
Composing Real -T ime Systems

S t u a r t J . Russe l l and S h l o m o Z i l b e r s t e i n
Computer Science Division

University of California
Berkeley, California 94720 U.S.A.

russell@colditz.berkeley.edu shlomo@bastille.berkeley.edu

A b s t r a c t

We present a method to construct real-t ime
systems using as components anytime algo-
r i thms whose qual i ty of results degrades grace
ful ly as computat ion t ime decreases. Introduc
ing computat ion t ime as a degree of freedom
defines a scheduling problem involving the ac
t ivat ion and interrupt ion of the anyt ime com
ponents. This scheduling problem is especially
complicated when t ry ing to construct inter-
ruptible algori thms, whose tota l run-t ime is un
known in advance. We introduce a framework
to measure the performance of anytime algo
r i thms and solve the problem of constructing
interrupt ible algori thms by a mathematical re
duction to the problem of constructing con
tract algori thms, which require the determi
nat ion of the to ta l run- t ime when activated.
We show how the composition of anytime algo
r i thms can be mechanized as part of a compiler
for a LISP-l ike programming language for real-
t ime systems. The result is a new approach
to the construction of complex real-time sys
tems that separates the arrangement of the per
formance components f rom the opt imizat ion of
their scheduling, and automates the latter task.

1 I n t r o d u c t i o n

Our objective in this research has been to develop and
automate a methodology for the construction of ut i l i ty -
driven, real-t ime agents. A real-time agent is an agent
whose u t i l i t y function depends on t ime. For example,
a u t i l i t y function defined as the number of widgets as
sembled per hour depends on t ime; a robot designed to
maximize this u t i l i t y funct ion is a real-time agent. Simi
larly, problems such as chess-playing, reentry navigation
for a space shutt le, financial planning and trading, and
medical moni tor ing in an intensive care unit have ut i l
i ty functions that depend on t ime, and therefore require
the construction of real-t ime systems. This approach
generalizes the t radi t ional view of reai-time systems as
systems that can guarantee a response after a fixed t ime
has elapsed [Laffey et a/., 1988], in that deadlines can be
expressed by a sharp drop in the ut i l i ty funct ion.

We show in this paper how to construct real-t ime sys
tems using anytime algori thms1 as basic blocks. Any
t ime algorithms are algori thms whose quali ty of re
sults degrades gracefully as computat ion t ime decreases,
hence they introduce a tradeoff between computat ion
t ime and quality of results. The algori thm's perfor
mance profile (PP) gives a probabil ist ic description of
the quali ty of results as a function of t ime (we define and
generalize this notion in section 2). For example, con
sider a hierarchical diagnosis a lgor i thm that recursively
performs a test to identify the defective component of
an assembly. This a lgor i thm can be interrupted at any
t ime to produce a part ial diagnosis whose qual i ty can be
measured by the level of specificity. By translat ing the
quality of results into a u t i l i ty measure that takes into
account the t ime needed to produce these results, we
can compute the opt imal amount of t ime that should be
allocated to diagnosis, after which a complete defective
component should be replaced rather than being further
analyzed. A similar technique was used by Boddy and
Dean [1989] for solving a real-t ime path planning prob
lem and by Horvitz [1987] for real-t ime decision making
in the health care domain.

An impor tant dist inct ion that has to some extent been
ignored in the l i terature should be made between inter-
ruptible algori thms and contract algori thms. Interrupt-
ible algorithms produce results of the 'advertised qual-
i ty ' even when interrupted unexpectedly; whereas con-
tract algori thms, although capable of producing results
whose qual i ty varies wi th t ime al location, must be given
a part icular t ime allocation in advance. If a contract
algor i thm is interrupted at any t ime shorter than the
contract t ime it may yield no useful results. An impor
tant result of this paper, given in section 2, shows that
there is in fact a simple reduction f rom interrupt ible al
gori thms to contract algori thms.

