
Intelligent Assistance through Collaborative Manipulation 1

Loren G. Terveen David A, Wroblewski Steven N. Tighe

AT&T Bell Laboratories
600 Mountain Ave.

Murray Hil l , NJ 07974
tervcen@research.att.com

US West
4001 Discovery Dr.
Boulder, CO 80303
davew@ us wcst.com

MCC
3500 W. Balcones Center Dr.

Austin, TX 78759
tighe@mcc.com

Abstract
This paper introduces, motivates, and illustrates an
approach to the construction of intelligent assistance
systems that we call collaborative manipulation. We show
how a system can offer effective assistance through
collaborative manipulation of objects in a shared
workspace. We have developed this approach through
experience with an intelligent knowledge editing tool, the
HITS Knowledge Editor. We illustrate its effectiveness
using scenarios taken from a user study.

1 Intelligent Assistance
Intelligent assistance is an active research field within AI
[Chin, 1988; Lochbaum et al., 1990; Lemke and Fischer,
1990; Miller et al., 1990]. This research is motivated by
several factors, including (1) the importance of collaboration
in intelligent activity, (2) the scarcity of totally formalizable
domains, and (3) people's need for help with increasingly
complex computer applications.

Two key issues in the design of an intelligent assistance
system are - what is the role of the system in the
inter action? and how is the system-user interaction managed!
Our work in building an intelligent assistant for the task of
knowledge editing has led us to three design principles that
address these issues. We call the approach characterized by
these principles collaborative manipulation.

2 Collaborative Manipulation
We carry out our research within the paradigm of cooperative
problem solving systems [Lemke and Fischer, 1990]. This
approach begins from the premise that people and computers
have vastly different strengths and weaknesses and that
effective cooperation needs a division of responsibility based
on the strengths of each party. Our contribution is to base
system assistance on collaborative manipulation of objects
in a shared workspace. The approach has three key aspects.

1. Provide a workspace for joint user-system problem
solving. People at everyday tasks construct personalized
work contexts that include task-relevant materials and partial
specifications of solutions - think of a kitchen while
someone is cooking or your workstation and desk while you

]This work was done while all three authors were at the
MCC Human Interface Lab.

debug a program or write a paper. In this paper, we focus
on two properties of a workspace that are useful for an
intelligent assistant: first, it provides access to users1 partial
solutions, enabling the assistant to compute advice in a
timely manner, and second, the assistant can deliver
significant aspects of its advice by manipulating objects in
the shared workspace. We call the latter process
advertisement [Wroblewski et al., 1991].

2. An effective role for an intelligent assistance system is
that of a design critic [Fischer et al., 1990]. In design, a
person constructs an artifact meeting certain constraints - in
knowledge editing, users construct knowledge structures that
encode their understanding of a domain and fit in with the
constraints of a knowledge representation system. A critic
"looks over the shoulder" of users as they perform a task and
offers advice occasionally. In our system, critics propose
completions of unfinished objects, detect problems, and
suggest additional issues.

3. The user-system interaction must be managed according
to conventions that are appropriate to the abilities and roles
of each party. For example, a system should (1) avoid
taking the initiative from users and forcing them to deal
with advice at the convenience of the system, and (2) avoid
imposing a fixed order of work on users. In our system,
interaction is organized in terms of propose-critique-refine
interchanges, in which the user always has the final say.

3 The HITS Knowledge Editor
Knowledge editing involves the entry, viewing, access, and
maintenance of information in a knowledge base. Many
systems make strong assumptions about the type and use of
knowledge being entered [e.g. Kahn et al., 1987; Musen et
al, 1987] in order to guide users. Our approach, however,
along with Murray and Porter [1990] is to assist users in the
knowledge editing task without making such assumptions.

Representing knowledge in a knowledge base is a difficult
task. People must articulate knowledge to a higher degree of
precision than is required for everyday communication and
must encode the new knowledge in harmony with existing
knowledge and representational conventions. The HITS
Knowledge Editor (HKE) assists users in this task. HKE is
a browsing/entry interface to CYC [Lenat and Guha, 1990].
HKE embodies an analysis of knowledge editing into six
sub-activities [Terveen, 1991].

