
The Base Selection Task in
Analogical P lann ing

Diane J . Cook
University of South Florida

Tarmpa, FL

cook@sol.usf.edu

A b s t r a c t

Analogical planning provides a means of solving
problems where other machine learning meth­
ods fai l , because it does not require numer­
ous previous examples or a rich domain the­
ory. Given a problem in an unfamiliar domain
(the target case), an analogical planning sys­
tem locates a successful plan in a similar do­
main (the bast case), and uses the similarities
to generate the target plan. Unfortunately, the
analogical planning process is expensive and in­
flexible Many of the l imi t ing factors reside in
the base selection step, which drives the anal­
ogy formation process. This paper describes
two ways of increasing the effectiveness and ef­
ficiency of analogical planning. First, a par­
allel graph-match base selection algorithm is
presented. A parallel implementation on the
Connection Machine is described and shown to
substantially decrease the complexity of base
selection. Second, a base-case merge algorithm
is shown to increase the flexibil ity of analogi­
cal planning by combining the benefits of sev­
eral base cases when no single plan contributes
enough information to the analogy. The effec­
tiveness of this approach is demonstrated with
examples from the domain of automatic pro­
gramming.

1 I n t r o d u c t i o n

Analogy is a powerful planning tool. Engineers and sci­
entists rarely attack a problem in an unfamiliar domain
from scratch. Instead, then rely on their experience with
solving problems in similar domains. They adapt known
techniques, map constraints from a solved problem to
the new problem, and modify existing solutions to fit
the current problem specification. Given a novel problem
(the target case), an analogical planner selects a similar,
solved problem (the base case), computes a mapping be­
tween the base and target problem descriptions, and uses
the mapping the adapt the base solution to the current
domain. When examples are lacking and domain theory
is scarce, the intelligent agent draws on past experience
in similar situations to attack a new problem.

Although analogy is considered to be a powerful tool
for machine planning, it is also viewed as an expensive
task which is rarely applied to large-scale problems. As
Buchanan states, analogical reasoning is a "pipe dream
when matched against the harsh standards of robust­
ness of commercial applications" [Buchanan, 1990]. A
second l imi tat ion of analogical planning systems is flexi­
bi l i ty. In inductive learning systems, when the learner is
not performing well enough more examples can be input
to improve the hypothesis. In analogical learning sys­
tems, the strength of the output plan depends solely on
the amount of similar i ty between base and target and
on the strength of the relationship between known and
inferred information. If no base cases sufficiently match
the target, the system cannot, perform as needed.

The purpose of this research is to strengthen the ef­
fectiveness and efficiency of analogical planning, making
it a more useful tool for machine learning. This paper
describes a method of achieving the staled goal by fo­
cusing on the aspect of analogical planning that is the
least researched and perhaps the most l imi t ing: base se-
lection. The base selection process is very expensive,
yet the selected base case greatly affects the outcome
of the planning process. In this paper, two improve-
merits to base selection are discussed. First, a parallel
graph-match base selection algorithm is described that
reduces the complexity of the search process. Second, a
method of merging congruent base cases when no single
base case sufficiently matches the target is demonstrated
to improve the flexibility and applicabil i ty of analogical
planning. This approach is il lustrated on automatic pro­
gramming examples, and is shown to transform analogy
into an effective, efficient planner for large-scale prob­
lems.

2 Ana log ica l P l ann ing

Analogy can be defined as an inference that if two or
more things agree in some respects they wi l l proba­
bly agree in others. The strength of the analogically-
generated inferences depends on the type and strength
of the relationship between the known shared properties
and the inferred shared properties.

The three main steps of analogy plan formation are
base selection, map formation, and inference generation.
Given the target problem that needs a solution, the ana-

790 Learning and Knowledge Acquisition

logical planner selects a base problem that has a suc­
cessful plan and that shares crucial properties of the
problem wi th the target. When the appropriate base
case has been found, the system constructs the analogi­
cal mapping. Once the mapping is formed, the analogy
system uses the information describing the base and the
base —► target mapping to infer the target plan.

For example, a programmer rarely develops his code
from scratch. Instead, he pulls ideas and pieces of code
from similar programs he has wri t ten in the past, and
modifies them to fit the peculiarities of the current goal.
If he wants to implement a program that computes real-
number division to a specific accuracy, he may benefit
most from analogically deriving the program. First, he
finds a program in his database that computes the cube-
root of a real number to a specific precision (base selec­
tion). He senses the underlying similarities between the
type of information used and the goal of the programs
and pinpoints the correspondences (map formation). Us­
ing these correspondences, he maps the existing code to
fit the current si tuation, and enters the new analogically-
implemented program into his database (inference gen­
eration).

