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Abstract 

The paper describes a speech coding system 
based on an ear model followed by a set of Multi-
Layer Networks (MLN). MLNs are trained to learn 
how to recognize articulatory features like the 
place and manner of articulation. Experiments are 
performed on 10 English vowels showing a 
recognition rate higher than 95% for new 
speakers. When features are used for recognition, 
comparable results are obtained for vowels and 
diphthongs not used for training and pronounced 
by new speakers. This suggests that MLNs 
suitably fed by the data computed by an ear model 
have good generalization capabilities over new 
speakers and new sounds. 

1. Introduction 

Coding speech for Automatic Speech 
Recognition (ASR) can be performed with Multi-
Layer Networks (MLN). This approach is 
interesting because it captures relevant speech 
properties useful for ASR at the stage of coding. A 
large number of scientists is currently investigating and 
applying learning systems based on MLNs [Rumelhart 
et al. 1986, Plout & Sejnowski 1987]. Applications 
have shown that MLNs have interesting generalization 
behaviour capable of capturing information related to 
pattern structures as well as characterization of 
parameter variation [Bengio et al. 1989, Bourlard & 
Wellekens 1987, Watrous & Shastri 1987]. Algorithms 
exist for MLNs with proven mathematical properties 
that allow learning to be discriminative and to focus 
on the properties that permit the separation of patterns 
belonging to different classes. 
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If we interpret each output of the coder as 
representing a phonetic property, then an output 
value can be seen as a degree of evidence with 
which that property has been observed in the data. An 
important research problem can be studied with such 
an approach; it deals with the possibility of learning all 
the required features and their use in correctly 
hypothesizing phonemes that were not used for 
learning. As a first attempt at solving this problem, we 
have chosen to represent vowels and diphthongs with 
the place of articulation and the manner of 
articulation related to tongue position since 
these features are well characterized by physical 
parameters that can be measured or estimated. 
Phoneticians have characterized vowels and other 
sounds by discretizing place of articulation and manner 
of articulation related to tongue position which are in 
nature continuous acoustic parameters. We have 
inferred an MLN for each feature and discretized each 
feature with five qualitative values, namely 
PL1 ,... .PLi,... ,PL5 for the place and 
MN1 ,...MNj,....MN5 for the manner. 

Various tests have been performed, always with 
new speakers. The first test consists of pronouncing 
the same vowels in the same context as in the data 
used for learning. This test is useful for comparing the 
results obtained with a mathematical model of the 
ear [Seneff 1988] with those obtained with the more 
popular Fast-Fourier Transformation (FFT). This test is 
also useful for assessing the capabilities of the network 
learning method in generalizing knowledge about 
acoustic properties of speakers pronouncing vowels. 
The second test has the objective of recognizing 
vowels through features. This test has been useful for 
investigating the power of the networks with respect to 
possible confusion with vowels not used for learning. 
The third experiment is an attempt to recognize new 
vowels pronounced by new speakers. This showed 
how the MLNs generalize to combinations of values of 
features not seen in the training set. This 
generalization capability was verified with 8 new 
sounds pronounced by 20 new speakers. Without any 
learning of the new sounds, but just using 
expectations based on phonetic knowledge on the 
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composing features and their time evolution, an error 
rate of 7.5% was found. 

2. Training of the MLNs 

The Error Back Propagation Algorithm (EBPA) 
was used for training. EBPA was recently introduced 
[Rumelhart et al. 1986] for a class of non-linear MLNs. 
The networks used for the experiments described in 
this paper are feedforward (non-recurrent) and 
organized in layers. A weight is associated with the 
(unidirectional) connections between two nodes. 

With EBPA the weights are computed iteratively 
in such a way that the network minimizes a cost C (the 
sum of the square of the differences between output 
unit values and target output values for the training 
examples). The EBPA uses gradient descent in the 
space of weights to minimize the error: 