In this work we extend the use of anyt ime algorithms
to the construction of complex real-t ime systems. It is
unlikely that a complex system wi l l be developed by im
plementing one large anyt ime a lgor i thm. Systems an
normally bui l t f rom components that are developed and
tested separately. In standard algori thms, the quali ty of
the output is fixed, so composit ion can be implemented

1 Dean and Boddy [1988] coined the te rm "anyt ime algo
r i t h m " in their paper on t ime-dependent p lanning.

212 Automated Reasoning

by a simple call-return mechanism. However, when algo
r i thms have resource allocation as a degree of freedom,
there arises the question of how to construct, for exam
ple, the op t ima l composition of two anytime algorithms,
one of which feeds its output to the other. Consider mak
ing a repair system f rom a 'diagnosis' component and a
' therapy' component. The more t ime spent on diagno
sis, the more l ikely the hypothesis is to be correct The
more t ime spent on therapy planning, the more likely
the problem is to be fixed, assuming the diagnosis is
correct. Given the performance profiles of the two sub
systems (as shown in Figure lab) , it is straightforward
to construct the opt imal apport ionment of resources for
a given tota l al location, and hence to construct the op
t ima l anyt ime algor i thm for the whole problem (whose
performance profile is shown in Figure lc) .

To summarize, in our approach the user specifies the
structural decomposition of a complex problem into ele
mentary performance components, each of which can be
a t radi t ional or an anyt ime algor i thm. For example, the
repair system might be specified as:

(defun r e p a i r (x)
(app l y - t ne rapy x (diagnose x)))

Our system generates an anyt ime algor i thm for the
original problem by scheduling and moni tor ing the com
ponents in an opt imal way (w i th respect to a given ut i l i ty
funct ion). The rest of this paper describes this method
in detai l . In Section 2 we define the probabil istic descrip
t ion of the performance of anyt ime algorithms and exam
ine their essential properties. In Section 3 we present a
framework for evaluating anyt ime algorithms wi th in the
context of a given domain and a u t i l i t y function. In Sec
t ion 4 we explain and demonstrate the task of compil ing
anyt ime algori thms. Final ly, Section 5 summarizes the
benefits of our approach and discusses related work and
further work to be undertaken.

2 A n y t i m e a lgor i thms

Anyt ime algori thms are characterized by their perfor
mance profile (PP) , a probabilistic description of the
qual i ty of results as a function of t ime. The exact mean
ing and concrete representation of a PP is implemen
tat ion dependent. In this section we define three types
of PP and explain the basic properties of anytime algo-
r i thms.

2 .1 P e r f o r m a n c e p ro f i l es

A PP maps computat ion t ime to a probabilistic descrip-
t ion of the quality of the results. The main reason for the
uncertainty concerning the quali ty of results (especially
w i th deterministic algorithms) is the fact that the input
to the algor i thm is unknown. Therefore, a PP should
always be interpreted w i th respect to a particular prob-
abi l i ty distr ibut ion of input .

Given an anyt ime algor i thm A, let qA(x,t) be the
quality of results produced by A w i th input x and com
putat ion t ime t; let qA(t) be the expected quality of re-
sults w i th computat ion t ime t; and let PA,T) BE THE
probabi l i ty (density function in the continuous case) that
A w i th computat ion t ime t produces results of quality q.
A complete description of the performance of A is given
by the fol lowing definit ion:

1. C e r t a i n t y - Probabil i ty of correctness determines
quality (e.g. randomized algorithms for pr imal i ty
testing).

2. A c c u r a c y - Error bound determines quality (e.g.
Newton's method).

3. Spec i f i c i t y - Amount of detail determines quality
(e.g. hierarchical diagnosis).

Whi le accuracy is typically used to measure quality
in numerical domains, and specificity in symbolic do-
mains, the former can be seen as a special case of the
latter; an inaccurate numerical solution is very specific
but incorrect, and could be mapped to an equally useful,
correct statement that the solution lies wi th in a certain
interval. Anyt ime algorithms can also have mult id imen
sional quality measures, for example PAC algorithms for
inductive learning are characterized by an uncertainty
measure 6 and a precision measure c.

Russell and Zilberstein 213

2.2 E l e m e n t a r y a n y t i m e a l g o r i t h m s

Elementary anyt ime algori thms are already widely avail
able, contrary to popular supposit ion. Many exist
ing general programming and reasoning techniques pro-
duce useful anyt ime algor i thms: search techniques such
as i terat ive deepening; asymptot ical ly correct infer
ence algori thms such as approximate query answer
ing [Elkan, 1990; Vrbsky ei al., 1990], bounded cutset
condit ioning (see [Horvi tz, 1987]), and variable preci
sion logic [Michalski and Winston, 1986]; various greedy
algori thms (see [Boddy and Dean, 1989]); i terative meth
ods such as Newton's method" adaptive algorithms such
as PAC learning algori thms (Haussler, 1990] or neural
networks; Monte Carlo algori thms for s imulat ing proba
bil ist ic models; and the use of opt imal meta-level control
of computat ion [Russell and Wefald, 1989).

