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A b s t r a c t 

Analogical planning provides a means of solving 
problems where other machine learning meth­
ods fai l , because it does not require numer­
ous previous examples or a rich domain the­
ory. Given a problem in an unfamiliar domain 
(the target case), an analogical planning sys­
tem locates a successful plan in a similar do­
main (the bast case), and uses the similarities 
to generate the target plan. Unfortunately, the 
analogical planning process is expensive and in­
flexible Many of the l imi t ing factors reside in 
the base selection step, which drives the anal­
ogy formation process. This paper describes 
two ways of increasing the effectiveness and ef­
ficiency of analogical planning. First, a par­
allel graph-match base selection algorithm is 
presented. A parallel implementation on the 
Connection Machine is described and shown to 
substantially decrease the complexity of base 
selection. Second, a base-case merge algorithm 
is shown to increase the flexibil ity of analogi­
cal planning by combining the benefits of sev­
eral base cases when no single plan contributes 
enough information to the analogy. The effec­
tiveness of this approach is demonstrated with 
examples from the domain of automatic pro­
gramming. 

1 I n t r o d u c t i o n 

Analogy is a powerful planning tool. Engineers and sci­
entists rarely attack a problem in an unfamiliar domain 
from scratch. Instead, then rely on their experience with 
solving problems in similar domains. They adapt known 
techniques, map constraints from a solved problem to 
the new problem, and modify existing solutions to fit 
the current problem specification. Given a novel problem 
(the target case), an analogical planner selects a similar, 
solved problem (the base case), computes a mapping be­
tween the base and target problem descriptions, and uses 
the mapping the adapt the base solution to the current 
domain. When examples are lacking and domain theory 
is scarce, the intelligent agent draws on past experience 
in similar situations to attack a new problem. 

Although analogy is considered to be a powerful tool 
for machine planning, it is also viewed as an expensive 
task which is rarely applied to large-scale problems. As 
Buchanan states, analogical reasoning is a "pipe dream 
when matched against the harsh standards of robust­
ness of commercial applications" [Buchanan, 1990]. A 
second l imi tat ion of analogical planning systems is flexi­
bi l i ty. In inductive learning systems, when the learner is 
not performing well enough more examples can be input 
to improve the hypothesis. In analogical learning sys­
tems, the strength of the output plan depends solely on 
the amount of similar i ty between base and target and 
on the strength of the relationship between known and 
inferred information. If no base cases sufficiently match 
the target, the system cannot, perform as needed. 

The purpose of this research is to strengthen the ef­
fectiveness and efficiency of analogical planning, making 
it a more useful tool for machine learning. This paper 
describes a method of achieving the staled goal by fo­
cusing on the aspect of analogical planning that is the 
least researched and perhaps the most l imi t ing: base se-
lection. The base selection process is very expensive, 
yet the selected base case greatly affects the outcome 
of the planning process. In this paper, two improve-
merits to base selection are discussed. First, a parallel 
graph-match base selection algorithm is described that 
reduces the complexity of the search process. Second, a 
method of merging congruent base cases when no single 
base case sufficiently matches the target is demonstrated 
to improve the flexibility and applicabil i ty of analogical 
planning. This approach is il lustrated on automatic pro­
gramming examples, and is shown to transform analogy 
into an effective, efficient planner for large-scale prob­
lems. 

2 Ana log ica l P l ann ing 

Analogy can be defined as an inference that if two or 
more things agree in some respects they wi l l proba­
bly agree in others. The strength of the analogically-
generated inferences depends on the type and strength 
of the relationship between the known shared properties 
and the inferred shared properties. 

The three main steps of analogy plan formation are 
base selection, map formation, and inference generation. 
Given the target problem that needs a solution, the ana-
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logical planner selects a base problem that has a suc­
cessful plan and that shares crucial properties of the 
problem wi th the target. When the appropriate base 
case has been found, the system constructs the analogi­
cal mapping. Once the mapping is formed, the analogy 
system uses the information describing the base and the 
base —► target mapping to infer the target plan. 