(1 

In order to reduce the training time and 
accelerate learning, various techniques can be used. 
The classical gradient descent procedure modifies the 
weights after all the examples have been presented to 
the network. This is called batch learning. 
However, it was experimentally found, at least for 
pattern recognition applications, that it is much more 
convenient to perform on-line learning, i.e., 
updating the weights after the presentation of each 
example. When using on-line learning, one has to be 
careful in choosing the order of presentation of 
examples. We presented examples of each class one 
after the other, going through all the different classes. 
Batch learning provides an accurate measure of the 
performance of the network as well as of the gradient 
3E/3W. These two parameters can be used to adapt 
the learning rate during training in order to minimize 
the number of training iterations. In our experiments 
we used various types of acceleration techniques. The 
simplest one is to add a "momentum" term to the 
weight update rule [Rumelhart et al. 1986]. More 
interesting techniques involve adapting the learning 
rate as a function of 1) the evolution of the cost 
(deviation from target output), and 2) the evolution of 
the direction of the gradient. In other words, when the 
cost is improving sufficiently or when the gradient 
tends to point in the same direction from cycle to cycle, 
the learning rate should be increased. A further 
refinement consists of using (and adapting) a different 
learning rate for each connection. To improve learning 
time, a subset S of the training examples is used for 
training: those that produce errors. Once every few 
learning iterations on this subset, all the patterns are 
tested in order to decide which ones will go in S. Of 
course, with this technique the global cost and the 
global gradient are not evaluated at each iteration, so it 
is more suited to on-line learning. Another way to 
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reduce the learning time is to divide the problem into 
subproblems which are as independent as possible 
and assign those subproblems to subnetworks: this is 
modularization. In our case we used separate 
networks for place of articulation and for manner of 
articulation. Outputs of small modules can be 
combined heuristically according to our knowledge of 
the functions they perform based on speech theory. 
They can also be combined to form a bigger network 
using Waibel's (1988) glue units. Another technique 
we used to train big networks was first to minimize the 
error using a simple architecture (e.g., no hidden 
units). Once the simple network has been trained, it 
can be augmented with more hidden units (and many 
more weights) in order to reduce the error significantly. 
This strategy provided significant gains in training time 
in some cases. 

3. Experimental results 

3.1 Speaker-Independent recognition of ten 
vowels in fixed context 

A first experiment was performed for speaker-
independent vowel recognition. The purpose was that 
of training an MLN capable of discriminating among 10 
different American-English vowels represented with 
the ARPABET by the following VSET: 

(2) 

Our interest was in investigating the 
generalization capability of the network with respect to 
inter-speaker variability. Some vowels and diphthongs 
(ix,ax,ey,ay,oy,aw,ow) were not used in this 
experiment because we attempted to recognize them 
through features learned by using only VSET. 

Speech material consisted of 5 pronunciations 
by 19 speakers of 10 monosyllabic words containing 
the vowels of VSET. The tokens from 12 of the 
speakers (6 males, 6 female) were used for training 
(600 tokens) and and the remaining ones (from 3 
males, 4 females) were used for tests (350 tokens). 
Data acquisition was performed with a 12 bit A/D 
converter at a 16 kHz sampling frequency. The words 
used are those belonging to the WSET defined in the 
following: 

(3) 

Two signal processing methods were used for this 
experiment. One was based on 128 point FFT spectra 
reduced to energy values in 40 bands, the other used 
the output of the Generalized Synchrony Detector 
(GSD), represented by a 40-coefficient vector. In both 



cases spectra were sampled every 5 ms. Spectral 
values were normalized to lie in the range 0 to 1. In 
order to capture the essential information of each 
vowel it was decided to use 10 equally-spaced frames 
per vowel for a total of 400 network input nodes. Best 
results were obtained with a single hidden layer with a 
total of 20 nodes. Ten output nodes were introduced, 
one for each vowel. 

Vowels were automatically singled out by an 
algorithm proposed in [De Mori et al 1985] and a linear 
interpolation procedure was used to obtain 10 equally-
spaced frames per vowel (the first and the last 20 ms of 
the vowel segment were not considered in the 
interpolation procedure). The resulting 400 (40 
spectral coefficients per frame x 10 frames) spectral 
coefficients became the inputs of the MLN. 

Training was stopped when the MLN made 0 
errors on the training set. For the test set, the network 
produces degrees of evidence varying between zero 
and one, hence candidate hypotheses can be ranked 
according to the corresponding degree of evidence. 

The error rates on the test set were 4.3% with 
the ear model and 13.0% with the FFT. The reason for 
such a difference is probably due to the fact that the 
use of the ear model allowed us to produce spectra 
with a limited number of well defined spectral lines. 
This represents a good use of speech knowledge 
according to which formants are vowel parameters with 
low variance. 

