A Model of Decidable Introspective
Reasoning with Quantifying-In

Gerhard Lakemeyer”
Institut fur Informatik I11
Universitat Bonn
Romerstr. 164
W-5300 Bonn 1, Germany
e-mail: gerhard@uran.informatik.uni-bonn,de

Abstract

Since knowledge is usually incomplete, agents
need to introspect on what they know and do
not know. The best known models of intro-
spective reasoning suffer from intractability or
even undecidability if the underlying language
is first-order. To better suit the fact that agents
have limited resources, we recently proposed
a model of decidable introspective reasoning
in first-order knowledge bases (KBs). How-
ever, this model is deficient in that it does
not allow for quantifying-in, which is needed
to distinguish between knowing that and know-
ing who. In this paper, we extend our ear-
lier work by adding quantifying-in and equal
ity to a model of limited belief that integrates
ideas from possible-world semantics and rele-
vance logic.

1 Introduction

Since agents rarely have complete information about the
world, it is important for them to introspect on what
they know and, more importantly, do not know. For
example,

if somebody tells you that Sue's father is a teacher
and you have no other information about Sue's fa-
ther, then introspection (in addition to deduction)
allows you to conclude that there is a teacher and
that you do not know who that teacher is, that is,
as far as you know, Sue's father could be any of a
number of individuals.

There have been various attempts to formalize introspec-
tive reasoning, most notably in the guise of the so-called
autoepisiemic logics (e.g. [18, 17]). While providing a
very elegant framework for introspection, these logics
have a major drawback in that they assume an ideal
reasoner with infinite resources. In particular, in the
first-order case, reasoning is undecidable. It is therefore
of particular interest to devise models of introspective
reasoning which are better suited for agents with lim-
ited resources.

For that purpose, a model of a tractable introspec-
tive reasoner was proposed for a propositional language

*This work was conducted at the University of Toronto.
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in [12]. Since its obvious first-order extension leads to an
undecidable reasoner, we proposed a modification which
retains decidability in [13]. However, this proposal is still
too limited since it lacks the expressiveness to deal with
iIncomplete knowledge as exhibited in our initial exam-
ple. In particular, it does not allow us to make distinc-
tions between knowing that and knowing who because the
underlying language does not provide for quantifytng-
in [6], that is, the ability to use variables within a belief’
that are bound outside the belief. With quantifying-in,
the above example can easily be expressed as (we use the
modal operator B for belief)

Teacher(z) A -BTeacher(x),

a sentence that should follow from an introspective KB
that contains only the sentence Teacher(father(sue)).

In this paper, we extend the results of [13] by consider-
ing a language with quantifying-in and equality. It is not
at all obvious whether adding quantifying-in allows us
to retain a decidable reasoner. As Konolige observed [8],
while introspective reasoning in classical monadic pred-
icate calculus is decidable, it becomes undecidable if we
add quantifying-in. As a result, Konolige makes the fol-
lowing comment:

Thus the piesence of quantifying-in seems to pose
an inherently difficult computational problem for
iIntrospective systems.

In this paper we show that, given an arbitrary first-order
KB, it is decidable for a large class of sentences with
quantifying-in whether or not these sentences follow from
the KB.

One way to formalize reasoning is to view the problem
as one of modeling belief. In a nutshell, a model of be-
lief tells us what the possible sets of beliefs or epistemic
States of an agent are. One then needs to specify for any
given KB which epistemic state it represents. Under this
view, reasoning reduces to testing for membership in the
appropriate epistemic state.

As in [12, 17], we use an approach that allows us to
model the beliefs of a KB directly within the logic. In-
tuitively, a KB's epistemic state can be characterized as
the set of all sentences that are believed given that the
sentences in the KB are all that is believed or, as we

"We use the terms knowledge and belief interchangeably in
this paper, even though belief is the more appropriate term,
since we allow an agent to have false beliefs.



will say for short , only-believed. We formalize this idea
using a modal logic with two modal operators B and O
for belief and only-believing, respectively. This allows
us to say that a KB believes a sentence a just in case
OKB D Ba is a valid sentence® of the logic, thus charac-
terizing the epistemic state of the KB. The complexity
of reasoning then reduces to the complexity of solving
this validity problem.

