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ABSTRACT 

This paper describes SYNAPSIS, a parser for 
performing real-time understanding of spoken utterances 
in a parallel computational environment. Understanding 
continuous speech allowing reasonably free syntax poses 
two main oroblems, namely the risk of erroneous 
interpretations and the largeness of the search space 
owing to the high uncertainty of the input. The parser is 
characterized by an approach whose major novel 
features are 1) a drastic reduction of idle time, thanks to 
the asynchronous inter agent communications, and 2) 
high modularity, thanks to the distribution of 
homogeneous pieces of knowledge rather than 
distribution of different parsing tasks. These features 
make the parser most apt for implementation on 
homogeneous Transputer-based distributed architectures. 

1. Introduction 

This paper describes SYNAPSIS, the parallel parser 
that is being developed at CSELT Laboratories. SYNAPSIS 
(from SYNtax-Aided Parser for Semantic Interpretation of 
Speech) is part of a question-answering system [Fissore et 
al., 1988] that allows to extract information from a data 
base using voice messages with high syntactic freedom. 
The whole system is composed of a recognition stage 
which analyzes continuous speech utterances and 
produces a set of word hypotheses (usually called lattice in 
the literature); and of an understanding stage which 
analyzes the word lattice using linguistic knowledge and 
produces a representation of the meaning of the most likely 
consistent word sequence. 

The major aspect that distinguishes spoken from 
written language parsing lies in the type of input. The 
current state-of-art in large vocabulary continuous speech 
processing does not permit the unique identification of the 
uttered words if no language constraints are used along 
with constraints derived from acoustical and phonetical 
knowledge. In cases like the one we are addressing, 
where language is expressed by a large and complex 
grammar, it would be impractical to use language 
constraints at the recognition level. Thus what is actually 
provided to the understanding stage is not a sequence of 
words but a set of word hypotheses (WHs). A Word 
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Hypothesis is a structure with three elements: an acoustical 
quality factor, or score for brevity, representing its belief 
degree; a temporal interval representing the location in the 
utterance where it was spotted; and the lexeme itself. The 
Word Hypotheses represent highly uncertain data; 
'spurious' Word Hypotheses heavily outnumber correct 
Word Hypotheses and some are even better scored. 
Moreover, there often exist different subsets of Word 
Hypotheses that correspond to plausible, but not really 
uttered, sentences. 

Summarizing, the additional problems posed by 
speech vs. text parsing are the following: 

1) High risk of erroneous understanding due to 
the presence of spurious Word Hypotheses; 

2) Very large search space, because the 
non-determinism typical of natural language parsing is 
added to the non-determinism arising from the uncertainty 
of the input. 

One first requirement to cope with the above problems 
is to seek a parsing strategy that is intrinsically efficient and 
easily driven by the Word Hypothesis scores. However, this 
is not enough to reach real-time performances, especially 
when the system is intended to gradually increase the size 
of its lexicon and/or linguistic coverage. In such case the 
parser must do its activity on a highly modular, easily 
extendable parallel processing environment. 

SYNAPSIS derives from the sequential parser 
employed in the SUSY system [Poesio and Rullent, 1987], 
which was designed with a special emphasis on efficient 
integration of high-level syntactic/semantic knowledge 
within an opportunistic analysis strategy. SYNAPSIS 
departs from other parallel parsers in one fundamental 
respect: what is partitioned among the various agents is 
the total linguistic knowledge and not the different parsing 
tasks. That is. every agent has the whole inferencing 
capability of the sequential parser; only, it relies on a 
fraction of the total knowledge.The type of parallelism 
resulting from such a multi-agent organization is a kind of 
OR-parallelism on the active nodes of partial parses. The 
advantages of this scheme are: 

1) Asynchronicity. The communications among agents 
are asynchronous, that is there are no 'wait-for-reply' idle 
times. Each agent has its own agenda of pending tasks 
that refers to the generation of phrase hypotheses 
pertaining to the linguistic knowledge of the agent itself. 
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2) Ease of implementability. The data-flow nature of 
the algorithm is directly mirrored by homogeneous 
Transputer-based distributed architectures supporting 
languages endowed with asynchronous message-passing 
primitives. A description of what a global (hardware + 
algorithmic) architecture should result is given in [Bosco et 
al. 1987]. 