Encouraged by the results of this first 
experiment, other problems appeared worth 
investigating with the proposed approach. The 
problems are all related to the possibilities of extending 
what has been learned for ten vowels to recognize 
new vowels. 

follows. A network with features as target outputs was 
slower to train and did not generalize as well on new 
speakers than a network with vowels as target outputs. 
This counterintuitive result might be explained by the 
possibility that the regions in the input space defined 
by the feature values are not as easily drawn (e.g., 
including several disjoint regions) as the regions in the 
input space defined by the vowel discrimination. Note 
that the acoustic definition of these features is 
imposed on the network based on speech production 
theory and might not represent the best choice of 
representation. Hence using 10 additional outputs 
representing the vowels forced the creation of hidden 
units that were useful to perform the vowel 
discrimination. These hidden units in turn could be 
used to produce the target feature values. The 
resulting network still does not generalize as well as 
the vowel discrimination network on new speakers, but 
it does generalize on new vowels. 

3.2. Recognition of phonetic features 

The same procedure introduced in the previous 
section was used for learning in three networks, 
namely MLNV1, MLNV2 and MLNV3. These networks 
have the same structure as the one introduced 
previously, the only difference being that they have 
more outputs. MLNV1 has five additional outputs 
corresponding to the five places of articulation 
PL1,...,PLi PL5. MLNV2 has five new outputs, 
namely MN1,...,MNj,...MN5. MLNV3 has two additional 
outputs, namely T=tense and U=lax. The ten vowels 
used for this experiment have the features defined in 
Table 1. Training the first 10 outputs to correspond to 
the 10 vowels improved generalization over nets with 
only feature outputs. This might be explained as 

After having learned the weights of the three 
networks with the same methodology as for the first 
experiment, confusion matrices were derived only for 
the outputs corresponding to the phonetic features. 
An error was determined by comparing the feature 
value with the highest degree of evidence with the 
correct feature. 

The overall error rates on the test sets were 
4.57%, 5.71% and 5.43% respectively for the three 
sets of features. Error rates on the training set were 
always zero after a number of training cycles (between 
60 and 70) of the three networks. Several rules can be 
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conceived for recognizing vowels through their 
features. The most severe rule is that a vowel is 
recognized if all three features have been scored with 
the highest evidence. With such a rule, 313 out of 350 
vowels are correctly recognized corresponding to 
10.5% error rate. 

In 28 cases, combinations of features having the 
highest score did not correspond to any vowel, so a 
decision criterion had to be introduced in order to 
generate the best vocalic hypothesis. In 2.57% of the 
examples, the three features corresponded to a wrong 
vocalic hypothesis. This leads to the conclusion that an 
error rate between 2.57% and 10.57% can be 
obtained depending on the decision criterion used for 
those cases in which the set of features having the 
highest membership in each network do not 
correspond to any vowel. 

An appealing criterion consists of computing the 
centers of gravity of the place and manner of 
articulation using the following relation: 

(4), 

The MLNs, trained as described in section 3, 
have as input 10 frames of 40 parameters each. During 
training these frames were chosen so as to span the 
length of a stable vowel segment. In the test 
experiments described below, the 10 frames are 10 
consecutive frames each representing 5 ms of 
speech. The MLN thus has an input window of 50 ms 
which scans the input speech data with a 5 ms step. 

According to other experimental work on vowel 
recognition [Leung & Zue 1988], there are 13 vowels 
in American English and 3 diphthongs. The vowels 
and diphthongs that were not used in the previous 
experiments belong to the NSET: 

(5) 

The vowel /ax/ does not exhibit transitions in 
time of the parameters CGM and CGP so its recognition 
was based on the recognition of the expected 
features as defined in Table 1. The other five elements 
of NSET exhibit evolution of CGP and CGM in the time 
domain. For this reason, it was decided to use such 
evolutions as the basis for recognition. 

where ji(i) is the degree of evidence for feature level i 
obtained by the MLNs. Let CGP and CGM be, 
respectively, the center of gravity of the place and 
manner of articulation. A degree of "tenseness" has 
been computed by dividing the membership of 
"tense" by the sum of the memberships of "tense" and 
"lax". Each sample can now be represented as a point 
in a three-dimensional space having CGP, CGM and 
the degree of tenseness as dimensions. Euclidean 
distances are computed from choices of feature values 
not corresponding to any vowel to the points 
representing theoretical values for each vowel. With 
centers of gravity and Euclidean distance an error rate 
of 7.24% was obtained. The error rate obtained with 
gravity centers is not far from that obtained with ten 
vowels but is higher because the system was allowed 
to recognize feature combinations for all the vowels of 
American English. 

