sy is the greatest lower bound
of a chain of sets in the subset ordering.

Example 1 Let the language contain only the constants

a,b,ed.
a— b
LetR:{ b }
c—d

{F{a,a),T{a,b},,F(a,c}, F(a,d},
F{b, a}, F{b,b),T(b,c), F(b,d),
F(C,ﬂ)‘F(C,b)‘F(C,c),T(c,d},
F{d,a), F{d.b}, F{d,¢c), F(d, d}}

{T{a, e}, T{a,b), T{a,c},T{a,d},
T{b,8), T{b,c), T'(b,d),
T{e, c)),}T(c, d},

1

Let § =

Then Sy =

A
I

{F{ae,b), F{a,c), Fla,d),
F(b,a}, F(b,c), F(b, d),
F{c,a}, Fc,b), Flc,d},
F(d a), F{d, by, F{d,c}})

F{d,a), F{d,b), F(d,c)}
{F(a, d) F(b,a}, Fle,a), F(e,8),
F(d,a), F(d,b), F{d,c)}

Sp=St={F(b, a), Flc,a}, Flc,b), F(d,a), F{d,b}, F{d,c)]

Example 2 Let the language contain only the constants

a,bed
a—b
LetR:{b—w' }
c=d=>c—d

Let S= {F{a,a)},T{a,b), Fla,c

F(b,a}, F{b,b), T(b c)
F(ec,a), F{c,b), Flc,c},
F{d,a}, F{d,b), F(d r:),!'(d,d)]

Then S} = {T{a,a),T{(a,b),T{a,c),

T, b6),T(h,c), T(e,e), T{d, dy}

{F(a,b), F{a,c}, Fla,d),
F(b,a}, F{b, c),f'(b,d)
Fle,a), Fc, b}, F'le, d),
F(d,a), F{d,b), F{d,c)}

{Fla,c}, Fla,d),
Fb,a), F{b,d},
Fle,a}, F{c,b),

F{d,a}, F(d,}), F{d, c}}

{F(a‘d),F(b,a),F(c,a),F(C,b)‘
Fld,a), F(d,b), F(d, c)}

Sp=St={F(b,a), Flc, a), F(c b, F(d,a), F{d, b}, F(d,c))
In this case, S* = S" S}. contains netther T{c, d} nor
Flc,d).

-

1 _
SF—

S}‘.—-:

Mohan 859

Lemxma 1 If S is consistent, then 5" it also consistent.

Lemma 2 The '+’ operator is monotone, i.e., if §; C S»,

then 57 C 55.
Definition 6 When R is an EI-CTRS, a mapping ®xa
from sets of signed two-tuples to sets of signed two-tuples

is defined as follows:
& 5,(5) is the smallest relation such that

e T'{a,b) € ®r(S) if R contains a rule
A55=ti/\pj #Fg=>l—r

i=1 J=1
such that for some position k and some substitution
o, we have

a/k=lec A b= alreen
[[Vi-3dr; - T{sio,ri) € S* AT{tio, i) € 57| A]
[Vi-Vr; - Fipjo,r;) € S* V Flg;o,7;) € 57]
e Fla,b) € ®r(S) if for every rule
/\s. = t./\p_, # g; = 1 — r]in R, and for every

k & such tha.t. (afk =le Ab=a[roli), we have

(a‘l ¥y - F(S,’O’, 'l".'} c5" v F(t.'d, !".‘) &« S‘)
v(3jdr; - T{pjo,rj) € S* AT{g0,r;} €5*) |-

Lemma 3 If S is consistent, then ®5(5) is consistent.

Theorem 1 ¥g is monotone, ie.,
51 € 53 = ®r(51) C Pr(S52).

