
Theoretical Underpinnings of Version Spaces

Haym Hirsh
Computer Science Department

Rutgers University
New Brunswick, NJ 08903

Abstract
Mitchell's version-space approach to inductive con­
cept learning has been highly influential in machine
learning, as it formalizes inductive concept learning
as a search problem—to identify some concept def­
inition out of a space of possible definitions. This
paper lays out some theoretical underpinnings of
version spaces. It presents the conditions under
which an arbitrary set of concept definitions in a
concept description language can be represented by
boundary sets, which is a necessary condition for
a set of concept definitions to be a version space.
Furthermore, although version spaces can be inter­
sected and unioned (version spaces are simply sets,
albeit with special structure), the result need not be
a version space; this paper also presents the con­
ditions under which such intersection and union of
two version spaces yields a version space (i.e., rep-
resentable by boundary sets). Finally, the paper
shows how the resulting boundary sets after inter­
sections and unions can be computed from the in i ­
tial boundary sets, and proves the algorithms cor­
rect.

1 Introduction and Motivation
The problem of inductive concept learning—to form gen­
eral rules from data—has been well-studied in machine learn­
ing and artificial intelligence [Buchanan and Mitchell, 1978;
Michalski and Chilausky, 1980; Mitchell el al, 1983; Quin-
lan, 1983]. The problem can be stated as follows:

Given:
• Training Data: Positive and negative exam­

ples of a concept to be identified.
• Concept Description Language: A language

in which the final concept definition must be
expressed.

Determine:
• The desired unknown concept.

Mitchell [1978; 1982] proposed an approach to this problem
that maintains all elements of the concept description lan­
guage that could be the desired unknown concept, namely,
those that correctly classify the given training data (i.e., that

are consistent with the data); this set is known as a version
space. However, this set can be cleverly represented by only
maintaining the minimal and maximal elements of the set,
known as the boundary sets of the version space. As further
data are obtained, the set of possibilities is refined until ideally
only one consistent result remains. This approach has been
highly influential to work in concept learning, as it formalizes
inductive concept learning as a search problem—to identify
some concept definition out of a space of possible definitions.

This paper presents the theoretical underpinnings of version
spaces, beginning with the conditions under which a set of
concept definitions can be represented by boundary sets. It
also presents the conditions under which the intersection and
union of two version spaces is a version space, and how the
resulting boundary sets can be computed from the boundary
sets of the original version spaces.

These questions are important for a number of reasons.
First, they clarify Mitchell's own formalization of version
spaces and its central term, admissibility [Mitchell, 1978,
page 61]. Second, his version-space learning algorithm,
the candidate-elimination algorithm, can be expressed as
a version-space intersection process [Hirsh, 1990a; Hirsh,
1990b], and thus answering the question of when intersections
are legal also answers the question of when the candidate-
elimination algorithm can be used. Finally, both version-
space intersections and unions have proven useful in extend­
ing version spaces beyond strict consistency with data [Hirsh,
1990a; Hirsh, 1990c].

2 Background

The traditional scenario for inductive concept learning begins
with a set of training data—examples classified by an un­
known target concept—and a language in which the desired
concept must be expressed (which defines the space of pos­
sible generalizations concept learning w i l l search). Mitchell
defines a version space to be "the set of all concept descrip­
tions within the given language which are consistent with
those training instances" [Mitchell, 1978, page 17]. Mitchell
noted that the generality of concepts imposes a partial order
that allows more efficient representation of the version space
by the boundary sets S and G representing the most specific
and most general concept definitions in the space. The S- and
G-sets delimit the set of all concept definitions consistent with
the given data—the version space contains all concepts as or
more general than some element in S and as or more specific

Hirsh 665

than some element in G.
Given a new instance, some of the concept definitions in the

version space for past data may no longer be consistent with
the new instance. The candidate-elimination algorithm ma­
nipulates the boundary-set representation of a version space to
create boundary sets that represent a new version space con­
sistent with all the previous instances plus the new one. For a
positive example the algorithm generalizes the elements of the
5-set as little as possible so that they cover the new instance
yet remain consistent with past data, and removes those ele­
ments of the G-set that do not cover the new instance. For
a negative instance the algorithm specializes elements of the
G-set so that they no longer cover the new instance yet remain
consistent with past data, and removes from the 5-set those el­
ements that mistakenly cover the new, negative instance. The
unknown concept is determined when the version space has
only one element, which in the boundary set representation is
when the S- and G-sets have the same single element.