In related work, Konolige [8] also addresses the issue of
modeling introspection under resource limitations. How-
ever rather than proposing an actual instance of a com-
putationally attractive reasoner, he presents a general
framework in which one can be formalized. Since we
consider a limited introspective reasoner who is able to
perform full introspection and is only limited in his de-
ductive component, work on |limited deduction alone is
also relevant [7, 2, 19, 4]. In particular, as discussed
in [13], [19] is a special case of ours. Finally, in prelim-
inary work [11], we proposed a model of limited belief
with quantifying-in yet without nested beliefs. As a re-
sult, the corresponding reasoner was purely deductive
and not able to make use of quantifying-in himself.

In the next section, we introduce the logic
OBLIQUE,” which defines the model of belief and only-
believing. In Section 3, we take a closer look at the epis-
temic states of KB's as defined by OBLIQUE. Section 4
shows the computational pay-off of using this particular
limited form of belief. In Section 5, we use the logic to
define a KR service that allows a user to query a KB and
to add new information to it. Finally, we end the paper
with a brief summary and an outlook on future work.

2 The Logic OBLIQUE

We begin with a discussion of belief and only-believing.

Belief

As in in [13], belief is modeled by integrating ideas
from possible-world semantics [5, 9] and relevance
logic [1, 3]. Roughly, an agent believes a sentence just
in case that sentence holds in all states of affairs or sit-
uations the agent imagines. In order to obtain agents
with perfect introspection we require that, similar to a
semantics of the modal logic weak 55, that every model
has one globally accessible set of situations. Situations
are a four-valued extension of classical worlds. Instead
of facts being either true or false, situations assign them
independent frue and false-support, which corresponds
to the use of four truth values {}, {true}, {false}, and
{true,false}, an idea originally proposed to provide a
semantics for a fragment of relevance logic called tauto-
logical entailment [1, 3].°

In order to be able to distinguish between knowing
that and knowing who, we follow [17] and use a language

> Whenever KB occurs within a logical sentence, we mean
the conjunction of all the sentences in the KB.

*Thanks to Hector Levesque, who suggested that name to
me. It may be read as "Only Belief Logic with Quantifiers

and Equality."”

*Levesque [16] was the first to introduce the notion of
four-valued situations to model a limited form of belief in a
propositional framework.

with both rigid and non-rigid designators (see [10]). The
non-rigid designators are the usual terms of a first-order
language such as father(sue), which may vary in their
interpretation. The rigid designators are special unique
identifiers called standard names. For simplicity, the
standard names are taken to be the universe of discourse
iIn our semantics.

Employing four-valued situations instead of worlds has
the effect that beliefs are no longer closed under modus
ponens, e.g. B(pV q) and B(-g V r) may be true and
B(pV r) may be false at the same time. As discussed
in [13], a further restriction is needed in order to use this
model of belief as a basis for a decidable reasoner. In
particular, the link between disjunction and existential
quantification is weakened in the sense that an agent may
believe P(a) VP(6), yet fail to believe 3xP(x). In the case
of beliefs without quantifying-in, this can be achieved
semantically by requiring that an agent who believes the
existence of an individual with a certain property must
be able to name or give a description of that individual.
More concretely, in order to believe 3xP(x) there must
be a closed term i/ (e.g. father(sue)) such that ?(t) is
true in all accessible situations (see [13]).

In the case of beliefs with quantifying-in, this idea
of simply substituting terms for existentially quanti-
fied variables does not suffice. E.g., given the belief
3xTeacher(x) A -BTeacher(x), if we replace x by any
term, say father(sue), then the resulting belief is in-
consistent because for an introspective agent to believe
that Teacher(father(sue)) A ->BTeacher(/ai/*er(sue))
means that he both believes and does not believe that
Teacher(father(sue)). What is wrong is that we should
not have substituted father(sue) for the second occur-
rence of x (within the context of B). Instead, what we
really want at its place is the denotation of father (sue)
so that, while Teacher(father(sue)) holds at every sit-
uation the agent imagines, the agent does not know
of the denotation of father(sue) at any given situa-
tion that he is a teacher, that is, the agent does not
know who the father of Sue is. To make this distinc-
tion between a term and its denotation we introduce
a so-called level marker ,0 which is attached to a term
whenever the term is substituted within the context of a
modal operator. In our example, the substitution results
in Teacher(fatherer(sue)) A -iBTeacher(/a/Aer(sue).0).
Later we will return to this example and demonstrate
formally how the use of level markers has the desired
effect.”