For example, a programmer rarely develops his code 
from scratch. Instead, he pulls ideas and pieces of code 
from similar programs he has wri t ten in the past, and 
modifies them to fit the peculiarities of the current goal. 
If he wants to implement a program that computes real-
number division to a specific accuracy, he may benefit 
most from analogically deriving the program. First, he 
finds a program in his database that computes the cube-
root of a real number to a specific precision (base selec­
tion). He senses the underlying similarities between the 
type of information used and the goal of the programs 
and pinpoints the correspondences (map formation). Us­
ing these correspondences, he maps the existing code to 
fit the current si tuation, and enters the new analogically-
implemented program into his database (inference gen­
eration). 

Much of analogy research has focuses pr imari ly on 
the creation of the base —► target mapping. Cen­
tner's [Clement and Centner, 1989; Centner, 1988; 
Centner and Toupin, 1986] theory of systematictty shows 
that humans use analogies between concepts whose un­
derlying structures are the same. Other popular methods 
of map formation include Carbonell's transformational 
analogy approach [Carbonell, 1983] which uses means-
ends analysis to reduce the difference between base and 
target, and the explanation-based approach of Kedar-
Cabelli [Kedar-Cabelli, 1988], which constructs an ex­
planation of the difference between base and target con­
cepts. 

.Analogical reasoning, though generally considered in­
tuit ive and compelling, is often looked upon as a com­
putationally infeasible form of learning. This feeling is 
fueled by the fact that much attention has been given 
to the task of f inding coherent mappings between base 
and target. On the other hand, l i t t le attention has been 
given to computationally-complex tasks such as base se­
lection. Work focusing on the base selection task in­
cludes case-based reasoning research [Hammond, 1986a; 
Hammond, 1986b; Kolodner et al., 1985] which uses plan 
keywords to organize the databa.se and select a base case. 

3 Para l le l Ana log ica l P lann ing 
A goal of this research is to design an analogical plan­
ning system efficient and effective enough to apply to 
large-scale problem domains. The implemented system 
is based on a graph match algor i thm, which compares 
two plans represented as graphs to determine the sim-
ilarity of the plans. The system is called A N A G R A M 
(ANAlogical GRAph Match). Given a target problem 
specification represented in graph form, A N A G R A M ' S col­
ored graph match technique generates a plan which wil l 
achieve the target goal. 

Each plan in A N A G R A M ' S database is represented as a 
directed acyclic graph. The nodes in the graph represent 

object names and attr ibutes, and the links represent re­
lations between objects. A base case is selected if the 
structure of the base graph matches the structure of the 
target graph (embodying Centner's theory of systematic-
ity). 

The system accepts as input two subgraphs, repre­
senting the target problem's init ial-state description and 
goal-state specification. A N A G R A M searches through the 
database, finding the best match for both subgraphs. 
Using the output of the individual graph matches, A N A ­
G R A M then maps the base plan over to the target domain 
to generate a solution for the target problem. If the re­
sult ing plan is unsuccessful, or if no sufficiently similar 
base cases are found, the system attempts to merge sev­
eral base cases that are similar to each other and to the 
target problem. The result is a virtual base graph that 
eliminates anomalies and generalizes various options in 
the plan to the extent that it covers the target domain. 

3.1 P a r a l l e l G r a p h M a t c h 

A N A G R A M ' S graph match algori thm is implemented on 
a Connection Machine 2, a Single-Instruction-Multiple-
Data (SIMD) machine wi th 32,768 processors. The algo­
r i thms are implemented in *Lisp, a parallel extension of 
Common Lisp. A N A G R A M makes use of parallel compu­
tation in two aspects of base case selection. The graph 
match algori thm which compares a base graph with the 
target is implemented in parallel, and each base case in 
the database is examined simultaneously. 

In the parallel graph match, the data structure repre­
senting each graph node is stored in a separate CM pro-
cessor. Each node in the first graph looks for a match 
at the same t ime wi th a node at the same level in the 
second graph. An integer is assigned to each node in the 
base graph. When a match is found for a node from the 
base graph, the corresponding target node is assigned 
the same integer When testing if node n1 matches n2, 
the link labels and the integers assigned to the parents 
and children of n1` are matched with the corresponding 
labels and integers for n2. 