3) Modularity. To increase the knowledge base it is 
sufficient to introduce new agents or to distribute the new 
pieces of knowledge among existing agents. 

The sequential parser has been experimentally proven 
to lie in the state-of-the-art in speech processing [Giachin 
and Rullent, 1988, DeMattia and Giachin, 1989]. The 
feasibility and effectiveness of the distributed parser has 
been demonstrated not only by simulation but also by 
implementing it on a pool of workstations working in 
parallel; alongside, the parallel hardware is being 
developed. In the following the principles of sequential 
parsing are briefly resumed, prior to the description of the 
parallel parser. Further discussion on the position of the 
parallel parser with respect to the current research 
scenario is given in Section 4. 

2. The sequential parsing strategy 

2.1 Summary of the recognition stage 

In the recognition stage words are defined as 
sequences of elementary speech units. Such units are 
represented by Hidden Markov Models (HMMs) of speech 
spectral properties. The Forward decoding algorithm is 
used to hypothesize words along the utterance and to 
assign them a score that expresses how close is the match 
between the ideal word model and the actual observed 
utterance portion. The HMM technique is widely used for 
large vocabulary speech recognition and gives comparable 
results for different languages [Fissore et al.. 1989, Lee 
1988]. 

2.2 Linguistic knowledge representation 

The linguistic knowledge representation used by the 
system is based on the notion of caseframe [Fillmore, 
1968]. Caseframes allow to describe a language's 
semantics in a compositional way, through a header word 
(usually a verb or a noun) and a set of cases that may in 
turn correspond to other caseframes. Caseframes offer 
several advantages in speech parsing, including a way of 
correlating semantic significance with acoustic certainty. 
This happens because the header word, being the most 
"meaningful" one, tends to be uttered more clearly, and 
hence is easily recognized with good acoustical score. 
This explains their popularity in many recent speech 
understanding systems [Hayes et al., 1986, Brietzmann 
and Ehrlich, 1986, Niedermair, 1986]. 

Caseframe-based speech parsing raises two 
difficulties, however. One is that parsing is induced to 
proceed by instantiating caseframes in a top-down fashion. 
This causes severe problems if the uttered sentence 
includes a bad-scored word that constitutes the header of 
a caseframe, because that frame will not be resumed until 
all better-scored items have been examined, thus spurring 
a lot of useless search activity. The second difficulty is the 

integration of caseframes with syntax. For many reasons 
(ease of development and maintenance, possibility of using 
flexible representational formalisms) syntax should be 
defined and developed separately from caseframes, but to 
reduce the size of the search activity syntactic constraints 
should be used together with semantic constraints during 
parsing. This idea, though under differerent perspectives, 
permeates much of current speech understanding 
research [Tomabechi and Tomita, 1988, Hauptmann et al. 
1988]. 

To overcome these problems, caseframes and syntax 
are pre-compiled into structures called Knowledge 
Sources (KSs). Each Knowledge Source owns the 
syntactic and semantic competence necessary to get 
through a well-formed interpretation of a fragment of the 
input. Fig. 1 shows a caseframe (represented via 
Conceptual Graphs [Sowa, 1984]) and the resulting 
Knowledge Source obtained by combining it with two rules 
of a Dependency Grammar [Hays, 1964]. Note that the 
'compositional' part of the Knowledge Source directly 
mirrors the phrase structure expressed by syntactic rules in 
the form of immediate constituents. The Knowledge 
Sources do not form a classical context-free semantic 
grammar, however. Beside the 'compositional' part, in fact, 
the Knowledge Sources possess additional information 
which is used to establish constraints of both semantical 
and syntactical nature on the different constituents. These 
constraints account, for instance, for morphological 
agreement between distant words (of which some 
languages, like Italian, are particularly rich). This property, 
together with computationally fast methods for propagating 
and checking such constraints, permits to enormously 
reduce the number of Knowledge Sources that would treat 
very similar language constructs. Analogous principles are 
currently tested in systems based on unification grammars 
[Chow and Roucos, 1989]. 
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utterance is covered. Phrase hypotheses are an extension 
of the 'island' concept introduced in past speech literature 
[Woods, 1982], the major difference being that they do not 
require their component Word Hypotheses to be 
contiguous, but only to make up a consistent (possibly 
incomplete) parse tree. To each phrase hypothesis an 
acoustic score is assigned, computed from the likelihood 
score of its Word Hypotheses. An example is shown in Fig. 
2. It required three Knowledge Sources and still has a 
'goal' node in it (i.e. a node for which no Word Hypotheses 
were found yet). 