Only-Believing

An agent who only-believes a sentence a believes a
and, intuitively, believes as little else as possible. In
otner words, the agent is maximally ignorant while still
believing a.

As demonstrated in [12, 17], if beliefis modeled by a
set of situations, independent of whether they are four-
valued or two-valued as in classical possible-world se-

°In the logic, we allow an infinite number of distinct level
markers. While not apparent in this paper, this choice was
made for technical convenience. The reader may simply ig-
nore all level markers other than .0.

Lakemeyer 493



mantics, only-beheving has a particularly simple charac-
terization: an agent only-beheves a sentence o if he or
she believes o and the set of situations M is as large as
possible, 1.e., if we were to add any other situation to M,
the agent would no longer believe a.®

With the special treatment of existential quantifica-
tion as outlined above, we need to pay special attention
to the case of only-believing sentences that contain exis-
tential quantifiers (see also [13]). Consider the example
of only-believing a = 3zP(z). Since o is believed, we
need a term { such that P({) is believed as well. How-
ever, t should not carry any information about the world
(where should the information come from?). Thus ¢ has
to be a generic term much like a Skolem function.

For that reason, we introduce a special set of function
symbols called sk-functions, which must be used when
substituting existentials in the context of only-believing.
To obtain the desired effect, we allow KB’s to contaln
sk-functions while excluding them from epistemic states.
This way, given an sk-function 2,; and a KB = P(i,;),
the beliefs that follow from KB are the same as if KB =
dzP(z).

2.1 The Languages £ and BL

We introduce a language £, which allows us to talk ebout
the beliefs of a KB and a language BL, which is a sub-
language of £ and which contains all the sentences that
qualify as possible beliefs of a KB. For example, the op-
erator O may be used to talk about the beliefs of a KB
but it may not appear within a belief itself.’

The language £ i1s a modal first-order dialect with
equality and function symbols, which form a countably
infinite set F, which itself is partitioned into two count-
ably infimite sets Frpg and Fsi of every arity. The
latter contains the sk-functions mentioned earlier. The
language also contains a countably infinite set N =
{#1,#2, ...} of standard names, which are syntactically
treated like constants. Finally the level markers form
a countably infinite and totally ordered set with a least
elernent. They are written as .i, where 1 1s a natural
number. The ordering 18 .0 < .1 < .2 < .3 < ...

Given the usual definitions of terms, a primitive
term is a term with only standard names as arguments.
Given a term ¢, an extended term # is obtained from ¢
by appending zero or more subterms of ¢ with level mark-
ers such that, if u.i occurs in ¢, then u is not a variable
and does not contain level markers.® Atomic formulas
(or atoms} are predicate symbols whose arguments are
extended terms. Primitive formulas are atoms with
standard names as arguments.

The formulas of £ are constructed in the usual way
from the atomic formulas, the connectives =~ and Vv, the
quantifier 3,° and the modal operators B and O. To sim-

® M need not be unique for the same reasons as there are
multiple extensions in autoepistemic logic (see [12, 17]).
"This restriction of BL was chosen to simplify the techni-
cal treatment. Besides, there seems to be little practical use
for beliefs about whether something is all that is believed.
*E.g., given a term f(a) (a constant), f(a.0) and f(a).14
are extended terms, but f(a).1.3 and f(a.1).14 are not.
?Other logical connectives like A, O, and = and the Juan-
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plify the technical presentation below, we also require
that no variable i1s bound more than once within the
scope of a modal operator of a formula. Formulas with-
out any occurrences of B or Q are called objective,
formulas without occurrences of O are called basic, and
formulas whose predicate symbols all occur within the
scope of a modal operator are called subjective. Sen-
tences are, as usual, formulas without free variables.