2.3 I n t e r r u p t i b l e v s c o n t r a c t a l g o r i t h m s

As mentioned in section 1, we distinguish between two
types of anyt ime algori thms. Interruptible algorithms
are those whose run- t ime need not be determined at the
t ime of act ivat ion. They can be interrupted at any t ime
to yield results whose quality is characterized by their
PP. Many of the elementary anyt ime algorithms men
tioned above, such as iterative deepening algori thms,
are interrupt ible. Contract algorithms require a specific
t ime allocation when activated. For example, KorFs
RTA* [1988] performs a depth-first or best-first search
w i th in a predetermined search horizon that is computed
f rom the t ime allocation provided, and can therefore
modeled as a contract a lgor i thm. Al though this algo-
r i t hm can produce results for any given t ime al location,
if it is interrupted before the expirat ion of the allocation
it may yield no results.

Every interrupt ible algor i thm is t r iv ia l ly a contract
a lgor i thm, however the converse is not true. In general,
the greater freedom of design makes it easier to construct
contract algori thms than interrupt ible ones. The follow
ing theorem is therefore essential for the compilat ion of
interrupt ible algori thms.

214 Automated Reasoning

Note that r may be arbi t rar i ly small and should be in
general the shortest run- t ime for which there is a signif
icant improvement in the results of A.

Figure 2 shows a typical performance profile for the
contract a lgor i thm A, and the corresponding perfor
mance profile for the constructed interrupt ib le algor i thm
B, reduced along t ime axis by a factor of 4.

As an example, consider the application of this con
struct ion method to Kor f 's RTA* , a contract a lgor i thm.
As the t ime allocation is increased exponentially, the al
gor i thm wi l l increase its depth bound by a constant; the
construction therefore generates an iterative deepening
search automatical ly.

3 Eva luat ing any t ime a lgor i thms

Tradi t ional algori thms are verified in the context of input
and output predicates specified by the designer. Opt i
mizing performance means simply reducing the execu
tion t ime of a correct a lgor i thm. The use of anyt ime
algorithms in agents requires taking into account the
real-time environment in which they operate and the
ut i l i ty function of the agent (or its designer). It is as
sumed that imprecise results have some value depending
on their qual i ty and the u t i l i t y function of the system.
The fol lowing framework, roughly analogous to that of
[Horvitz, 1987], defines precisely what it means to be a
better anyt ime a lgor i thm; this depends not only on the
PP of the algor i thm but also on the domain and ut i l i ty
function (which are defined by the user).

A u t i l i t y function is defined over the states of the do
main: U : S .

Given an algor i thm A, let [5, q] denote the state of the
domain that is reached by providing results of qual i ty q
when the domain is in state S. We can always view
A as a decision making algor i thm and the new state is
simply the state resulting f rom performing the action
recommended by the A.

Now, given the current state So and a certain t ime
period t, we want to compute the comprehensive ut i l i ty
of the results produced by A w i th computat ion t ime t.
The problem is that there is uncertainty concerning:

1. The qual i ty of results of A at t ime t.

2. The state of the domain at t ime t.

The probabil ist ic description of the former is given by the
PP of A, and the probabil ist ic description of the latter
is given by the model of the environment (we assume
that the environment is not affected by which algor i thm

4 Compilat ion of anytime algorithms
The compilat ion of anyt ime algorithms is the process of
constructing an opt imal anyt ime algor i thm using any
t ime algori thms as components. Creating interruptible
algorithms directly is complicated, because the total
t ime allocation is unknown in advance. We therefore
start by considering only the construction of contract al
gori thms and then we extend the results to interruptible
algorithms using Theorem 1.

The compi lat ion methods that we describe in this sec
tion wi l l be integrated into a programming language for
anyt ime computat ion. Our goal is to develop a compiler
for a language that might be in fact syntactically indis
tinguishable f rom simple LISP, but all of whose functions
might in principle be anytime algorithms. We suggest
LISP as the basic language since it is already widely used
for AI applications, it allows the association of objects
(such as PPs) w i th functions, and its functional nature is
more suitable for the kind of composition of algorithms
that we propose.