Terveen, Wroblewski, and Tighe 9

Double lines around an icon indicate that an object by this name exists in the knowledge base, e.g., Mac exists but ACT does not. The
same convention is used for slot buttons in the Choose Slot menu: e.g., performs exists in the KB but product does not. The Choose
Slot menu also functions like the legend of a map. Each slot has an associated line pattern, e.g., subOrganizations is represented by a
thick solid line. The icons for two objects related by one of these slots are linked by the appropriate line pattern, e.g., MCC and ACT
are related by the subOrganizations slot, so their icons are linked by a thick solid line.

Figure 1 - A sketch

We focus here on three activities that comprise knowledge
entry, since this where HKE offers the most assistance.
• During specification, users sketch out new knowledge via

a direct manipulation interface.
• During incorporation, the system merges the specification

into the knowledge base and detects problems and issues.
• During repair, the system presents the problems and issues

it has detected and works with the users to resolve them.
We illustrate how HKE assists in these three activities

with a scenario taken from a user study [Terveen, 1991].
Pairs of subjects were asked to represent knowledge about
the structure of their organization (the Artificial Intelligence
or Human Interface Laboratory at MCC), such as researchers
and their areas of expertise, projects, and software systems.

Some CYC terminology is necessary to understand the
illustration. Objects in CYC are called units. We use
typewriter font to indicate units, e.g., MOC, Terveen,
Worker. Slots are first class units. The domain of a slot is
recorded on its makesSenseFor slot and the range of a slot
is recorded on its entry lsA slot. By convention, slot
names begin with lowercase letters, e.g., hasWorkers and
instanceOf. We use predicate argument form to refer to
assertions in the knowledge base, e.g., hasWorkers(MCC,
Terveen) means that Terveen is a filler of the hasWorkers
slot of MCC We use the notation un i t . s lo t to refer to the
value or values of a particular slot of a particular unit, e.g.,
MOC.hasWorkers represents the set of workers at MCC.

3.1 Specification
Our user studies have shown that knowledge representation
typically begins with a small group of people sketching out
key objects and relationships on a piece of paper or a
whiteboard. In HKE, users specify new knowledge by

sketching a graph of objects and their relationships using a
direct manipulation interface. Users can sketch only those
objects and relationships that are of most immediate interest
to them - they do not have to satisfy CYC's requirements
for well-formed units immediately.

While sketching out new information, users often need to
explore the knowledge base for existing information that is
relevant to their task. HKE provides browsing methods to
do this. Relevant objects can be collected in the sketch;
thus, users can create a context for solving their problem as
part of the problem solving process [Suchman, 1983].
Figure 1 shows an intermediate point in the specification
activity of one pair of subjects.

3.2 Incorporation
When users are satisfied with their specification, they request
HKE to incorporate it into the knowledge base. While
doing so, HKE applies rules to each assertion that (1) infer
additional assertions, (2) discover constraints between
objects and (3) detect troubles or suggestions that apply to
an object.

3.2.1 Inferences and Constraints
HKE infers required information that users have not

specified based on how objects are used in the sketch. For
example, in figure 1 the users introduced a new slot,
p r o d u c t , without specifying either its domain and range.
However, they did state that Cyc was a product of
BuildingCYC, and Cyc already is known to be an instance of
IntelligentCcrrputerPrograra Therefore, the system
inferred that the range of p roduct was
I n te l l i gen tCcx rpu te rP rog ra ra

10 Architectures and Languages

Sometimes inferences can be made only on the basis of
non-local information in the sketch, i.e., a value inferred on
the basis of one assertion may affect an object in another
assertion. HKE supports this by using constraints. For
example, suppose HKE processes the assertions

• product(KBLInterfaceDevelcpnrent,NL-Tell) and
• product(BuildingCYC, Cyc),

in that order. When the system processes the first assertion,
it does not know anything about the objects product, NL-
Te l l , and K B N L I n t e r f a c e D e v e l o p m e n t . However,
based on this assertion it creates two constraints:
• productjnakesSenseFor 6 KBNLInterfaceDevelopment.

instanceOf: the domain of product must a class which
KBNLInterf aceDevelopment is a member of.