Fig. 2 - An example of perse tree, accounting for the sentence 
"Quale regione comprende Torino?" ("Which region includes 
Turin?"). "Quale" has not yet been found. The root of this parse 
tree was build by the Knowledge Source of Fig.1. 

Parsing follows a best-first strategy. At each cycle, 
the best-scored item is selected (either a phrase 
hypothesis or a word hypothesis) and it is accreted with 
other word or phrase hypotheses by all of the Knowledge 
Sources that can do the job. The result is the production of 
new, bigger phrase hypotheses.The elementary actions on 
phrase or word hypotheses are described by operators. 
Top-down, prediction-based actions are dynamically 
mixed with bottom-up, expectation-based actions. 

Top-down actions consist in starting from a phrase 
hypothesis whose parse tree has an empty node, and: 

1) fill it with word hypotheses (VERIFY operator) if it is 
a header node (which is a terminal one), or 

2) fill it with already existing complete parse trees 
(MERGE) if it is a case node (a nonterminal one), or still 

3) decompose it accordingly to the compositional 
structure of a Knowledge Source (SUBGOALING). 

Bottom-up actions consist in creating a phrase 
hypothesis starting from a word hypothesis, which will 
occupy the header node of the newly-created phrase 
hypothesis (ACTIVATION), or starting from a complete 
parse-tree, which will occupy one of the case nodes 
(PREDICTION, MERGE). The actions to be performed on 
the selected item are determined solely by its 
characteristics, accordingly to the above strategy. 

Such a parsing strategy permits to use both headers 
to predict words at lower levels and vice versa. 
Consequently, any well-scored phrase hypotheses is 
guaranteed to be treated and expanded with other words, 
whether this can be done with a bottom-up or with a 
top-down step. This eliminates the bottlenecks that occur 
with standard top-down caseframe parsing, while 

preserving most of the advantages that caseframes offer 
over semantic grammars in terms of flexibility. 

3. The distributed parser 

The parallel parser is obtained by distributing the 
Knowledge Sources among N agents called Distributed 
Problem Solvers (DPSs). Each DPS has the whole 
inferencing capability of the sequential parser, but relies 
only on a subset of Knowledge Sources to perform its 
activity. Since every single parse tree requires in general 
more than one Knowledge Source to be built, and the 
required Knowledge Sources may reside on different DPSs, 
it follows that the various DPSs must cooperate to carry on 
the overall analysis. This could be achieved by adopting a 
blackboard architecture. However, a blackboard 
architecture proves unsatisfactory when strict control on 
activity scheduling is required [Corkill et al. 1982], like the 
one outlined in the previous section. Hence an approach 
has been followed in which the partial parses are 
dismembered into smaller elements that are distributed 
among the DPSs. Each DPS has a private data base of 
active elements, each one representing a whole parse 
tree, on which the control strategy described above is 
applied. How this is accomplished is described in the next 
sections. 