Much of analogy research has focuses pr imari ly on
the creation of the base —► target mapping. Cen­
tner's [Clement and Centner, 1989; Centner, 1988;
Centner and Toupin, 1986] theory of systematictty shows
that humans use analogies between concepts whose un­
derlying structures are the same. Other popular methods
of map formation include Carbonell's transformational
analogy approach [Carbonell, 1983] which uses means-
ends analysis to reduce the difference between base and
target, and the explanation-based approach of Kedar-
Cabelli [Kedar-Cabelli, 1988], which constructs an ex­
planation of the difference between base and target con­
cepts.

.Analogical reasoning, though generally considered in­
tuit ive and compelling, is often looked upon as a com­
putationally infeasible form of learning. This feeling is
fueled by the fact that much attention has been given
to the task of f inding coherent mappings between base
and target. On the other hand, l i t t le attention has been
given to computationally-complex tasks such as base se­
lection. Work focusing on the base selection task in­
cludes case-based reasoning research [Hammond, 1986a;
Hammond, 1986b; Kolodner et al., 1985] which uses plan
keywords to organize the databa.se and select a base case.

3 Para l le l Ana log ica l P lann ing
A goal of this research is to design an analogical plan­
ning system efficient and effective enough to apply to
large-scale problem domains. The implemented system
is based on a graph match algor i thm, which compares
two plans represented as graphs to determine the sim-
ilarity of the plans. The system is called A N A G R A M
(ANAlogical GRAph Match). Given a target problem
specification represented in graph form, A N A G R A M ' S col­
ored graph match technique generates a plan which wil l
achieve the target goal.

Each plan in A N A G R A M ' S database is represented as a
directed acyclic graph. The nodes in the graph represent

object names and attr ibutes, and the links represent re­
lations between objects. A base case is selected if the
structure of the base graph matches the structure of the
target graph (embodying Centner's theory of systematic-
ity).

The system accepts as input two subgraphs, repre­
senting the target problem's init ial-state description and
goal-state specification. A N A G R A M searches through the
database, finding the best match for both subgraphs.
Using the output of the individual graph matches, A N A ­
G R A M then maps the base plan over to the target domain
to generate a solution for the target problem. If the re­
sult ing plan is unsuccessful, or if no sufficiently similar
base cases are found, the system attempts to merge sev­
eral base cases that are similar to each other and to the
target problem. The result is a virtual base graph that
eliminates anomalies and generalizes various options in
the plan to the extent that it covers the target domain.

3.1 P a r a l l e l G r a p h M a t c h

A N A G R A M ' S graph match algori thm is implemented on
a Connection Machine 2, a Single-Instruction-Multiple-
Data (SIMD) machine wi th 32,768 processors. The algo­
r i thms are implemented in *Lisp, a parallel extension of
Common Lisp. A N A G R A M makes use of parallel compu­
tation in two aspects of base case selection. The graph
match algori thm which compares a base graph with the
target is implemented in parallel, and each base case in
the database is examined simultaneously.

In the parallel graph match, the data structure repre­
senting each graph node is stored in a separate CM pro-
cessor. Each node in the first graph looks for a match
at the same t ime wi th a node at the same level in the
second graph. An integer is assigned to each node in the
base graph. When a match is found for a node from the
base graph, the corresponding target node is assigned
the same integer When testing if node n1 matches n2,
the link labels and the integers assigned to the parents
and children of n1` are matched with the corresponding
labels and integers for n2.

The data structure describing each node contains the
level of the node in the graph,1 , the node label, and a
tuple which consists of the incoming link labels and cor­
responding parent nodes as well as the outgoing link la­
bels and corresponding child nodes. Ini t ia l ly, nothing is
known about parent or child nodes, so the parent/chi ld
integer slots are set to " ? " . Each node simultaneously
looks for a match by comparing levels and tuples. If
two complete tuples match (the tuples are complete if
they have no "?"s), the match is added to the global
map (gmap) and a unique integer is assigned to the two
nodes. If a tuple is incomplete, it generates a list of par­
t ial matches. When one or more matches are found, each
node in both graphs simultaneously updates its tuples.
Assigned integers are propagated across the links. Once
the tuples are updated, matches between incomplete tu­
ples are checked once again — if they no longer match,
the algori thm returns failure.

1The level of a node in a DAG is defined here as the shortest
path length from the node to any leaf in the DAG.

Cook 791

If no unique matches are found for any of the nodes,
the algorithm takes one node from the list of nodes hav-
ing more than one candidate match, and randomly se-
lects a match for the node. If there are nodes from the
first graph that cannot be matched with any node from
the second graph, the algori thm returns failure. The
process is successfully completed when a match is found
for each node in the first graph.