• product. entryIsA E NL-Te l l . instanceOf: the range of
product must be a class which NL-Tel l is a member of.

When HKE processes product(buildingCY/C, Cyc) and infers
entryIsA (product, IntelligentComputerProgram),

maintaining the second constraint enables HKE to infer that
NL-Tel l is an instance of IntelligentComputerProgram
When HKE determines that KBNLInterfaceDeveloprrent is
an instance of CorrputerPrograirming, the first constraint
wi l l be maintained with similar results. Figure 2
summarizes part of the inference process just described.

HKE records the justification for each inference that it
makes. Users can access the justification during the repair
activity as a resource in deciding whether to accept or modify
the system's inference (see figure 4). For example, they
might decide that the range of product should be a more
general class than IntelligentComputerPrograiTL

There are several reasons why the type of inferencing that
HKE does is particularly useful. First, it reduces what users
have to know and decide. For example, novice users may
not know that they have to specify the domain and range of
a slot, but HKE can make consistent guesses about this
information based on how they have used the slot in their
sketch. Second, no options are taken away from users: they
are still free to modify the values that the system has
inferred. In fact, arguably the most important feature of
system inference is that it can draw users' attention to issues
that they had not considered. Furthermore, the justification
for an inference is available to users as they decide whether
to accept it, and, if they decide to seek an alternative answer,
the system provides follow-up options that guide users in
exploring the space of alternatives. This also facilitates a
kind of learning: users can become aware of both new
issues and ways to resolve the issues.
3.2.2 Troubles

Every assertion stated by the users is examined to see if it
is inconsistent with information already in the knowledge
base - this is a trouble. Some troubles are relatively simple
and localized. For example, the most common trouble
encountered in the user studies was that users asserted a
relationship between two objects, and the objects did not
satisfy the domain or range constraints on the relationship.
In figure 1 the users asserted hasManagers(CycProject,
Lenat). However, the range of hasManagers is Manager
and Lenat is not an instance of Manager, so HKE detects a
trouble with this assertion.

Other troubles result from inconsistencies with inherited
or inferred information. For example, in figure 1 the users
asserted that CYCUserlnterfaceProgram was an instance of
InterfacePrograia Through inheritance, this would have
the effect of making CYCUserlnterfaceProgram an
instance of the class I ndividua1Object. However,
CYCUserlnterfaceProgram already is known to be a
derived instance of Co l lec t ion , and C o l l e c t i o n and
individualObject are declared to be mutually disjoint,
i.e., no object can be an instance of both classes. Therefore,
HKE detects a trouble with the users' assertion (figure 5).

When the system detects a trouble with an assertion from
the users' specification, it does not attempt to add that
assertion to the knowledge base nor does it immediately
engage users in a dialogue to repair the trouble. Instead, it
creates a resource for repairing the trouble, associates it with
the assertion, and advertises the trouble through objects in
the work context (see next section for discussion).

There are a number of reasons why HKE docs not attempt
to repair troubles automatically. First, HKE often knows
alternative repair methods that it has no means of selecting
among. Second, there may be repair methods that HKE does
not know about - for example, radical changes to the class
hierarchy can drastically change the set of legal assertions -
and if users are skilled enough to think of such actions and
perform them, they should be able to. Finally, sometimes
the repairs that HKE offers are "dangerous" - they could
have large ripple effects throughout the knowledge base -
and should be done only after careful consideration.
Therefore, all troubles are advertised to users, and the system
assists in deciding how to repair troubles but docs not do so
automatically.
3.2.3 Suggestions

Suggestions arc issues that deserve possible investigation,
but do not prevent any part of the users' specification from
being incorporated into the knowledge base. In figure 1, for
example, the users defined a new class,
CcrrputerProgramming, with three instances BugFixing,
BuildingCYC, and KBNLInterfaceDevelopment. They
later used the slot performs to relate different people to the
three instances, e.g., performs (Lenat, BuildingCYC).
The range constraint on performs l e t the system i n f e r
that the three objects were instances of the class
PerformingAnActioa Rather than each of these objects
being instances of both ComputerPrograrrrning and
PerformingAnActioa it might be preferable to make
CcrrputerProgramming a s u b c l a s s of
PerformingAnAction. HKE therefore creates a suggestion
that users consider this issue (see figure 4).