Proof: Assume S) C 5.
If T{a,b) € ®r(S)), then R contains a rule

/\s;:t;/\pj;ﬁqj:-l-—»r

i=] i=1
such that for some k&, o, we have

alk=lo A b= alro)i
M {Vt < 3 - T(s.-a, '.l",') e SI TN T(t.—or, 1"'.') (S SI]
A [V5-Vr; - Fpjo,r;) € 5] V F(gjo,r;) € 5]

Since Sy C 53 (by lemma 2), we have

Vi - 3r; -T(s,-cr, 3“.‘) € S; A T(t,‘a, r,-} € 53,
and Vjvr; - F(pjo,r;} € SV Flg;o,7r;} € 55.

Therefore, T{a, b} € ®r(S2), if T{a,b) € ®r(S5).
Similarly, it can be shown that if F{a,b} € dg(51),
then F{a,b) € ®r(S5y).
Hence ®r(51) C Tr(S2). a

Key Observation: The fixpoints of $g5 describe the se-
mantics of conditional rewriting with an EI-CTRS R; par-
ticularly important are the least fixpoint and the largest
intrinsic fixpoint.

We now investigate the fixpoints of the monotone re-
lation ® g corresponding to each rewrite system R.

860 Logic Programming

Theorem 2 Let R be any EI-CTRS, and ®7 be as defined
above. Then:

1. ®g has maximal fixpoints.
2. ®p has a smallest fixpoint,
3. ®g has a largest intrinsic fixpoint, which is a subset

of n{mnximal fixpoints of ®x}.
4. The smallest fixpoint of ®x above the empty set is
intrinsic.

Proof: Let D be the collection of all consistent sets of
signed statements, ordered by the subset relation. D has
a smallest member { }, since the empty set is consistent.
Every chain 851 © S2 € --- of elements of D has an

upper bound Ulim 5;. Also, every nonempty set having

1

an upper bound has a least upper bound. Since &g is
monoctone on I, all the premises of theorem 2.2 in [6]
are satisfied, and the conclusions stated in this theorem
directly follow.]

A smallest fixpoint can be constructed using the fol-
lowing transfinite sequence of consistent sets of signed
statements.

Definition 7 Let ¥ g be as defined earlier, for any EI-
CTRS R.
Ao =1}
Aiyr = Er(4))
Ay = HAaler < A} for limit ordinals X

By transfinite induction, it can be shown that this is a
weakly increasing sequence, i.e., Ay < Ag4y for all a.
But the sequence cannot be strongly increasing, i.e., it
is not possible that Ve - A, < A4, since a sequence of
consistent sets cannot have as many members as there
are ordinals. Hence, for some a, we must have A, =

Pr({As), i.e., some member of the sequence is a fixpoint
of @R-

4 Examples

The following are some examples which illustrate the
application of the new fixpoint semantics. Some of
the CTRS’s considered here cannot be handled ade-
quately by previously given semantics, because they do
not satisfy the conditions for termination, and are not
constructor-based specifications. In each case, we as-
sume that the only symbols in the language are those
that appear in the rules of the rewriting system being
considered. For each CTRS R, we begin with candidates
for fixpoints which are supersets of ‘Z’°, defined as

{F(p,q)i thereisnorule (C=2>!—r)e R
such that 3k, e.le = p/k A ¢ = piro)s}.

The rationale is that for any &, ®x{S) will always con-
tain F({p, q), for those pairs of terms p, ¢ such that no
rule in K can possibly reduce p to g.

Example 3 Let R, be {a = b = a — b}.

Let Z = {F{a,a), F{b,a), F(b,b)}. Candidates for the
fixpoints of ®g, are: Z, ZU{T{a,b})}, and ZU{F(a, b}}.
Each of these is a fixpoint; Z itself is the least fixpoint,
whereas the other two are maximal fixpoints, with each
of which Z is compatible. Hence Z is also the greatest
intrinsic fixpoint of ¢p, .

Example 4 Let Ry be {a # b= a — b}.

Again, let Z = {F{a,a), F(b,a}, F(b,b}}. Candidates
for the fixpoints of ® g, are also again Z, Z U {T{a, b}},
and Z U {F{a,b}}. Of these, only Z is a fixpoint: note
that ®gr,(Z U {T{a, b}}) will contain F{a,b}, and
®r,(ZU{F{a,b)}) will contain T{a,b}). Hence the others
are not fixpoints of $g,.