The data structure describing each node contains the 
level of the node in the graph,1 , the node label, and a 
tuple which consists of the incoming link labels and cor­
responding parent nodes as well as the outgoing link la­
bels and corresponding child nodes. Ini t ia l ly, nothing is 
known about parent or child nodes, so the parent/chi ld 
integer slots are set to " ? " . Each node simultaneously 
looks for a match by comparing levels and tuples. If 
two complete tuples match (the tuples are complete if 
they have no "?"s), the match is added to the global 
map (gmap) and a unique integer is assigned to the two 
nodes. If a tuple is incomplete, it generates a list of par­
t ial matches. When one or more matches are found, each 
node in both graphs simultaneously updates its tuples. 
Assigned integers are propagated across the links. Once 
the tuples are updated, matches between incomplete tu­
ples are checked once again — if they no longer match, 
the algori thm returns failure. 

1The level of a node in a DAG is defined here as the shortest 
path length from the node to any leaf in the DAG. 
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If no unique matches are found for any of the nodes, 
the algorithm takes one node from the list of nodes hav-
ing more than one candidate match, and randomly se-
lects a match for the node. If there are nodes from the 
first graph that cannot be matched with any node from 
the second graph, the algori thm returns failure. The 
process is successfully completed when a match is found 
for each node in the first graph. 

3.2 P a r a l l e l Base Se lec t ion 

Probably the greatest speedup occurs when base selec­
tion is parallelized. Normally, the base selection process 
is very t ime consuming because each potential base so­
lution must be compared wi th the target problem speci­
fication. Fortunately, each of these comparisons is inde­
pendent, of t he others, so the bases can be examined in 
parallel. 

The time saved by performing base selection in par­
allel is enormous, as would be expected. However, as 
the database grows large, it is not possible to examine 
each of the base cases in parallel because of the l imi t on 
the number of processors. On the Connection Machine 
it is possible to create vir tual processors (extra proces­
sors which overlay the existing physical processors). Us­
ing the vir tual processors eventually degrades the per­
formance of the algor i thm, however, and even with the 
existence of vir tual processors it is not possible to ex­
amine a huge database completely in parallel because of 
memory l imitat ions. 

fur this reason, as the database becomes very large, 
indices are attached to each entry in the database. The 
indices chosen are ones which do not add new informa­
tion to the graphs; rather, they compress the information 
contained in the graph. These features include graph in­
variants such as the size of the graph and the degrees 
of each node. Some indices also encapsulate information 
contained in the graph such as the list of operators used 
in the plan. Entries in the database with the same in­
dices are then grouped together. When base selection is 
performed, the algorithm uses the attributes of the tar­
get specification to select a group of base cases from the 
database, and examines these base cases in parallel. In 
fact, the number of cases allowed in each database sub­
group can be calculated from the size of the individual 
plans and the number of processors available on the ma­
chine, so that it is always possible to examine the plans 
within a single group in. parallel. 

3.3 E x a m p l e 

This section illustrates the application of A N A G R A M ' S 
parallel algorithms to automatic programming. Analogy 
proves to be a valuable tool for automatic programming. 
Instead of constructing programs from scratch or work­
ing from abstract theories, many scientists start with ex­
isting program segments that achieve similar goals, and 
modify them to meet their current needs. 

The following example is based on a program segment 
described by Dershowitz [Dershowitz, 1986]. The base 
program, a program that computes the cube-root of a 
within an error tolerance e, is used to generate a program 
that computes c/d wi thin an error tolerance e. Figure 1 
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Figure 1: Base and Target Goal-State Subgraphs 

illustrates the goal-state subgraphs of the base and tar­
get plans. 

A N A G R A M successfully matches the initial-state sub­
graphs and the goal-state subgraphs. Tables 1 and 2 
show the tuples representing the nodes in the two goal-
state subgraphs at the end of the graph match. The first 
column represents the node label, the second column lists 
the integer assigned to the node, the th i rd column shows 
the corresponding tuple, and the fourth column lists the 
candidate matches / final match for the node. Note 
that the tuples are represents as ({(child-integer outl ink-
label) } { ( p a r e n t - i n t e g e r i n l i n k - l a b e l ) } ) . 