In our proposed language, the user simply specifies
how the tota l real-t ime system is bui l t by composing and
sequencing simpler elements, and the compiler generates
and inserts code for resource subdivision and scheduling
given only the PPs of the most pr imi t ive routines. Fur
thermore, the flexibility of each function makes possible
richer forms of composit ion than is normally available
in programming languages; for example, a task can be
solved by interleaving several solution methods unt i l one
produces the answer. The overall performance profile of
the resulting system is computed by the compiler, allow
ing it to be used as a new bui ld ing block for sti l l more
complex systems. The fol lowing in-fl ight aircraft moni
tor ing system is an example of the kind of program that
our compiler is eventually intended to handle:

(p l a n - r e p a i r ep (d iagnose e p))))
(i f (s e t q c p (o f f - c o u r s e

(d e t e r m i n e - c u r r e n t - p o s i t i o n)))
(any (a l e r t - p i l o t cp)

(p l a n - c o u r s e - a d j u s t m e n t cp)
(e f f e c t - c o u r s e - a d j u s t m e n t c p)))))

In this program fragment, the only algorithms that
are not anytime are remove- f rom-p lane, a l e r t - p i l o t ,
and o f f - c o u r s e . A l l others could consume arbitrary
amounts of resources, depending on the accuracy and
certainty produced, and hence need to be scheduled ap
propriately.

4 .1 C h o o s i n g t h e r i g h t t y p e o f P P

Earlier we defined three types of performance profiles the
most informative of which was the probabi l i ty distr ibu
t ion profile (PDP) . This representation is both expen
sive to maintain and complicated to compile, especially
in the continuous case. The simplest representation, the
expected performance profile (PEP) is not suitable for
our compilat ion scheme as explained below. We use per
formance interval profiles (PIP) that keep the lower and
upper bounds of the qual i ty of results. Assuming that
performance is monotonically increasing, we can com
pute the quality bounds of a complex algor i thm using
the quality bounds of its components.

4.2 C o m p i l i n g c o n t r a c t a l g o r i t h m s

We analyze first several cases of compilat ion of con
tract algorithms — that is, the problem is to produce
a contract algor i thm from anyt ime components (which
can be either interruptible or contract algorithms). The
constructs we consider are certainly not an exhaustive
collection, but serve to i l lustrate the issues involved in
bui lding the compiler.

4 .2 .1 Sequences
We first consider the opt imal composition of two any

t ime algorithms, A\ and A2, one of which feeds its out-
put to the other. The repair system that was described
earlier illustrates this si tuat ion. Let q1 and q2 be the
performance profiles of A1 and A2, and let U*(q1,q2)
be the quality combination function, that is, the func
tion that defines how the quality of the module depends
on the quality of the components. For each allocation
of t ime, t, A\ gets x t ime units and A2 gets the re
maining t — x t ime units, where x is chosen to maximize
U*(q1(x),q2(t-x)). The performance profile of the com
pound module is therefore

Figure 3 shows a problem wi th two alternative anytime
algorithms that can solve the entire problem (for exam
ple, two different bin-packing algorithms for the same
van on a single t r ip) . In this case the quality combi
nation function is the maximum of the two components

Russell and Zilberstein 215

(since we can use the best solution among the alterna
tives) and the given amount of t ime should be allocated
to the component that has higher expected quality. This
is essentially the case studied by Dean and Boddy [1988].
Rather than using a generalized sequence construct and
a part icular qual i ty combinat ion funct ion, it might be
appropriate to supply a special construct any for the
case of mul t ip le alternative methods.

4.2.2 C o n d i t i o n a l s t a t e m e n t
Consider a real-t ime currency t rading program that

uses one of two different t rading strategies (A and B) de
pending on whether interest rate wi l l rise (P). We would
represent this by the condit ional statement:
(i f V t h e n A e l s e B)
Condit ional statements have several variations depend
ing on whether the condit ion V is calculated by an any
t ime algor i thm or whether there is a penalty, over and
above the cost of t ime, for executing A when the con
di t ion is false. Here we analyze the compilat ion for the
case in which V is a f ixed-t ime algor i thm that returns
(after t ime tp) the probabi l i ty (p) that the condit ion is
true. We also assume that the overall qual i ty is the qual
i ty of A when the condit ion is true and the quality of B
when the condit ion is false. The opt imal t ime allocation
is given by

A part ia l ly evaluated version of this expression is in
serted into the 'object code', to be evaluated at run-t ime
when the value of p is known. A PP can be computed
at compile t ime based on the a priori value of p.