During incorporation, the system constructs a context
(figure 2 shows selected parts) that includes the assertions
from the users' specification and those inferred by the
system. All the assertions concerning an individual object
arc organized into a checklist [Terveen and Wroblewski,
1990]. The context is annotated with other information
including troubles, suggestions, and constraints. Since the
context includes many items that must be acted on, (e.g.,
troubles must be resolved, suggestions should be deliberated,
and inferences can be verified or modified), it is essential that
the system's representation of the context is shared with the
users. This is the topic of the next section.

Terveen, Wroblewski, and Tighe 11

3.3 Repair
During repair, user and system jointly explore the
consequences of the issues raised by the system during
incorporation. In responding to system recommendations,
users refine their initial conceptions of their domain based
on the interaction between new and existing information.

The sketch and checklists serve as media for the system's
recommendations. After incorporating a sketch, if the
system detects troubles with an object, it displays that
object in reverse video, and, if the system has suggestions
about an object, it grays that object (see figure 3). Thus, the
system uses the materials of the work context to advertise
those objects that require further user attention.

Users repair an object by interacting with its checklist.
The checklist advertises aspects of the object that require
more attention. Figures 4 and 5 show the checklists for
ComputerProgramming and C YCUser InterfaceProgram
and an assistance resource accessible from each checklist.

Conventions used in checklists include the following.
Reverse video indicates a trouble - e.g., the object
interfaceProgram on the i nstanceOf slot of
CYCUserlnterfaceProgram (figure 5). Italics indicate an
inferred value - e.g., the object Co l lec t ion on the
instanceOf slot of ComputerProgrartming (figure 4). A
box around an object indicates that the object is
incompletely specified - e.g., the object product on the
canHaveSlots slot of CorrputerProgramning (figure 4). A
balloon icon with text indicates a suggestion (figure 4).

An assistance resource is associated with each object that
requires user attention. The suggestion associated with
CorrputerProgramming and the trouble associated with
CYCUserlnterfaceProgram discussed in the previous
section arc shown in figure 4 and 5, respectively. Since the
resources that explain troubles or suggestions or inferences
are made persistent through association with objects in the
workspace, users can interact with them, turn their attention
elsewhere, then revisit them later.

Terveen, Wroblewski, and Tighe 13

4 Results
We have performed user studies [Terveen, 1991] that support
our claims concerning the utility of the collaborative
manipulation paradigm. Subjects were given the task of
using either HKE or an earlier generation knowledge editing
tool, the Unit Editor (UE) [Shepherd, 1988] that does not
embody the design principles described in this paper. The
studies illustrate both the benefits of the principles and the
cost of their absence.

1. A workspace for joint user-system problem solving is
essential. HKE's sketches allow users to collect relevant
objects, thus creating personal organizations of knowledge
relevant to the task at hand, rather than adhering to the
logical organization of the knowledge base. Sketches give
critics access to partial solutions, enabling the delivery of
timely assistance.

The UE has no workspace. Users had to track relevant
objects by memory or by using paper and pencil. Therefore,
even expert users sometimes forgot significant unresolved
issues because they did not persist in the interface.

2. An effective role for an intelligent assistance system is
that of a critic. The critic paradigm exploits the
complementary strengths of people and computers. Users
know what they want to represent. HKE knows about
representing knowledge in CYC. During specification,
users can state as much information as they want to or arc
able to, ignoring (what to them are) details like the domain
and range of a slot. During incorporation, HKE draws on its
expertise about knowledge editing to detect issues that are
raised by merging the specification into the knowledge base.

HKE embodies much expertise about knowledge editing;
the UE is an entry tool only, with no assistance component.
Experts were able to perform equally well with either tool,
since they had mastered knowledge of what issues to
consider, how and when to resolve them, and the form in
which CYC requires information to be stated. Novices did
not possess such expertise and ran into significant problems
using the UE. For example, sometimes they could not
repair problems, they used a limited set of repair methods,
and they never considered issues that experts did (but that
HKE would raise).