3.2 P a r a l l e l Base Se lec t ion

Probably the greatest speedup occurs when base selec­
tion is parallelized. Normally, the base selection process
is very t ime consuming because each potential base so­
lution must be compared wi th the target problem speci­
fication. Fortunately, each of these comparisons is inde­
pendent, of t he others, so the bases can be examined in
parallel.

The time saved by performing base selection in par­
allel is enormous, as would be expected. However, as
the database grows large, it is not possible to examine
each of the base cases in parallel because of the l imi t on
the number of processors. On the Connection Machine
it is possible to create vir tual processors (extra proces­
sors which overlay the existing physical processors). Us­
ing the vir tual processors eventually degrades the per­
formance of the algor i thm, however, and even with the
existence of vir tual processors it is not possible to ex­
amine a huge database completely in parallel because of
memory l imitat ions.

fur this reason, as the database becomes very large,
indices are attached to each entry in the database. The
indices chosen are ones which do not add new informa­
tion to the graphs; rather, they compress the information
contained in the graph. These features include graph in­
variants such as the size of the graph and the degrees
of each node. Some indices also encapsulate information
contained in the graph such as the list of operators used
in the plan. Entries in the database with the same in­
dices are then grouped together. When base selection is
performed, the algorithm uses the attributes of the tar­
get specification to select a group of base cases from the
database, and examines these base cases in parallel. In
fact, the number of cases allowed in each database sub­
group can be calculated from the size of the individual
plans and the number of processors available on the ma­
chine, so that it is always possible to examine the plans
within a single group in. parallel.

3.3 E x a m p l e

This section illustrates the application of A N A G R A M ' S
parallel algorithms to automatic programming. Analogy
proves to be a valuable tool for automatic programming.
Instead of constructing programs from scratch or work­
ing from abstract theories, many scientists start with ex­
isting program segments that achieve similar goals, and
modify them to meet their current needs.

The following example is based on a program segment
described by Dershowitz [Dershowitz, 1986]. The base
program, a program that computes the cube-root of a
within an error tolerance e, is used to generate a program
that computes c/d wi thin an error tolerance e. Figure 1

792 Learning and Knowledge Acquisition

Figure 1: Base and Target Goal-State Subgraphs

illustrates the goal-state subgraphs of the base and tar­
get plans.

A N A G R A M successfully matches the initial-state sub­
graphs and the goal-state subgraphs. Tables 1 and 2
show the tuples representing the nodes in the two goal-
state subgraphs at the end of the graph match. The first
column represents the node label, the second column lists
the integer assigned to the node, the th i rd column shows
the corresponding tuple, and the fourth column lists the
candidate matches / final match for the node. Note
that the tuples are represents as ({(child-integer outl ink-
label) } { (p a r e n t - i n t e g e r i n l i n k - l a b e l) }) .

The result of the match is the set of node-to-node
matches that comprise the global map:

Figure 3: Base Selection Results

The mapping is used to transform the base program
into a program that achieves the target goal. The code
segments are shown below

After the target plan generation is complete, the plan
is tested. If the plan is not successful, A N A G R A M may
attempt a new analogy, merging several base cases to
form a more flexible analogy. This process is described
is section 4. If the plan is successful, the new plan is
indexed by its features and added the database.

3.4 Analysis
Figures 2 and 3 show the results of running the par­
allel and sequential graph match and base selection al­
gorithms. For these experiments, a database of graphs
representing program specifications was created. In the
first experiment, the graph sizes range from 4 to 200
nodes. Noise was minimized by generating 50 graphs of
each desired size. Three implementations of the graph
match algorithm were tested. The first curve represents
the sequential version of the algorithm implemented on a
Texas Instruments Explorer I I . The second curve shows
the results of the parallel implementation running on a
Connection Machine 2. The third curve represents the

algorithm running on the CM 2 without taking advan­
tage of the parallelism.

The results shown in the graph match graph come very
close to expectation. The actual complexity of the graph
match algorithm is where n
is the number of nodes in the graph, h is the height of the
graph, and p represents the number of physical proces­
sors residing on the machine. This is linear speedup from
the sequential algorithm, which has complexity O(n2).

The second experiment compares sequential and par-
allel implementations of the base selection algorithm.
From a database of 500 graphs, one base case was cho­
sen. When the entire database must be searched, the
complexity of the sequential algorithm is proportional
to the size of the database, while the parallel algorithm
is almost constant. The sequential algorithm actually
has complexity O(bn2), while the parallel algorithm is

The results of testing these algorithms reveals that an
analogy system implemented on a massively parallel ma­
chine is a powerful and efficient planning tool. Taking
advantage of available hardware allows analogical plan­
ning to be applied to complex problems without unrea­
sonable time expense.