3 Terminology and Notation

Throughout this paper "CDL" is used to refer to the (poten­
tially infinite) set of concept definitions describable in the con­
cept description language and considered in the concept learn­
ing task. There is a space of possible objects (instances), and
each concept definition divides a set of objects into those ob­
jects it covers and those it does not. The subset of the entire
space of possible objects that a concept definition covers is
known as its extension. Concept definitions are partially or­
dered by generality, should be read as "C i
is less general than or equal to Ci" which means that the ex­
tension of C\ is a subset of the extension of Ci.

and have similar, obvious meanings.

Theorem 1 (Mitchel l , 1978) The relation is a partial or­
dering.

Proof: The reflexivity, asymmetry, and transitivity fall out
of the definition of using subset. Since the subset relation
is a partial ordering, so, too, is a partial ordering.

The concept learning problem is to identify one concept
definition out of the set of potential concept definitions in the
CDL, given information from some outside source about the
nature of the unknown concept. Usually this information is
of the form of positive and negative examples of this taiget
concept, that is, classified training data of the concept.

4 C r i t e r i a f o r R e p r e s e n t a b i l i t y b y B o u n d a r y
Sets

This section presents the first major results of this paper,
namely, criteria that, if satisfied by a subset of a concept de­
scription language, make that subset representable by bound­
ary sets. First, however, it is necessary to define two terms,
convexity and definiteness.1 This section wi l l show that a
subset of a concept description language is representable by
boundary sets if and only if it is convex and definite.

1 Earlier versions of this work [Hirsh, 1990a] used the terms "clo­
sure" and "boundedness". Convexity and definiteness better reflect
existing terminology in lattice theory.

4.1 Convexity
A set C of concept definitions in the CDL is said to be con-
vex if, given any two elements of C, any element of the con­
cept description language between them (in the partial order)
is also in G. This basically says that there are no "holes" in
the set. More formally:

Definit ion 1 A subset C CDL is said to be convex if and
only if for all C1,C2 C, C3 CDL, implies
c3 C.
Examples:

1. If the CDL is the set of all closed ranges over a single
real-valued attribute x of the form "{x | a < x < b}"
where a and b are reals (in less formal terms, this cor­
responds to the case where data are described using a
single real-valued feature, and concept descriptions can
only constrain the possible values for this feature to var­
ious closed intervals):

(a) If C = CDL, then C is convex.
(b) If C = {c CDL | a,b are integers}, then C is not

convex, since between any two concept definitions
there w i l l be another whose range delimiters a and
b are reals but not integers.

(c) then C is
convex.

2. Given any CDL, if C is the set of all concept definitions
consistent with a set of classified instances, C is convex.

4.2 Definiteness
lb define definiteness, it is necessary to state what the minimal
and maximal elements of a partially ordered set are:
Definit ion 2 The set of minimal elements of C is written
Min(C) , and is defined by

Similarly, the set of maximal elements of C, Max(C) , is

C is said to be definite if all elements of C are greater than
or equal to some element of M in (C) and less than or equal to
some element of Max(C) . More formally:
Definit ion 3 C is definite if and only if for all c C there
exists some & M in(C) and some g Max(C) such that

Min(C) is often referred to as C's 5-set, and Max(C) is Cs
G-set, and S and G should be viewed as shorthand for Min(C)
and Max(C). Note that this definition of definiteness docs not
constrain either 5 or G to be finite.
Examples:

1. If the CDL is the set of closed ranges of the form
where a and b are reals:

(a) If C = CDL, then C is not definite, since G = { }
(for every concept definition in the language there
is another concept definition more general than it),
and thus for every element c C there is no g G
with

666 Learning a n d Knowledge Acquisition

2. If the CDL is the set of all conjunctive expressions over a
finite set of boolean features, then all subsets C C CDL
are definite.

This second example is a simple result of the following the­
orem:
Theorem 2 If the CDL is finite (i.e., there are only a finite
number of concept definitions expressible) then all subsets C
of the CDL are definite.

Proof: By induction on the size of C. D

The concept of definiteness is closely related to Mitchell's
(1978) notion of admissibility? Admissibility is intended as a
property of concept description languages—whether all sub­
sets of the language can be represented by boundary sets. The
concept of definiteness applies to subsets of the concept de­
scription language. It is possible to have languages with sub­
sets that are not definite, yet also with some subsets that are
definite. The important thing to guarantee is that only defi­
nite subsets w i l l be used during the particular learning task at
hand. Admissibility is a stronger restriction.