Example 5 Let Rg be {¢ # ¢ = a — b},

Let Z = {F(a,a), F{a,c}, F{b,a), F{b,}), F(b,c},
F{c,a), Flc, b}, F{c,c}}. Candidates for the fixpoints
of ®p, are Z, Z U {T{a,b}}, and Z U {F{e,b}}. Of
these, Z is a fixpoint, because the absence of T{a,b}
and F(a,b} from Z implies that ®g,(Z) will contain
neither T'(a,b) nor Fla,b). Also, ZU {T{a,b}} is a fix-
point since ®g,(Z U {T{a, b)}) will contain T'{a, b). But
PR, (Z U {F(a,b)}) will contain T'(a, b}, hence the third
candidate is not a fixpoint. Hence Z is the least fixpoint,
whereas ZU{T {a, b} } is the only maximal fixpoint, which
is hence the greatest intrinsic fixpoint.

Example 6 Let Ry be {a=¢c = a — b}.

Let Z = {F{a,a), F(a,c), F{b,a}, F{b,b}, F{b, ¢},
Fle,a), Fc, b}, F{c,c}} again. Candidates for the fix-
points of &, are Z, Z U {T{(a,b}}, and Z U {F(a,b}}.
Of these, Z 1a again a (least) fixpoint. Z U {F{a, b})} is
also a fixpoint, but not ZU {T'(a,b}}. Thus ZU{F (e, }}
18 the greatest intrinsic fixpoint.

Example 7 Let Rs be {¢ #d = a — b}

Let Z = {F{a,a), Fla,c), F{a,d}, F{b,a}, F{b, b},
F{b,c), F(b,d), Flc,a}, F{c,b), Flc,c}, Fle,d}, F{d,a),
F{d b}, F{d, c), F{d d)}. Candidates for the fixpoints of
&p, are Z, ZU{T{a,b}}, and ZU {F{a,b}}. This time,
Z is not a fixpoint because ® g, (2) contains T{a,b). For
the same reason, ZU{F(a, §}} is also not a fixpoint. The
only fixpoint is Z U {T{a, b}}.

Example 8

Let Rebe {cfd=>a—b, atb=>c—~d}. LetZ=
{F{a,a}, Fla,c}, Fla,d}, F{b, a}, F{b,b}, F{b, e}, F{b, d},
Fle,a), F{c,b}, Fe,¢}, F(d,a), F{d,b), F{d,c}, F{d, d}}.
Candidates for the fixpoints of ®g, are those supersets
of Z which contain at most one of T{a,t), F{a,b), and
also at most one of T{e,d}, F(c,d). Of these, Z iiself
is a (least) fixpoint since i1t does not contain signed tu-
ples which would enable either of the rewrite rules in Rg
to be activated. If a fixpoint contains F'{a,b}, then it
must also contain T'{¢, d) since the second rewrite rule is
activated; indeed, Z U {F{a, b}, T(c,dg} is a (maximal)
fixpoint. Similarly, ZU{F{c,d}, T{a,b)} is also a (maxi-
mal) fixpoint. These maximal fixpoints are not mutually
compatible, and Z is a fixpoint compatible with each of
these maximal fixpoints. Hence Z is the least as well as
the largest intrinsic fixpoint.

It can be shown that the other candidates are not fix-
points. For instance, ®,(ZU{T{a. &)}) does not contain
T{a,b), since the antecedent of the first rewrite rule is
not enabled: F{c,d) & Z U {T{a, bd)}

Example 9
Let Rrbe{a=b=>a--b, a#b=>a— b}

Let Z = {F{a,a}, F{b,a}, F{b,b}}. Candidates for the
fixpoints of ®g, are Z, ZU {T(a,b}}, and ZU {F{a,b}}.
Of these, Z is a (least} fixpoint. Also Z U {T{a,b)} isa
fixpoint, but not Z U {F({(a,b})}. Hence Z U {T{a,b}} is
the greatest intrinsic fixpoint. Note that a ‘disjunctive’
conditional rewriting mechanism which examines the an-
tecedents of multiple rules achieves computation of the
greatest intrinsic fixpoint in this case.