4 Merging Congruent Cases
Implementing an analogy system on a parallel machine
transforms analogical planning into an efficient process.
However, the tool still suffers from a lack of flexibility.
In particular, a base case must be found that is suffi­
ciently similar to the target to analogically generate each
step of the target plan. Because in actuality there exists
a great diversity among graph representations of plans,

Cook 793

Figure 2: Graph Match Results

the chance of f inding such a similar base case is sl im.
Although analogical learning is sometimes preferred to
inductive learning because it does not require mult iple
examples, there are many instances in which mult iple
base cases would strengthen an analogy.

One example of using mult iple base cases is incremen­
tal analogy [Burstein, 1988]. One base case may provide
some of the information needed for the target, but not
all. Another base case may provide the remaining needed
information, but nothing else. An analogy formed be­
tween the target and either one of these bases would be
insufficient, but the merging of the two separate analo­
gies results in a complete, useful analogy.

A second way of using mult ip le base cases is to merge
similar base cases, resulting in a "v i r tua l " base case.
This v i r tual base case is more beneficial to the analogy
than a single case, because it removes anomalies and
generalizes alternative operations. Furthermore, merg­
ing base cases focuses the analogy on the relevant, as-
pects of the base cases, because those aspects of previous
plans that are beneficial to the target are retained in the
virtual base. Base cases that are sufficiently similar in
structure to be merged together are termed congruent
base cases.2

4.1 T h e M e r g e A l g o r i t h m
This section describes how A N A G R A M merges congru­

ent base cases to enhance its analogy-formation and
problem-solving capabilities. The issue of deciding when
to merge plans is first addressed, and then the merging
method is described.

A N A G R A M uses the graph-merge algorithm in the fol­
lowing cases:

• A match is found between the target in i t ia l /goal
states and the base in i t ia l /goal states, but the in­
termediate steps in the base case are not mappable
or cannot be applied in the target domain.

• No base case matches perfectly, but several match
rather closely. Moreover, the unmappable parts ei­
ther 1) are generalizable in a way that map to the
target plan, or 2) they do not overlap (the base cases
fail to match the target at distinct points in the tar­
get graph).

When selecting bases for merging, the algorithm
chooses cases based on ease of generalization. The types
of graph merge are (in order of preference):

1 Merging graphs with distinct base/target differences.
The simplest and most beneficial method of merging
occurs when the candidate base graphs match each
other and their differences wi th the target do not
overlap, as shown in figure 4. The mappable por­
tions of each base are retained in the vir tual base
graph.

2. Relaxing order constraints. The graph match algo-
r i thm looks only for matches between nodes at cor­
responding levels in the graphs. Often an operator

2This term is borrowed from geometry, where two trian­
gles are congruent if they have the same angles and propor­
tions of side lengths.

Figure 4: Distinct Base Case Merge

re-ordering wil l make a base case fit the target ex­
actly. Comparing mult iple plans whose only differ­
ence is the order of operations, it becomes apparent
that maneuvering the operators may also solve the
target problem. When this situation arises, Ana­
gram looks for correlations between the order of op­
erations and ordering constraints in the ini t ial or
goal state.

3. Disjunction/'generalization of subgraphs. When
comparing subgraphs whose "defective" parts do
overlap, A N A G R A M generalizes the overlapping sub­
graphs. The methods of generalization correspond
to those found in most induction systems, such
as adding disjunctions and cl imbing generalization
trees. The purpose of the generalization is to ab-
stract the non-mappable subgraphs to th extent
that the generalized subgraph wi l l cover the tar­
get case. As the number of base cases included in
the generalization increases, the method of merging
base graphs begins to behave similar to pure indue
t ion.

4.2 E x a m p l e
This section describes an application of A N A G R A M ' S
graph merge algorithm to a problem in the domain of au­
tomatic programming. In this example, the target goal
is to construct a program that uses in order traversal to
traverse a given binary tree. The ini t ial and goal state
descriptions are given:

Among the base cases residing in the database are
the algorithms for preorder and postorder tree traver­
sal. The matches are equally good w i th either base case,
so the selection process arbi t rar i ly chooses the preorder
plan. However, the resulting program is