4.3 Representability by Boundary Sets
It is now possible to identify which subsets of a CDL can be
represented by only retaining their minimal and maximal el­
ements (i.e., boundary sets). However, it is first necessary to
state precisely what it means to be representable by boundary
sets:
Definit ion 4 If C CDLt S = Min(C) , and G = Max(C),
C is said to be representable by boundary sets if and only if

This definition states that C is representable by boundary sets
if the set of elements between the minimal and maximal ele­
ments of C gives back C.

It can now be shown that any convex, definite subset C
CDL can be represented by boundary sets:
Theorem 3 All convex, definite subsets C of a CDL can be
represented by boundary sets.

Proof: Showing that a set C can be represented by boundary
sets is done by first demonstrating that

(where 5 = Min(C) and G = Max(C)) then demonstrating
that

First the then there exists an s in S and g in G
such that (since C is definite). Furthermore, since
c' C and Therefore

2Mitchel l defines a concept description language to be admissible
if and only if every chain has a maximum and minimum element

4.4 Generalizing Version Spaces

Mitchell defined a version space to be the set of all concept de­
scriptions in a prespecified language that are consistent with
data. The important quality that such sets have is that they can
be represented by their boundary sets. This section has shown
that representability by boundary sets is equivalent to convex­
ity plus definiteness. This section can thus can be viewed
as generalizing Mitchell's consistency-based version spaces
to arbitrary subsets of a concept description language repre­
sentable by boundary sets, or equivalently, to convex and def­
inite subsets of the concept description language. The results
of the remainder of this paper apply to both Mitchell's origi­
nal notion of version space as well as this more general form.
The term "version space" w i l l be used throughout, but can be
replaced with "convex definite subsets of the CDL"?

5 Version-Space Intersections
This section presents conditions under which the intersection
of two version spaces is a version space, an important ques­
tion since Mitchell's candidate elimination algorithm can be
expressed as a version-space intersection process. This sec­
tion furthermore provides a method for doing this intersection

3The results presented here apply more generally to convex
spaces; Gunter et al. [1991] have explored this generalization of the
work presented here and apply it to ATMSs, where convex spaces
also arise.

Hirsh 667

668 Learning a n d Knowledge Acquisition

Note that Theorem 6 presents a method for computing in­
tersections in theory, but to be practical the computations
must take a finite amount of time. In particular, computing
MSGi must take a finite amount of time. If there are
infinite chains in the concept description language, the pro-
cedure for computing MSG might never halt if it traverses
the partial order. Thus in real applications MSG wi l l often
be computed from the syntactic form of 81 and 82, rather
than traversing the partial order. For example, to determine
MSG a pro­
cedure for computing MSG directly from the partial order
would never halt, since there are an infinite number of con­
cept definitions more general than each of the concept defini­
tions. However, it is a simple matter to compute their most
specific common generalization from their syntactic form:

Typically MSG is
defined for specific concept description languages to manip­
ulate the syntactic structures so it need not face infinite-chain
difficulties.

6 Version-Space Unions
This section discusses unions of version spaces, and presents
conditions under which the union of two version spaces is
a version space, as well as a method for doing unions in
boundary-set representation. Such version-space union has
proven useful for dealing with certain forms of noisy data
[Hirsh, 1990a; Hirsh, 1990c].

It is first useful to note that the union of two version spaces
is always definite: 7 Concluding Remarks

This paper has presented formal results on the range of appli­
cability of version spaces. It analyzed when a set of concept
definitions is a version space, as well as when the intersection
and union of version spaces yields a version space. It also
gave methods to do such intersection and union in boundary-
set representation, and proved that the algorithms to do so are
correct.

An interesting open problem is how a version-space-like
approach can be used even for arbitrary (nonconvex or non-
definite) sets of concept definitions. One approach would
be to represent arbitrary sets as nested differences of version
spaces. The intersection and union procedures could utilize
facts such as
as well as simplifications such as
and Ultimately operations w i l l bottom out at
intersections and unions of version spaces.

A final issue to consider is the size of boundary sets. The
simplest question that should be answered is under what con­
ditions can a version space be represented by finite bound­
ary sets. Clearly one sufficient condition for finite boundary -
set size is if the version space is itself finite. Gunter et al.
[1991] generalize the work presented here to give comparable
conditions on when a version space is representable by finite
boundary sets. Equally important is answering the question of
how large the finite boundary-set size is. Haussler [1988] has
shown that boundary sets can grow exponentially in the num­
ber of instances processed. However, Smith and Rosenbloom
[Smith and Rosenbloom, 1990] show that, for tree-structured
languages under certain conditions data can be processed to
guarantee that boundary sets stay singleton. Understanding
under what conditions exponential growth happens and how

Hirsh 669

A simple corollary of this is
Corol lary 2 The union of two version spaces is a version
space if and only if the union is convex.