Example 10 Let Ry be {c#d=a — b,
a# b=>a —b).

Let Z = {F({a,a),
F{a,c), Fla,d), F{b,a}, F(b,b}, F(b,c), F(b,d), Flc,a},
Fle, by, Flc,e), Flc,d), F{d, a}, F{d,b}, F{d,c), F{d, d}}.
Candidates for the fixpoints of &g, are Z, ZU {T(a,b)},
and Z U {F(a,b)}. Since Z contains F (¢, z} and F{d,z)
for every z, every superset of Z which is a fixpoint must
contain T'{a,b) since the first rewrite rule is enabled.
Hence Z U {T'{a,b}} is the only fixpoint.

Example 11 Let Rg be {c#£d=>a — b,
eatb=>c—d a=b=c—d} Let Z =
{F{a,a}, Fla,e), Fla,d), F(b,a}, F{b,b}, F(b,c}, F{b,d),
F{c,a), Fle,b), Flc,c), F{d,a), F{d, b}, F{d,c), F(d,d}}.
Candidates for the fixpoints of &g, are those supersets
of Z which contain at most one of T{a, b}, F(a,b}, and
also at most one of T'{¢, d), F{e,d}. Of these, Z itself is
a (least) fixpoint since it does not contain signed tuples
which would enable either of the rewrite rules in Rs.
If a fixpoint contains F'(a,b), then it must also contain
T(e, d) since the second rewrite rule is activated; indeed,
ZU{F{a,b), T'(c,d}} is a (maximal) fixpoint.

There are no other fixpoints: every superset of 7
which contains F{a,b) or T{a,b) must also contain
T{c,d) if it is a fixpoint, since the second or third rewrite
rule is enabled. But every superset of Z which contains
T'{c, d) must also contain F{a,?) if it is a fixpoint, since
the antecedent of the first rewrite rule is falsified. And
every supersel of Z which contains F'{c, ¢} must also con-
tain T'{a,b) if it is a fixpoint, since the first rewrite rule
ia enabled.

Example 12

Let Rjpbe {c£d=>a—b, a#b=c—d,
a=b=>c—od, c=d=a— b} Again, let Z =
{Fla,a), Fla,c}, F{a,d}, F{b,a}, F{b,b), F{b, ¢}, F(b,d},
Flc,a), Fle, b}, Fle,c}, F{d,a), F{d,b), F{d,c), F{d, d)}.
We again examine various consistent supersets of 2
which are potential candidates for the fixpoints of ®pg,,.
Z itself is a (least) fixpoint, as in the previous exam-
ple. If one of the other candidates contains T{a, b}, then
the third rewrite rule diclates that it must also con-
tain T'(c, d) if it is a fixpoint (and conversely}. Indeed,
Z U {T(a,b), T{c,d}} is a (maximal) fixpoint. Candi-
dates which contain F{a, b) (or F{c, d)} are not fixpoints,
because the second (or first) rewrite rule is then en-
abled, generating T'{c, d} (or T'{a, b}, respectively), which
in turn implies that the candidate must contain T{a,b)
(or T'{e, d), respectively) making it inconsistent. Hence
there are no other fixpoints.

Mohan 861

5 Conclusions

We have investigated the fixpoint semantics of condi-
tional term rewriting systems with negation. Two-
valued semantics does not ascribe a meaning to CTRS's
that do not satisfy useful properties such as termination.
We have shown that a three-valued approach used by
Fitting [5] for Prolog-style logic programs is applicable in
this context. A monotone operator is developed, whose
fixpoints describe the semantics of conditional rewriting.
Several examples illustrate this semantics for 'trouble-
some' rewrite systems which could not be handled easily
by previous approaches. This work supports the con-
tention that results achieved in research on Prolog-style
logic programming can be useful in the context of con-
ditional term rewriting.