The language BL, over which the epistemic states of

KB’s will be defined, i1s a sublanguage of £ and consists
of all those basic formulas of £ that contain neither level
markers nor sk-functions. We often use the terms B£-
formulas and BL-sentences to refer to the formulas
and sentences of BL.
Notation: Sequences of terms or variables are some-
times written in vector notation. E.g., a sequence of
variables {z;,...,z;) is abbreviated as . Also, 37
stands for dzy...dz,. If a formula o contains the free
variables z,,..., 2y, alz,/ty, ..., 23 /1] (abbreviated as
a[Z/t]) denotes @ with every occurrence of z; replaced
by ;. If the context i1s clear, we omit the variables and
write r:r[t;, e ik] or u{f] instead. The truth values true
and false are used as shorthand for (#1 = #1) and
(#1 £ #1), respectively.

The following definitions are needed for the semantics
of B and O. In particular, Definitions 2 and 3 describe
what terms can be substituted for the existentially quan-
tified variables when interpreting B and O, respectively.

Definition 1 A variable occurs {1s bound) at the objec-
tive level of a if 1 occurs {is bound) ouiside the scope
of any modal operalor in o.

Let o be a formula in L. Let z be a variable that 1s
bound al the objective level of some formula 3 such thet
either = « or BS is a subformula of . x 15 said {o
be existentially (universally) quantified in a iff z
1s bound within in the scope of an even (odd) number
of ~-operators in 8.

For example, in 3z-B3dyP(x, ), both z and y are con-
sidered existentially quantified.

Definition 2 Admissible Terms
Let o be a formula and r existentially quantified in o
A term t 1s said 1o be an admissible substifution for z
with respect to « off every vartable y in t i1s universally
quaniified in o and z occurs within the scope of y.

If the context i1s clear, we often say 1 1s admissible for
r or t 18 admissible,

Definition 3 Sk-terms

Let o be a senlence and x an eristentially gquantified
variable bound at the objective level of o. Lel U(x) be a
sequence of the untwversally quantified variables in whose
scope x 15 bound. Letl f € Fgx be a function symbol of
arily |/ (z)] occurring nowhere else sn . Then f(U(z))
18 called an sk-term (for z).

Definition 4 Let o be a sentence and let £ =
(z1,.... 2} be a sequence of the existentially quantified

variables bound at the objective level of . a? denoies a
with all dz; removed.

tifier ¥ are used freely and are defined in the usual way in
terms of -, V, and 3.



Example 2.1 Let o = JuwVx3yP(w, z, y) A B32Q(2).

Then a? = YzP(u, z,y)AB3zQ(z). Note that existential
quantifiers within modalities are left untouched.

Definition 3 Let a be a formula with free variables
P = (xl,...,f;,). (o« may contein other free variables
as well.) Let t = (1,,...,1x) be a sequence of terms.

a[#/t] is & with every occurrence of z; at the objective
level replaced by t; and every occurrence of x; inside the
scope of a modal operator replaced by 1,.0.

Example 2.2

Let & = P(z))AB(-Q(z;)VR(22)). Then afz,/a,z;/b] =
P(a) A B(-Q(a.0) vV R(b.0}). Note the difference to
a[z)/a,x3/b] = P(a) A B(—Q{a) vV R(b}), that is, [.. ] in-
dicates regular substitutions, while [.. ] indicates that
substitutions within modalities are appended with leve]
marker .0.

2.2 A Formal Semantics

We first define situations, which are a four-valued exten-
sion of classical (two-valued) Kripke worlds [9]. Situa-
tions are defined over a fixed universe of discourse, which
i1s the set of standard names of the language. This allows
us to describe the true- and false-support of predicates
in terms of the primitive formulas. Closed terms are
interpreted by mapping them into the standard names.

Definition 6 Denotation Function

A denotation function d is a mapping from closed
terms into the standard names such that d(n) = n for
alln € N and d(f(t,,..., 1)} = d(f(d(t1),....d(tz)))
for ail closed non-rigid terms f(t,,... ti). We ertend
d to apply to terms with level markers. If t is a closed
term and . a level marker, then d(t.i) = d(1).

Definition 7 First-Order Situalions

A stluatton s isa triple s = < T, F,d >,

where T and F are subsels of the sel of primitive formu-
las and d is a denotation function.

T and F can be arbitrary sets of primitive formulas
excepl for equality, which has a fized inierpretation, {hal
5, (n=m) €T [(n=m) € F} 1ff n and m are identical
|distinct] standard names.

Notice that equality has a standard two-valued interpre-
tation. The main reason why we have chosen such a
strong form of equality is to obtain Theorem 2.