3.1 Distributing the parse trees 

The basic concept consists in 'dismembering' each 
parse tree into one-level subtrees, called Physical 
Hypotheses (PHs) according to Fig. 3. One of the Physical 
Hypotheses - called the active one - is able to represent 
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the whole parse tree as far as an operator application is 
concerned. It carries a priority equal to the acoustical 
score of the parse tree it represents. By comparing Fig. 3 
with Fig. 2 it is seen that, since a Physical Hypothesis is a 
one-level tree, it directly corresponds to the compositional 
part of some Knowledge Source. In other words, each 
Physical Hypothesis expresses a hypothesis on the phrase 
structure composition of a segment of utterance. It follows 
that the Physical Hypotheses can be partitioned according 
to their corresponding Knowledge Source and 
consequently to the DPS on which the Knowledge Source 
resides. 

3.2 Parsing and control in the parallel system 

The architecture of a DPS is depicted in Fig. 4. The 
DPSs cooperate by exchanging relevant information about 
the active Physical Hypotheses corresponding to the parse 
trees they are treating. For example, if a DPS has 
generated a complete parse tree that could be used by 
another DPS to predict other parses (this corresponds to 
an application of the PREDICTION operator), a set of 
information about the Physical Hypothesis representing that 
complete tree is sent to the interested DPS; the recipient 
DPSs will generate pending tasks whose priority depends 
on the score of that complete parse tree. 

At the beginning of the analysis of an utterance, the 
lattice of Word Hypotheses generated by the recognition 
system is first distributed among the DPSs. The criterion for 
distributing the lattice simply consists in assigning to a DPS 
the Word Hypotheses whose lexeme can be used as a 
header by at least one of the local Knowledge Sources. 
This requires some duplication of Word Hypotheses in 
different DPSs, depending on the way Knowledge Sources 
have been partitioned. 

At this point the actual analysis begins. The 

1540 Speech and Natural Language 

exchanged information is embodied into messages 
representing requests for some actions. The delivering DPS 
does not enter a 'wait' state in expectance of a reply from 
the recipient DPS: that is, communication is asynchronous 
at all times. The messages, once received, are scheduled 
according to the priority of the parse tree they refer, so that 
the recipient DPS only executes the highest-priority 
messages first. Similarly, the delivering DPS can continue 
to work after sending its message by treating the other 
Physical Hypotheses with the highest priorities; in other 
words, the parsing path that led to generating the message 
comes to a temporary stop, and old parsing paths are 
resumed or new ones are started. This drastically reduces 
(in theory eliminates) idle times. 

Table I illustrates the different messages that a single 
DPS deals with, together with the operators they activate 
and other relevant information. The first three messages 
(Subgoal Resolution Request, Prediction-Merging Request, 
and Subgoal Resolution Answer) are in general remote 
messages, that is messages coming from other DPSs. The 
first two messages roughly correspond to respectively 
top-down and bottom-up activities. The last one simply 
informs a DPS that a subgoal it had previously asked to 
solve has indeed been solved; the involved activities 
consist only in creating a Physical Hypothesis representing 
the new parse tree. This message is not subjected to 
priority scheduling and is executed as soon as possible 
when the current scheduling cycle is terminated. The other 
two messages (Verify and Activation) are local. 

The first two messages, Subgoal Resolution Request 
and Prediction-Merging Request, are subjected to the local 
control scheduler, together with Verify and Activation (see 
Fig. 4). The interesting aspect is that, since every 
message refers directly to a particular Physical Hypothesis 
and hence a particular parse tree, it can be assigned a 



priority equal to the score of the parse tree it corresponds 
to; then the scheduling allows the kind of score-guided 
control previously outlined. Specifically, the message is 
selected whose referent parse tree is characterized by the 
highest score. The Physical Hypothesis corresponding to 
that parse tree can be local to the DPS or not. In this way, 
at any time, the best-scored (in absolute) parse tree is 
always guaranteed to be treated by one of the DPSs. 