4.2.3 L o o p s
Any system that repeatedly performs a complex task

can be implemented using a loop through a sequen
t ia l anyt ime process. Examples include operating sys
tems, part-picking robots, and network communication
servers. In these cases, an inf ini te loop is an adequate
model:
(l o o p < body >)
The t ime allocation should maximize the u t i l i t y gain per
uni t t ime, that is, at each i terat ion we choose x such that:

where Qs(x) is the PP of the body of the loop. This
amounts to stopping the sequence when it reaches the
point of contact of the steepest tangent to the PP (fig
ure 4). Loops wi th anyt ime terminat ion tests offer more
complex but very interesting opt imizat ion problems.

4.3 C o m p i l i n g i n t e r r u p t i b l e a l g o r i t h m s

W i t h interrupt ible algori thms we cannot s imply allocate
a certain amount of t ime to each component since we do
not know the total computat ion t ime in advance. For
example, in the case of the repair system mentioned ear
lier, if we allocate a certain amount of t ime to 'diagnose'
and the execution is interrupted before 'therapy' starts,
then there wi l l be no results to report. We therefore have
to interleave the execution of all the components so that
results are generated continuously.

The compilat ion of interrupt ib le algori thms is solved
by reduction to contract algori thms using Theorem 1.
The idea is to create the best contract a lgor i thm, using
the compi lat ion methods described above, and then cre
ate an interrupt ible version f rom the contract algor i thm
using the i terat ing construction described in the proof of
the theorem.

5 Conc lus i on

We have presented a method for constructing real-time
systems based on the use of elementary anyt ime algo-
r i thms together w i th a set of compi lat ion methods to
opt imal ly compose these algori thms. Our method is a
meta-level approach in which the meta-level problem is
l imi ted to scheduling of anyt ime algori thms. Laffey et al
[1988] claim that "Current ly, ad hoc techniques are used
for making a system produce a response wi th in a speci
fied t ime interval" . Our approach has several advantages
over current techniques: it achieves op t ima l performance
not just acceptable performance; it can handle situa
tions in which resource avai labi l i ty is unknown at design
t ime; it allows for a wide range of possible run-t imes and
hence is more flexible; it provides machine independent
real-t ime modules. Final ly, our approach avoids a t ime-
consuming hand-tuning process associated w i th the con
struct ion of real-t ime systems because the compilat ion
methods are mechanized.

5.1 R e l a t e d w o r k

As mentioned above, there has been considerable work
on designing and using indiv idual anyt ime algori thms,
both before and after Dean's coining of the term 'any
time*. There has, however, been very l i t t le work capi
tal izing on the addit ional degree of freedom offered by
anyt ime algori thms — freedom in the very general sense
that the algor i thm offers to fu l f i l l an entire spectrum of
input -output specifications, over the fu l l range of run
times, rather than jus t a single specification. This free-

216 Automated Reasoning

dom is required by a user w i t h a t ime-dependent u t i l i t y
func t ion rather than a f ixed ou tpu t specif icat ion3 .

One exception is the Concord system, developed by
L in et al. [1987]. Concord is a p rogramming language
tha t supports approx imate computat ions in which the
run- t ime of the subrout ine is control led by the consumer
of the results. The ma in design issues involve the run
t ime envi ronment structures needed to support f lexible
procedure calls. I ts development was mot iva ted, like our
compi la t ion scheme, by the problem of op t im iz ing per
formance given a l im i ted supply of system resources. For
each procedure, a supervisor is used to record values of
the approx imate results obtained to date, together w i t h a
set of error indicators. When a procedure is te rminated,
i ts supervisor returns the best result found. In termedi
ate results are handled by the caller using a mechanism
s imi lar to exception handl ing. The handlers for impre
cise results determine whether a result is acceptable or
not ; th is decision is local to the caller, rather than being
made in the global u t i l i t y context tha t we use. In this
sense, Concord actual ly performs satisficing rather than
op t im iza t ion . Concord has several other disadvantages
compared to our approach: i t leaves to the programmer
the decision of what qua l i ty of results is acceptable; i t
does not mechanize the scheduling process but only pro
vides tools for the programmer to perform this task; and
it does not provide for s imple cumulat ive development
of more complex any t ime systems.