Definition 8 Worlds
A siluation w is called a world, iff

P(R) € T, ¢« P(i) € Fy, for all primitive formulas P(n).

Definition 9 Lef o be a sentence and s = (T,, F,,d,} a
stfuation.

a¥ is o with every level marker .i replaced by .i-1 for

all 1 > .0.

o’ is obtained from o by replacing every occurrence of
1.0 by the standard name d,(t), ift is closed, and by

i otherwise.
Example 2.3 If o = P(a.0) AVzB(Q(f(z).0)VR(g{z).1))
and s =< T,, F,,d, > with d,(a} = #1, then
'V = P(#1) AVzB(Q(f(z)) V R(g(2).0))-

Note that o’ Y is always well defined, since a* does not
contain any occurrences of the level marker .0.

The true- and false-support for the sentences of £ can
now be defined. Let s = (T}, F,,d,) be a situation and
M a set of situations. Let P(t-) be an atomic sentence

and let o and 3 be sentences except in rule 4 where a
may contain the free variable z.

1. M.s Ex P(1) <> P(d,(t) € T,
M,s k= P(1) < P(d,(})) € F,
2. Miskrra¢< M skra
MskEr~aes MskEra
3. Miskravf+ e Mskraor M, sk
MskprpaVfie=a> M skEraand M s 8
4. M,s =1 3ra &> forsomene N, M, s k1 ofz/n]
M,serJzae <= forallne N, M,s kf afz/n)
Let £ = {z,,...,r+} be a sequence of the existentially
quantified variables bound at the objective level of .

5. M,s =1 Ba <= there are admissible { such that
for all 8, if s € M then M, s' =1 o’ Y *[7/)
M,s Er Ba <= M,s 1 Ba
6. M,5s Er Oa <= there is a sequence of sk-ierms

t<x for # such that
forall s, s e M if M, ¢ =1 ﬂ"*[E/fsxl
M.,skEpr Oa &= M,5 [+ Oa

Example 2.4 Let M = {s | s =7 P(a)} for some constant

a. Then M f=1 B(3zP(z) A ~BP(z)).
Proof: Let a = 32P(z) A ~BP(z). By definition, M |=1 Ba

ff Ve e M, M,s k=T cr"'ﬁr/t] for some admissible {. Note
= a because o does not contain any

that, in this case, o’
level markers.

Then a"i[:c/u] = P(a) A -BP(a.0). It suffices to show that
for all s € M, M,s 1 P{a) A ~BP(a.0). Let s = (T, F,,d,}
be any situation in M. M, s =1 P(a) follows immediately
from the definition of M.

To show that M, s =1 ~BP(4.0), assume that d,(a) = n for
some standard name n. By the definition of M, there must be
a situation 8’ € M with a different denotation function such
that s’ &1 P(n). Therefore, M, s |=1 ~BP(n) which implies
M. s ET ~BP(a.0).

Truth, logical consequence, validily, and satisfiability
are defined with respect to worlds and sets of situations.
A sentence o Is irue at a set of situations M and a world
wil Mwlra ois false if M, w 1 a. A sentence o
is valid (=a) ifl a is true at every world w and every set
of situations M. a is satisfieble iff -~ is not valid.!®

2.3 Quantifying-in
For sentences without quantifying-in and without level-

markers, OBLIQUE reduces essentially to the logic
OBL ir [13].1' For example, we obtain the same lim-

itations of belief such as no modus ponens (EBp A

"%In this semantics, the basic beliefs of an epistemic state
(represented by a set of situations) do not completely deter-
mine what is only-believed at that state. As shown in [14],
this problem can be overcome. Since this issue is indepen-
dent from the main concern of this paper, we have chosen to
ignore it here,

""A minor distinction is that we allow the empty set of
situations in the definition of truth and validity, while we
excluded it in [13].
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B{p D ¢) D Bg) and no existential generalization from
disjunctions (£B(P(a) Vv P(b)) D> B3zP(z)).

Here we focus on the additional feature of guantifying-
in, which allows us to properly distinguish between
knowing that and knowing who. For example,
=BTeacher({ father{sue))) O B3zTeachez(z) while
£BTeacher(( father(sue))) D 3zBTeacher(z).