3. Use appropriate conventions for the user-system
interaction. Because assistance in HKE is advertised through
objects in the workspace, users always retain the initiative.
Issues for consideration always are presented in parallel.
Users choose which issues to consider and the order in which
to consider them.

In comparison, the UE utilizes sequential menu or query-
based dialogues; thus, users sometimes had to consider
issues of secondary importance or risk losing track of the
issues completely. For instance, HKE allows users to
introduce new objects simply by adding them to the sketch.
Later, during incorporation and repair, required information
not supplied or inferred is advertised as issues to be resolved.
In the UE, users are forced to define each object before it is
used. For example, users may have to suspend work on
stating the assertion hasWorkers (MX-HI-Lab, Terveen)
to ensure that hasWorkers, MCX:-HI-Lab, and Terveen are
well-formed objects. Thus, the UE increased rather than
decreased the cognitive load on the users.

14 Architectures and Languages

In summary, the significant contribution of our research is
to illustrate a method for delivering assistance that exploits
the interactive potential of direct manipulation technology.
In our view, delivery of intelligence in the interface is of
primary importance, and the method of computing advice is
secondary. Although for the purposes of exposition we have
characterized our work in terms of three distinct design
principles, in practice, the principles interact, and the power
of our approach derives from this interaction. It is a
workspace combined with the intelligence of critics
combined with the delivery of assistance by advertising
issues that make HKE an effective, coherent system.

References
Chin, D.N. 1988. Intelligent Agents as a Basis for Natural

Language Interfaces. Ph.D. Thesis. Computer Science
Division, The University of California at Berkeley.

Fischer, G., Lemke, A.C., Mastaglio, T., & Morch, A.I .
1990. Using Critics to Empower Users. In Proceedings
of CHI'90. Seattle, WA.

Kahn, G.S., Breaux, E.H., DeKlerk, P., & Joseph, R.L.
1987. A Mixed-Initiative Workbench for Knowledge
Acquisition. International Journal of Man-Machine
Studies, 27:167-179.

Lemke, A.C., & Fischer, G. 1990. A Cooperative
Problem Solving System for User Interface Design. In
Proceedings of AAAI'90. Boston, MA.

Lenat, D.B & Guha, R.V. 1990. Building Large Knowledge
Based Systems. Reading, MA: Addison-Wesley.

Lochbaum, K.E., Grosz, B.J., & Sidner, C.L. 1990.
Models of Plans to Support Communication: An Initial
Report. In Proceedings of AAAI'90. Boston, MA.

Miller, J.R., Hil l , W.C., McKendree, J., McCandless, T., &
Terveen, L.G. 1990. IDEA: from Advising to
Collaboration. SIGCHI Bulletin. 21(3): 53-58.

Murray, K.S. & Porter, B.W. 1990. Developing a Tool for
Knowledge Integration: Initial Results. International
Journal of Man-Machine Studies, 33:373-383.

Musen, M.A., Fagan, M.L., Combs, D.M., & Shortliffe,
E.H. 1987. Use of a Domain Model to Drive an
Interactive Knowledge-Editing Tool. International Journal
of Man-Machine Studies, 26: 105-121.

Shepherd, M. 1988. Tools for Adding Knowledge to the
CYCLSKB. Technical Report ACA-AI-068-88. MCC.
Austin, TX.

Suchman, L. 1983. Office Procedures as Practical Action:
Models of Work and System Design. ACM Transactions
on Office Information Systems. l(4):320-328.

Terveen, L.G., & Wroblewski, D.A. 1990. A
Collaborative Interface for Browsing and Editing Large
Knowledge Bases. In Proceedings of AAAI'90. Boston,
MA.

Terveen, L.G. 1991. Person-Computer Cooperation
through Collaborative Manipulation. Ph.D. Thesis.
Department of Computer Sciences. The University of
Texas at Austin.

Wroblewski, D.A., McCandless, T.P., & Hil l , W.C. 1991.
DETENTE: Practical Support for Practical Action.
Proceedings of CHI'91 New Orleans, LA.