794 Learning and Knowledge Acquisition

b e g i n inorder

un less null(tree)
vlist := append(vlist, x)
inorder(left-son(x), vl ist)
inorder(right-son(x), vl ist)

e n d

This does not solve the problem (remember that the
graph matcher does not consider re-ordering the opera­
tors). The system then compares the preorder and pos-
torder algorithms, and notices that the operators are the
same in the two algorithms, but the order of applica­
tion is different. The goal description in both base cases
places ordering constraints on the output:

By comparing the order of operators wi th the order
imposed by the goal description, ANAGRAM observes
that the placement of y corresponds wi th the append
operation, lcft-son(y) wi th the recursive call to the left
son, and right-son(y) wi th the recursive call to the right
son. A N A G R A M is able to generate a vir tual base graph
that contains the correspondences between the three op­
erators and the desired order of elements in vlist. The
resulting target plan shown below is successful.

b e g i n inorder

e n d

5 Conclusions and Fu tu re D i rec t ions
This paper presents two steps that make analogical plan­
ning a more effective and efficient machine learning tool .
There are many extensions of this research which could
push the advancement of the area even further. Search­
ing for and combining part ial matches would be a ben­
eficial alternative to merging base cases. Developing a
fuzzy graph match would allow a broader range of analo­
gies to be created. Other aspects of the analogical plan­
ning task could be parallelized, such as inference gen­
eration. In addit ion, other parallel architectures should
be analyzed for their potential to speed up the analogy
process. For example, a hypercube M1MD architecture
could be used to develop mult iple independent analogies
for the same target, or expand mult iple part ial matches
simultaneously.

In this paper, the parallel graph match and base se­
lection algorithms were described as implemented on
the Connection Machine. The results were substan­
tial ly faster than results f rom the comparable sequential
method. In addit ion, a method of combining the benefits
of several successful plans by merging mult iple base cases
was presented. The extension of analogy to utilize mul­
tiple base cases was shown to increase the effectiveness

of analogical planning in large problem domains. By
designing efficient parallel analogy algorithms, and by
extending the applicabil i ty of analogical planning, this
research offers a valuable step toward the automation of
analogical planning.

References
[Buchanan, 1990] B ruce G Buchanan. Can machine

learning offer anything to expert systems? Machine
Learning, pages 5-8, 1990.

[Burstein, 1988] M H Burstein. I ncremental learning
from mult ip le analogies. In A Prieditis, editor, Analog-
ica, chapter 2, pages 37 62. Morgan Kaufmann Pub­
lishers, Inc., Los Altos, CA, 1988.

[Carbonell, 1983] J G Carbonell. Learning by analogy:
Formulat ing and generalizing plans from past expe­
rience. In R S Michalski, J G Carbonell, and T M
Mitchel l , editors, Machine Learning: An Artificial In-
telligence Approach, Vol. /, chapter 5, pages 137-162.
Tioga, Palo A l to , CA, 1983.

[Clement and Centner, 1989] Cath erine A Clement and
Dedre Gentner. Systematicaty as a selection constraint
in analogical mapping. Technical Report UIUCDCS-
R-89-1558, University of I l l inois, Urbana-Champaign,
IL , September 1989.

[Dershowitz, 1986] N Dershowitz. Programming by
analogy. In R S Michalski, J G Carbonell, and T M
Mitchel l , editors, Machine Learning: An Artificial In­
telligence Approach, Vol. II, chapter 15, pages 393-
421. Morgan Kaufmann Publishers, Inc., Los Altos,
CA, 1986.

[Gentner and Toupin, 1986] Dedre Gentner and
C Toupin. Systematicity and surface similar i ty in the
development of analogy. Cognitive Science, 10:277
300, 1986.

[Gentner, 1988] Dedre Gentner. Analogical inference
and analogical access. In A Prieditis, editor, Analog-
tea, chapter 3, pages 63-88. Morgan Kaufmann Pub­
lishers, Inc., Los Altos, CA, 1988.

[Hammond, 1986a] K Hammond. Chef: A model of
case-based planning. In Proceedings of the 1986
National Conference on Artificial Intelligence, pages
267-271, 1986.

[Hammond, 1986b] K J Hammond. Case-based Wan­
ning: An Integrated Theory of Planning, Learning and
Memory. PhD thesis, Yale University, Boston, MA,
1986.

[Kedar-Cabelli, 1988] S Kedar-Cabell i. Toward a com­
putational model of purpose-directed analogy. In
A Prieditis, editor, Analogica, chapter 4, pages 89-
108. Morgan Kaufmann Publishers, Inc., Los Altos,
CA, 1988.

[Kolodner et al, 1985] J L Kolod ner, R L Simpson, and
K Sycara. A process model of case-based reasoning in
problem solving. In Proceedings of the International
Joint Conference on Artificial Intelligence, pages 284-
290, 1985.

Cook 795