5.2 F u r t h e r w o r k

There is s t i l l much system work to be done in order
to implement a complete set of compi la t ion methods
as an integral par t of a p rogramming language for any
t ime computa t ion . We also need to understand how best
to represent mu l t id imens iona l , probabi l is t ic and condi
t ional performance profi les, and how to insert moni tors
to check the par t ia l results obtained and update the PPs
accordingly.

We are current ly extending the f ramework to cover
the generation and scheduling of anytime actions and
observation actions, bo th of which are essentia) for the
construct ion of autonomous agents. Any t ime actions are
actions whose outcome qual i ty improves gradual ly over
t ime. For example, mov ing toward a target in order
to get a better view is an in ter rupt !b le anyt ime act ion.
A i m i n g a gun at a target is another example of an inter-
rupt ib le any t ime act ion. In many cases any t ime actions
can be implemented by inter leaving computa t ion and ac
t ion . Our u l t ima te goal in this project is to construct a
real- t ime agent tha t acts by per forming anyt ime actions
and makes decisions using anyt ime computa t ion .

3 In fact, the notion of anytime applies much more broadly,
for example to contracts among economic agents. A crude
version is presented by the model ranges offered by car
and computer manufacturers, where different allocations of
money will obtain different quality of results. We are begin
ning to investigate the economics literature to see if similar
generalizations have been proposed.

References

[Boddy and Dean, 1989] M. Boddy and T. Dean. Solv
ing t ime-dependent p lanning problems. Technical
Report CS-89-03, Depar tment of Computer Science,
Brown Universi ty, Providence, 1989.

[Dean and Boddy, 1988] T. Dean and M. Boddy. An
analysis of t ime-dependent p lanning. In Proceedings
of the Seventh National Conference on Artificial Intel-
ligencc, pages 49-54, Minneapol is , Minnesota, 1988.

[Elkan, 1990] C. E lkan. Incrementa l , approx imate plan
n ing: abduct ive default reasoning. In Proceedings of
the AAAI Spring Symposium on Planning m Uncer
tain Environments, Palo A l t o , Cal i fo rn ia , 1990.

[Haussler, 1990] D. Haussler. Probably approximately
correct learning. In Proceedings of the Eighth National
Conference on Artificial Intelligence, pages 1101-
1108, Boston, Massachusetts, 1990.

[Horv i tz , 1987] E. J. Horv i t z . Reasoning about beliefs
and actions under computa t iona l resource constraints.
In Proceedings of the 1987 Workshop on Uncertainty
in Artificial Intelligence, Seattle, Wash ington, 1987.

[Korf, 1988] R. Kor f . Real - t ime heuristic search: new
results. In Proceedings of the Seventh National Con
ference on Artificial Intelligence, pages 139-144, M in
neapolis, Minnesota, 1988.

[Laffey et ai, 1988]
T. J. Laffey, P. A. Cox, J. L. Schmidt , S. M. Kao
and J. Y. Read. Real- t ime knowledge based systems.
AI Magazine, 9 (l) :27-45, Spr ing 1988.

[Lin et ai, 1987] K. J. L i n , S. Na ta ra jan , J. W. S. L iu
and T. Krauskopf. Concord: A system of impre
cise computat ions. In Proceedings of COMPSAC '87,
pages 75-81, Tokyo, Japan, October 1987.

[Michalski and W ins ton , 1986] R. S. Michalski and
P. I I . W ins ton . Var iable precision logic. Artificial
Intelligence, 29(2):121-146, 1986.

[Russell and Wefa ld, 1989] S. J. Russell and E. H. We-
fald. Principles of metareasoning. In R.J. Brachman
et al, (Eds), Proceedings of the First International
Conference on Principles of Knowledge Representa-
tion and Reasoning, Morgan Kau fmann , San Mateo,
Cal i forn ia, 1989.

[Vrbsky et ai, 1990] S. V. Vrbsky, J. W. S. L iu and
K. P. Smi th . An object-oriented query processor
that returns monotonical ly improv ing approximate
answers. Technical Report UIUCDCS-R-90-1568, Un i
versity of I l l inois at Urbana-Champaign, 1990.

[Zi lberstein, 1990] S. Zi lberstein. Compi la t ion of any
t ime algor i thms. Research Proposal, University of
Cal i fornia, Berkeley, November 1990.

Russell and Zilberstein 217