We have hesitated to say whether it is the least fix-
point or the greatest intrinsic fixpoint which better de-
scribes the semantics of the EI-CTRS. The examples
may motivate a preference for one or the other. The op-
erational mechanism described in [13] and [8] computed
members of the least fixpoint. To compute the greatest
intrinsic fixpoint, we need a different operational mech-
anism which uses "disjunctive rewriting" [15] (cf. ex-
ample 9) as well as a mechanism which returns failure
in some cases when naive evaluation of the antecedent
leads to non-termination (cf. example 5). The formu-
lation of such a rewriting mechanism, which computes
precisely the greatest intrinsic fixpoint, is an issue for
future work. In non-controversial cases, when termina-
tion requirements are satisfied, the least fixpoint and the
greatest intrinsic fixpoint coincide (cf. examples 3, 4, 7).
and are essentially equivalent to the semantics given in
previous work for such well-behaved rewrite systems.

Acknowledgements

The author thanks Melvin Fitting and anonymous refer-
ees for their comments on the paper.

862 Logic Programming

References

(1]

(2]

(3]

(4]

(3]

(6]

[7]

(8l

)
[10]

(1]

[12]

[13]

[14]

[15]

[16]

H.Aida and J.Meseguer. "Getting Rid of Condi-
tional Equations". Proc. Second Int'l. Workshop on
Conditional and Typed Term Rewriting Systems,
Montreal, June 1990.

K.R.Apt and M.H.Van Emden. "Contributions to
the Theory of Logic Programming". Journal of the
Assoc. Computing Mach., vol.29, pp. 841-862, 1982.

K.L.Clark. "Negation as Failure" in H.Gallaire and

J.Minker (eds): "Logic and Data Bases". Plenum
Press, N.Y., 1978.
N.Dershowitz and J.-P.Jouannaud. "Rewrite Sys-

tems" in "Handbook of Theoretical Comp. Science".
Academic Press, 1989.

M.Fitting. "A Kripke-Kleene Semantics for Logic
Programs". Joumal of Logic Programming, vol.4,
pp. 295-312, 1985.

M.Fitting. "Notes on the Mathematical Aspects of
Kripke's Theory of Truth". Notre Dame Journal of
Formal Logic, vol.27, no.l, pp.75-88, Jan. 1986.

S. Kaplan. "Simplifying Conditional Term Rewrit-
ing Systems: Unification, Termination and Conflu-
ence". Rapport de Recherche no. 194, Universite de
Paris-Sud, Nov. 1984.

S.Kaplan. "Positive/Negative Conditional Rewrit-
ing". Proc. First Int'l. Workshop on Conditional
Term Rewriting Systems, Paris, Springer-Verlag
LNCS 308, 1987.

S.C.Kleene. "Introduction to Metamathematics".
Van Nostrand, New York, 1952.

S.Kripke. "Outline of a Theory of Truth". J.
Philosophy vol.72, pp.690-716, 1975.

R.Kowalski. "Predicate Logic as a Programming
Language". 1FIP Info. Processing, North-Holland,
pp.569-574, 1974.

Z.Manna and A.Shamir. "The Theoretical Aspect of

the Optimal Fixed Point". SIAM J. of Computing,
vol.5, pp.414-426, 1976.

C.K.Mohan and M.K.Srivas. "Conditional Spec-
ifications with Inequational Assumptions". Proc.

First Int'l. Workshop on Conditional Term Rewrit-
ing Systems, Paris, Springer-Verlag LNCS 308,
1987.

C.K.Mohan and M.K.Srivas. "Negation in Condi-

tional Term Rewriting", in R.Wilkerson (ed.): "Ad-
vances in Logic Programming and Automated Rea-

soning" (to appear), Ablex Press, 1991.
D.Plaisted. "Confluence and Reduction Proper-
ties of Conditional Term Rewriting Systems".

Manuscript, 1985.
A.Tarski. "A lattice-theoretical fixpoint theorem
and its applications". Pacific J. Math., vol.5,

pp.285-309, 1955.