The local scheduler is also faced with the Activation 
phase. When there is a Word Hypothesis (among those 
that were initially assigned to the local DPS) with a better 
score than the best priority of the messages contained in 
the Priority Request Heap, that Word Hypothesis is used to 
perform the Activation phase. In this phase the Word 
Hypothesis is used to solve the headers (which are 
terminal nodes) of all the Physical Hypotheses residing on 
the DPS. This activity directly corresponds to the 
ACTIVATION operator. 

Whenever a new Physical Hypothesis is created, a 
corresponding request is generated, according to Table I. 
This request has the purpose of making this new Physical 
Hypothesis visible by other DPSs that could treat it. A 
Communication Controller generates the messages to be 
sent to the involved DPSs. That assumes that there must 
be knowledge about what DPS can treat the newly 
generate Physical Hypothesis. This knowledge comes from 
the given partition of the Knowledge Sources among the 
DPSs and is stored in the Communication Controller. 

4. Implementation and related research 
The effectiveness of the speech-parsing approach 

described throughout Section 2 has been demonstrated 
through several experimentations on the SYNAPSIS version 
running sequentially. The whole speech understanding 
system correctly recognizes and understands 80% of 
continuously-uttered sentences, on the average 7 words 
long, with a dictionary of 1000 words and a language 

knowledge represented by about 200 Knowledge Sources 
(that corresponds to a language model with branching 
factor about 35). The analysis of one sentence takes on 
the average 40 seconds on a SYMBOLICS. 

The current working parallel implementation of 
SYNAPSIS runs on a pool of Lisp Machines, each acting as 
a DPS. This solution, hardly the cheapest one, offers 
enormous advantages in terms of ease of development 
and testing, though does not permit specific 
parallel-algorithm measures (for instance, measuring the 
time spent in communication is not significant since the 
processors can only communicate via Ethernet). A future 
hardware environment will consist of a Transputer-based 
distributed architecture. 

In the present view, each DPS is statically allocated on 
a processor. A possible drawback of this static, processes 
as Knowledge Sources', model is that it may result in a 
poor utilization factor of the available processing 
resources, in contrast with a dynamic, processes as 
hypotheses', model, that has been rejected (at least for the 
time being) due to the high communication rate required 
and the great implementative complexities. On the other 
hand, we have experimentally verified that, using a suitable 
partition of the Knowledge Sources, each processor 
produces about the same number of hypotheses, thus 
signifying that a satisfactory exploitation of parallelism can 
be achieved in practice. Moreover, limited processing 
resource utilization within a single system could be not a 
critical problem if a system-level parallelism (due to 
multiplexing input data) is guaranteed to exist in a final 
application, as could happen, for example, in multi-user 
telecommunication equipments for voice-based advanced 
services. 

The amount of communication among the DPSs 
depends on the way the Knowledge Sources are 
partitioned among the DPSs. A suitable partition can keep it 
small as compared with the activities performed at every 
request on the basis of local information. In order to 
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furtherly reduce it, the communication output buffers can 
be managed taking into account the values of the best 
priorities of the DPSs to which the messages are sent. This 
requires that the current priority be periodically 
communicated by each DPS to all of the others, so that the 
communication rate is decreased from one side but 
increased from the other. In the present implementation this 
feature has not been included. 

The recent literature on parallel parsing is relatively 
limited. Moreover, it seems that written language has been 
privileged over spoken one. This explains why most works 
address different issues from our own. These include 
efficient distributing of parsing tasks within schemes able to 
deal with a range of high-level linguistic phenomena 
[Huang and Guthrie, 1986. Eiselt, 1985], or investigation of 
parallel approaches under paradigms related to the 
connectionist model [Pollack and Waltz. 1985, Slack 
1986], or still master-directed parallelization and 
elaboration of algorithms for existing formalisms [Haas, 
1987]. In contrast, the parser described here is intended to 
face problems deriving from the high ambiguity at the input 
level, which is the salient characteristic of speech. To allow 
effective 'multiple attack' to the input, emphasis is given to 
distributing Knowledge Sources rather than tasks, and to 
adopting a cooperating-agent framework able to perform a 
score-guided analysis without relying on synchronous, 
deadlock-prone form of communication. 
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