3.3. Recognition of new phonemes 

In order to test the generalization power of the 
networks for feature hypothesization a new 
experiment was performed involving 20 new speakers 
from 6 different mother tongues (English, French, 
Spanish, Italian, German and Vietnamese) 
pronouncing isolated letters and words in English. 
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feature values, a crude classification criterion was 
applied in this experiment. Recognition was based 
purely on time evolution of place and manner of 
articulation according to descriptions predictable from 
theory or past experience and not learned by actual 
examples. The centers of gravity CGP and CGM were 
computed every 5 ms and vector-quantized using five 
symbols for CGP according to the following alphabet: 

(6), 

where F represents "strong front". Analogously, the 
following alphabet was used for quantizing the manner 
of articulation: 

(7), 

where H represents "strong high". Coding of CGP and 
CGM is based on values computed from the data of the 
ten vowels used for training the network. 

Transitions of CGP and CGM were simply 
identified by sequences of pairs of symbols from Σ1 
and Σ2. Figure 1 shows definitions of Σ1 and X2 and 
gives an example of the time evolution of CGP and 
CGM for letters A (/ey/) and Y (/way/) together with their 
codes. 

The following regular expressions were used to 
characterize the words containing the new vowels and 
diphthongs: 

In theory the asterisk means "any repetition", but 
in our case a minimum of two repetitions was required. 
The symbol V means logical disjunction while a 
concatenation of terms between parentheses means a 
sequence in time. A short sequence with intermediate 
symbols was tolerated in transitions B-F , L-H and vice-
versa, as well as in initial and final transients. 

For each vowel and diphthong, twenty samples 
were available based on the idea that speaker-
independent recognition has to be tested with data 
from new speakers and repetition of data from the 
same speaker is not essential. The errors observed 
were quite systematic. For /ax/, 1 token was confused 
with /ah/. For /ey/ (letter A), three errors were 
observed, all corresponding to a sequence (f,h)* 
meaning that the transition from /eh/ was not detected. 
For /ow/ (letter O), three errors were observed 

corresponding to the sequence (b,l)* meaning that the 
transition from /oh/ was not detected, which may 
correspond to an intention of the speaker. Three 
errors were found for /oy/ confused with /ay/ and two 
errors for /aw/ confused with /ow/. The repeatability of 
the describing strings was remarkable. Performance 
can be improved with a more rigorous word recognition 
algorithm. 

4 Conclusions 

The work reported in this paper shows that a 
combination of an ear model and multi-layer networks 
results in an effective generalization among speakers 
in coding vowels. The results obtained in the speaker-
independent recognition of ten vowels add a 
contribution that justifies the interest in the 
investigation of the use of MLNs for ASR [Leung & 
Zue 1988, Waibel et al, 1988]. 

Furthermore, training a set of MLNs with a sma'l 
number of training speakers on a number of well 
distinguishable vowels resulted in a very good 
generalization on new speakers (with a variety of 
accents) as well as on new vowels and diphthongs if 
recognition is based on features. 

By learning how to assign degrees of evidence 
to articulatory features it is possible to estimate 
normalized values for the place and manner of 
articulation which appear to be highly consistent with 
qualitative expectations based on speech knowledge. 

The error-back propagation algorithm seems to 
be a suitable one for learning weights of internode 
links in MLNs. A better understanding of the problems 
related to its convergence is a key factor for the 
success of an application. The choice of the number of 
MLNs, their architecture, the coding of their input and 
output and the learning strategy are also of great 
importance, especially for generalization. 

The computation time of the system proposed in 
this paper is about 150 times real-time on a Sun 4/280. 
The system structure is suitable for parallelization with 
special purpose architectures and accelerator chips. It 
is not unrealistic to expect that with a suitable 
architecture, such a system could operate in real-time. 
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