In other words, knowing the non-rigid designator of a
teacher ( father(sue)) allows an agent to conclude only
the existence of a teacher, but the agent does not nec-
essarily know who it is. On the other hand, if he knows
the teacher’s standard name, say #27. then he knows
who the teacher is:

I=B(Teacher(f(sue)) A f(sue) = #27) O JrBTeacher(z).
In general, we obtain F3zBa O B3za for all a.

The Barcan formuls (YzBa D B¥zo) is not valid in
general. In a sense, the agent is not able to perform ar-
bitrary universal generalization. However, if we restrict
o to formulas where no existentially quantified variable
18 bound at the objective level of &, the Barcan formula
i3 indeed valid. Finally, the converse of the Barcan for-
mula, EBVza O VzBa, is valid for all a.

3 Epistemic States of First-Order KB’s

Besides offering us a model of limited belief with
quantifying-in, OBLIQUE specifies for every objective
KB a unique corresponding epistemic state, if we take
BL to be the agent’s language of belief.!?

Theorem 1 Let KB be an objective sentence. For
any basic o in BL, ezactly one of EOKB D Ba and
E=OKB D -Ba holds.’?

One important property of such epistemic states is
that the question whether or not an arbitrary be-
hef follows from an objective KB reduces to the
question whether an objective belief, that is a belief
that itself does not mention any B’s, follows from
the KB. For example, let KB = Teacher(#27) A
(Teacher(father(sue)) A (father(sue) # #27), where
#27 is a standard name. Then determining the validity
of OKB D B(JzTeacher(r)A—~BTeacher(r)) reduces to
determining the validity of OKB D B(3zTeacher(z) A
—(z = #27)), that is, the formula BTeacher(z) is re-
placed by an equality expression which describes the set
of all standard names who are known to be teachers. In
general, it turns out that, even if the set of instances that
are known to have a certain property is infinite, there is
always a finite equality expression that describes it (Def-
initions 10 and 11).1%

Definition 10 Lei KB be an objective sentence and lel
a be a BL-formula, possibly containing free variables.
Let ny,...,ny, be all the standard names occurring in
KB or a, and let n* be a standard name not occurring
i1 KB or a.

'?If the KB is not objective, the logic may not give us
a unique epistemic state for the same reasons as there are
multiple extensions in autoepistemic logic {18].

' Proofs are generally omitted for lack of space (see [14]).

*The same process works for Levesque [17] in the case of
an ideal reasoner with unlimited resources.
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1. If o is closed then

RESp (KB, a) = { =O0KB D Ba

=OKB S -Ba

2. Otherwise let o mntc./in the free variable . Then
_ {(1: =ﬂ.‘)ARESB(KB,a‘:i)}V
RESe(KB, a) = (Alz # n) ARESE(KB, afe ) )

The next definition shows how to apply RESp recursively
to all occurrences of B within a belief and thus obtain
an cbjective belief.

true
false

Definition 11 Let KB be an objective sentence and let
a be a BL-formula.

lal|xe = a, [orobjective o
Irellke = -llellke

flavBllks = |ajlxs V {[Bllks
|Pzajlke = 3zfle||xs

|IBallke = RESB{KB, ||a|lks)

Lemma 3.1 ||o|lxs 15 objective.

Theorem 2 Let KB be an objeclive sentence and a ¢
BL-senlence. Then EOKB O Ba iff EOKB D Blle]|ks.

This result is crucial 1in obtaining decidability results for
the reasoner specified by OBLIQUE.

4 A Computational Pay-Off

While OBLIQUE specifies an admittedly weak reasoner,
we galn a clear computational pay-off in return. In par-
ticular, we obtain a decidable reasoner for a large ¢lass
of sentences including ones with quantifying-in. Let us
call an equality expression { = ' ground if both ¢ and ¢’
are closed terms.

Theorem 3 Let KB = KB’ A E be an objective sen-
tence, where KB’ conlains no equality and £ s a con-
junction of ground egqualities and inequalities. Lel o be a
BL-senlence such thal every free variable z in a subjfor-
mula By in o is universally quentified. (In other words,
only universally quanlified variables may participate in
quantifying-in.) In addilion we require thal every term
tn an equalily expression in a s eilher a untversally

quantified vartable or a closed term. Then the validity
of OKB D Ba is decidable.