The result of the match is the set of node-to-node 
matches that comprise the global map: 



Figure 3: Base Selection Results 

The mapping is used to transform the base program 
into a program that achieves the target goal. The code 
segments are shown below 

After the target plan generation is complete, the plan 
is tested. If the plan is not successful, A N A G R A M may 
attempt a new analogy, merging several base cases to 
form a more flexible analogy. This process is described 
is section 4. If the plan is successful, the new plan is 
indexed by its features and added the database. 

3.4 Analysis 
Figures 2 and 3 show the results of running the par­
allel and sequential graph match and base selection al­
gorithms. For these experiments, a database of graphs 
representing program specifications was created. In the 
first experiment, the graph sizes range from 4 to 200 
nodes. Noise was minimized by generating 50 graphs of 
each desired size. Three implementations of the graph 
match algorithm were tested. The first curve represents 
the sequential version of the algorithm implemented on a 
Texas Instruments Explorer I I . The second curve shows 
the results of the parallel implementation running on a 
Connection Machine 2. The third curve represents the 

algorithm running on the CM 2 without taking advan­
tage of the parallelism. 

The results shown in the graph match graph come very 
close to expectation. The actual complexity of the graph 
match algorithm is where n 
is the number of nodes in the graph, h is the height of the 
graph, and p represents the number of physical proces­
sors residing on the machine. This is linear speedup from 
the sequential algorithm, which has complexity O(n2). 

The second experiment compares sequential and par-
allel implementations of the base selection algorithm. 
From a database of 500 graphs, one base case was cho­
sen. When the entire database must be searched, the 
complexity of the sequential algorithm is proportional 
to the size of the database, while the parallel algorithm 
is almost constant. The sequential algorithm actually 
has complexity O(bn2), while the parallel algorithm is 

The results of testing these algorithms reveals that an 
analogy system implemented on a massively parallel ma­
chine is a powerful and efficient planning tool. Taking 
advantage of available hardware allows analogical plan­
ning to be applied to complex problems without unrea­
sonable time expense. 

4 Merging Congruent Cases 
Implementing an analogy system on a parallel machine 
transforms analogical planning into an efficient process. 
However, the tool still suffers from a lack of flexibility. 
In particular, a base case must be found that is suffi­
ciently similar to the target to analogically generate each 
step of the target plan. Because in actuality there exists 
a great diversity among graph representations of plans, 
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the chance of f inding such a similar base case is sl im. 
Although analogical learning is sometimes preferred to 
inductive learning because it does not require mult iple 
examples, there are many instances in which mult iple 
base cases would strengthen an analogy. 

One example of using mult iple base cases is incremen­
tal analogy [Burstein, 1988]. One base case may provide 
some of the information needed for the target, but not 
all. Another base case may provide the remaining needed 
information, but nothing else. An analogy formed be­
tween the target and either one of these bases would be 
insufficient, but the merging of the two separate analo­
gies results in a complete, useful analogy. 

A second way of using mult ip le base cases is to merge 
similar base cases, resulting in a "v i r tua l " base case. 
This v i r tual base case is more beneficial to the analogy 
than a single case, because it removes anomalies and 
generalizes alternative operations. Furthermore, merg­
ing base cases focuses the analogy on the relevant, as-
pects of the base cases, because those aspects of previous 
plans that are beneficial to the target are retained in the 
virtual base. Base cases that are sufficiently similar in 
structure to be merged together are termed congruent 
base cases.2 

4.1 T h e M e r g e A l g o r i t h m 
This section describes how A N A G R A M merges congru­

ent base cases to enhance its analogy-formation and 
problem-solving capabilities. The issue of deciding when 
to merge plans is first addressed, and then the merging 
method is described. 

A N A G R A M uses the graph-merge algorithm in the fol­
lowing cases: 

• A match is found between the target in i t ia l /goal 
states and the base in i t ia l /goal states, but the in­
termediate steps in the base case are not mappable 
or cannot be applied in the target domain. 

• No base case matches perfectly, but several match 
rather closely. Moreover, the unmappable parts ei­
ther 1) are generalizable in a way that map to the 
target plan, or 2) they do not overlap (the base cases 
fail to match the target at distinct points in the tar­
get graph). 