Note that just as the intersection of two version spaces
need not be a version space, similarly the union of two ver­
sion spaces need not be a version space. To see this con­
sider any concept description language with three elements

The union of
the two version spaces is {c\, C3}, but this doesn't include C2,
which it must if it is to be convex and a version space.

Just as for intersections, the minimal and maximal elements
for the union of two version spaces can be determined di­
rectly from the boundary sets for the two version spaces being

to avoid it is important in determining the practical utility of
version spaces. These are questions for future work.

Acknowledgments
This paper presents an updated version of Chapter 8 of the
author's doctoral dissertation [Hirsh, 1990a], where more
lengthy acknowledgments can be found. Johanna Seibt
helped with initial formalizations. Dave Smith provided feed-
back on a very early draft, and Wil l iam Cohen on a more re­
cent one. Discussions with Bruce Buchanan, Carl Gunter, Jeff
Kahn, B i l l Landi, Tbm Marlowe, Tom Mitchell, Teow-Hin
Ngair, Paul Rosenbloom, and Devika Subramanian were in-
valuable.

References
[Buchanan and Mitchell , 1978] B. G. Buchanan and T. M.

Mitchell. Model-directed learning of production rules.
In D. A. Waterman and F. Hayes-Roth, editors, Pattern-
Directed Inference Systems, pages 297-312. Academic
Press, New York, 1978.

[Gunterera/., 1991] C. A. Gunter, T.-H. Ngair, P. Panan-
gaden, and D. Subramanian. The common order-theoretic
structure of version spaces and ATMS's (extended ab­
stract). In Proceedings of the National Conference on Ar­
tificial Intelligence, Anaheim, CA, July 1991.

[Haussler, 1988] D. Haussler. Quantifying inductive bias: AI
learning algorithms and Valiant's learning framework. Ar­
tificial Intelligence, 26(2): 177-221, Sept 1988.

[Hirsh, 1990a] H. Hirsh. Incremental Version-Space Merg­
ing: A General Framework for Concept Learning. Kluwer,
Boston, M A , 1990.

[Hirsh, 1990b] H. Hirsh. Incremental version-space merging.
In Proceedings of the Seventh International Conference on
Machine Learning, Austin, Texas, June 1990.

[Hirsh, 1990c] H. Hirsh. Learning from data with bounded
inconsistency. In Proceedings of the Seventh International
Conference on Machine Learning, Austin, Texas, June
1990.

[Michalski and Chilausky, 1980] R. S. Michalski and R. L.
Chilausky. Learning by being told and learning from exam­
ples: An experimental comparison of the two methods of
knowledge acquisition in the context of developing an ex­
pert system for soybean disease diagnosis. Policy Analysis
and Information Systems, 4(3):219-244, September 1980.

[Mitchell et aL, 1983] T. M. Mitchell, P. E. Utgoff, and R. B.
Banerji. Learning by experimentation: Acquiring and re­
fining problem-solving heuristics. In R. S. Michalski, J. G.
Carbonell, and T. M. Mitchell , editors, Machine Learning:
An Artificial Intelligence Approach, pages 163-190. Mor­
gan Kaufmann, Los Altos, CA, 1983.

[Mitchell, 1978] T. M. Mitchell. Version Spaces: An Ap­
proach to Concept Learning. PhD thesis, Stanford Uni­
versity, December 1978.

[Mitchell, 1982] T. M. Mitchell. Generalization as search.
Artificial Intelligence, 18(2):203-226, March 1982.

[Quinlan, 1983] J. R. Quinlan. Learning efficient classifica­
tion procedures and their application to chess end-games.
In R. S. Michalski, J. G. Carbonell, and T. M. Mitchell,
editors, Machine Learning: An Artificial Intelligence Ap­
proach, pages 463-482. Morgan Kaufmann, Los Altos,
CA, 1983.

[Smith and Rosenbloom, 1990] B. D. Smith and P. S. Rosen-
bloom. Incremental non-backtracking focusing: A poly­
nomia l ^ bounded generalization algorithm for version
spaces. In Proceedings of the National Conference on Ar­
tificial Intelligence, pages 848-853, Boston, M A , August
1990.

670 Learning and Knowledge Acquisition