Proof : (Sketch) While the proof 18 rather involved, it is
instructive to sketch the main ideas.

First, it can be shown that we car assume, without loss of
generality, that the existentially quantified variables in KB’
are skolemized and KB’ is in prenex conjunctive normal form.

Next, given Theorem 2, a simple induction on the nest-
ing of B’s shows that OKB D Ba is decdable iff the same
holds for objective a. {Note that the ||.|jke-transiormation
introduces only equalities that satisfy the restrictions of the
theorem.) Thus let us assume from now on that a is objec-
tive. Also, let ¥ and % be the existentially and universally
quantified variables of a, respectively, and let o' be the ma-
trix of o (all the quantifiers removed) in conjunctive normal
form.

For an objective a it is easy to see that }=GKB > Ba
iff EBKB O Ba. Next, =BKB D Ba iff there are admis-
sible texms for ¥ in a such that for all the substitutions of
standard names # € I' EBKB D Vi#B(a'[£/1])[§f/f], where
J={n|noccursin KBora}luini,...,n;}. B



Allowing arbitrary equalities within a KB is problematic
because equality has a 2-valued semantics, which would
result in hard reasoning such as modus ponens.

On the other hand, while we have not yet proven that
reasoning remains decidable if we allow arbitrary forms
of quantifying-in, results in [14] strongly suggest that
this is indeed the case. In any event, Theorem 3 can be
used to prove the decidability of special cases such as
=0KB O B(3ra A ~Bf), where a and 3 are objective
formulas containing the free variable z.

5 ASK and TELL

In this section, we apply the results of this paper to the
specification of a KR service in the sense of [15], which
allows a user to query a KB and to add new information
to it using BL as the interaction language.

Definition 12 ASK and TELL

Let KB be an objective sentence and o a BL-sentence.
YES if FOKB > Ba A -B-a
NO if EOKB 2 B-a A-Ba
UNK i EOKB 5 -Ba A~B-o
INC if EOKB D Ba ABa
TELL(KB, CI!) = KB A "ﬂ'.'”}c;]g .

Note that the way TELLing a sentence o to a KB 18 han-
dled. Any occurrence of a By within « is first evaluated
with respect to the old KB and replaced by an (objec-
tive} equality expression. Thus, if we start out with
an initially empty KBy, successive TELL-operations are
guaranteed to always produce an objective KB. How-
ever, TELL is not prevented from returning a KB that
lies cutside the class of KB’s for which reasoning 18 de-
cidable. A simple check would be to require that the KB
18 in the form KB’ A E as in Theorem 3 or can be easily
transformed into that form by rearranging conjuncts.
Teacher(jack), Teacher(jill)

Emp(jack), Bmp(jill), Emp(sue)

Teach(jack, csc378), Teach(jill, csc484)

ASK(KB, Vz(Teacher(z)} D Emp(z))) = UNK.

The answer is UNK because there may be teachers who
are not known to the KB and who are not employees.!®
ASK(KB,Vz(BTeacher(z) D Emp(z)) = YES.

Note the difference to the previous query. Here the KB
18 only asked about the known teachers.
ASK(KB,Vr{BEsp(z) D BTeacher(z))} = NO.

The answer 18 NO because Sue, who is a known em-
ployee, is not known to be a teacher.
ASK(KB,Vz(BTeacher{r) D JyTeach(z, y))) = UNK.
The answer is UNK because there is no admissible term
for y which would work for all known teachers. To ob-
tain the answer YES, we need to rephrase the question as
Vz[BTeacher(z) D 3y Jya(Teach(z, y, )VTeach{z, y2))].
Now it is possible to substitute different admissible terms
for y; and ys.

ASK(KB,a) =

KB =

6 Summary and Future Work

In this paper, we extended earlier work on limited belie{
by adding quantifying-in and equality. We established
that reasoning 18 decidable if the KB is first-order and

15A10 names in KB are assumed to be standard names.

where queries can range over a large class of modal sen-
tences with quantifying-in. In the future we hope to
prove the conjecture that decidability holds if we allow
arbitrary forms of quantify ing-in. It is also important to
identify classes of sentences where reasoning is not just
decidable but provably tractable as well. Finally, one
should investigate to what extent modalities can be al-
lowed in the KB itself without sacrificing decidability.
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