When selecting bases for merging, the algorithm 
chooses cases based on ease of generalization. The types 
of graph merge are (in order of preference): 

1 Merging graphs with distinct base/target differences. 
The simplest and most beneficial method of merging 
occurs when the candidate base graphs match each 
other and their differences wi th the target do not 
overlap, as shown in figure 4. The mappable por­
tions of each base are retained in the vir tual base 
graph. 

2. Relaxing order constraints. The graph match algo-
r i thm looks only for matches between nodes at cor­
responding levels in the graphs. Often an operator 

2This term is borrowed from geometry, where two trian­
gles are congruent if they have the same angles and propor­
tions of side lengths. 

Figure 4: Distinct Base Case Merge 

re-ordering wil l make a base case fit the target ex­
actly. Comparing mult iple plans whose only differ­
ence is the order of operations, it becomes apparent 
that maneuvering the operators may also solve the 
target problem. When this situation arises, Ana­
gram looks for correlations between the order of op­
erations and ordering constraints in the ini t ial or 
goal state. 

3. Disjunction/'generalization of subgraphs. When 
comparing subgraphs whose "defective" parts do 
overlap, A N A G R A M generalizes the overlapping sub­
graphs. The methods of generalization correspond 
to those found in most induction systems, such 
as adding disjunctions and cl imbing generalization 
trees. The purpose of the generalization is to ab-
stract the non-mappable subgraphs to th extent 
that the generalized subgraph wi l l cover the tar­
get case. As the number of base cases included in 
the generalization increases, the method of merging 
base graphs begins to behave similar to pure indue 
t ion. 

4.2 E x a m p l e 
This section describes an application of A N A G R A M ' S 
graph merge algorithm to a problem in the domain of au­
tomatic programming. In this example, the target goal 
is to construct a program that uses in order traversal to 
traverse a given binary tree. The ini t ial and goal state 
descriptions are given: 

Among the base cases residing in the database are 
the algorithms for preorder and postorder tree traver­
sal. The matches are equally good w i th either base case, 
so the selection process arbi t rar i ly chooses the preorder 
plan. However, the resulting program is 
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b e g i n inorder 

un less null(tree) 
vlist := append(vlist, x) 
inorder(left-son(x), vl ist) 
inorder(right-son(x), vl ist) 

e n d 

This does not solve the problem (remember that the 
graph matcher does not consider re-ordering the opera­
tors). The system then compares the preorder and pos-
torder algorithms, and notices that the operators are the 
same in the two algorithms, but the order of applica­
tion is different. The goal description in both base cases 
places ordering constraints on the output: 

By comparing the order of operators wi th the order 
imposed by the goal description, ANAGRAM observes 
that the placement of y corresponds wi th the append 
operation, lcft-son(y) wi th the recursive call to the left 
son, and right-son(y) wi th the recursive call to the right 
son. A N A G R A M is able to generate a vir tual base graph 
that contains the correspondences between the three op­
erators and the desired order of elements in vlist. The 
resulting target plan shown below is successful. 

b e g i n inorder 

e n d 

5 Conclusions and Fu tu re D i rec t ions 
This paper presents two steps that make analogical plan­
ning a more effective and efficient machine learning tool . 
There are many extensions of this research which could 
push the advancement of the area even further. Search­
ing for and combining part ial matches would be a ben­
eficial alternative to merging base cases. Developing a 
fuzzy graph match would allow a broader range of analo­
gies to be created. Other aspects of the analogical plan­
ning task could be parallelized, such as inference gen­
eration. In addit ion, other parallel architectures should 
be analyzed for their potential to speed up the analogy 
process. For example, a hypercube M1MD architecture 
could be used to develop mult iple independent analogies 
for the same target, or expand mult iple part ial matches 
simultaneously. 

In this paper, the parallel graph match and base se­
lection algorithms were described as implemented on 
the Connection Machine. The results were substan­
tial ly faster than results f rom the comparable sequential 
method. In addit ion, a method of combining the benefits 
of several successful plans by merging mult iple base cases 
was presented. The extension of analogy to utilize mul­
tiple base cases was shown to increase the effectiveness 

of analogical planning in large problem domains. By 
designing efficient parallel analogy algorithms, and by 
extending the applicabil i ty of analogical planning, this 
research offers a valuable step toward the automation of 
analogical planning. 
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