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types. This we called plan recognition, following Kautz. 
However, that theory was monotonic in that if from input Φ 
it followed some conclusion X, from inputs Φ and , % also 
followed. This was plainly an oversimplification, and so the 
second aim of this paper is to further reconstruct Script-
activation' inferences as conditional reasoning, in which 
monotonicity fails. Furthermore, insofar as the theory is 
based on standard planning representations, we claim that 
our approach to conditionals provides a natural account of 
(simple kinds of) planning. The theory presented here serves 
also to formalize the intuitions appealed to in our discussion 
of inheritance, [Wobcke, 1988c]. 
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conditionals) as there are explanations, and that these expla
nations are dependent on the point of view adopted. Thus of 
a car crash, it is said that 

The car crashed because the driver tried to avoid the 
pedestrian. 
The car crashed because the brakes failed. 
The car crashed because the tyres skidded on a patch of 
ice. 

Here, what happened was that in the trying to avoid the 
pedestrian, the driver applied the brakes which failed to grip 
the icy road. Al l the conditions and events play some role in 
the crash, but each causal statement isolates one of them. 
The point is that each causal statement is true. So each of 
the corresponding counterfactuals is true: 

If the driver hadn't tried to avoid the pedestrian, the car 
wouldn't have crashed. 
If the brakes hadn't failed, the car wouldn't have 
crashed. 
If the tyres hadn't skidded on a patch of ice, the car 
wouldn't have crashed. 

To handle this phenomenon, we wil l assume that the set of 
causal statements forming the complex explanation is 
represented in the one plan schema. Al l the conditionals will 
be true because the situations which are used in evaluating 
the conditionals are determined from this one schema. 

The second argument for a hierarchy of schemas is that 
this allows the representation of default assumptions and 
exceptions. The use of defaults is realized in the theory of 
conditionals by the failure of strengthening the antecedent 
For example, the first conditional is true, the second false: 

If I had recharged the battery, the car would have 
started. 
If I had recharged the battery and left it disconnected, 
the car would have started. 

We interpret this as follows. In the first example, there is an 
implicit assumption that the battery is connected. This 
assumption is denied in the antecedent of the second condi
tional, and the informational (and causal) chain between 
antecedent and consequent is broken. We assume that there 
is a planning schema consisting of 'recharge(battery) —> 
connect(battery) —> starts(car)'. Thus the most general situa
tion which satisfies *recharge(battery)' also satisfies 
'starts(car)', but the most general situation that also satisfies 
'~ connect(battery)' wil l not satisfy 'starts(car)'. This is an 
example of a default assumption, but defaults may also 
appear in the consequent of a conditional, e.g. with the fami
liar 

If that thing were a bird, it would be able to fly. 
This conditional is true, although it allows exceptions. With 
the standard network, the most general 'bird' situation satis
fies 'flies', but some of its subtypes (penguins) do not. This 
kind of example will be used to explain the failure of contra
position (see section 4). 

Third, conditionals often come in pairs, e.g. 
If I had recharged the battery, the car would have 

started. 

2 Conditionals and Hierarchies of Situations 
Our theory follows in the same vein as the truth-theoretic 
accounts of conditionals developed by Stalnaker [1968] and 
Lewis [1973]. But rather than defining truth relative to a 
possible world, our underlying semantic framework is a 
hierarchy of types of situations. Suppose we know that some 
situation s is of type a. We know that s could turn out a 
number of ways depending on what further information 
about s we could obtain. Intuitively, the situation types that 
are recorded in the hierarchy below a represent all the sub
types of a that s could possibly be an instance of. So with 
the standard script-type examples from [Schank and Abel-
son, 1977], we can imagine a situation type 'restaurant' with 
subtypes 'cafeteria' and 'fast-food'. With an inheritance 
hierarchy, we can imagine an object type 'bird' with sub
types 'penguin' and 'emu'. 

If I were to pull the trigger, you would be injured. 
Supposing that all the situation types that are subtypes of a 
in which I pull the trigger satisfy your being injured, the 
conditional wil l be true. On the other hand, if it is admitted 
that the gun may equally well not fire if I pull the trigger, 
the conditional wil l be false. 

We now motivate our analysis by discussing three ideas 
which make schemas and hierarchies of situations a useful 
basis for a theory of conditionals. 

First, a conditional is not considered true in isolation of 
other related true conditionals. This argument comes from 
Hanson's [1961] discussion of the explanation of everyday 
events in relation to causal statements. Hanson claims that 
there are as many true causal statements (and so true 



If I hadn't recharged the battery, the car wouldn't have 
started. 

To handle such pairs (and some of the examples above), we 
must further interpret what a plan actually says about when 
one of its actions fails to happen. In doing so, we follow 
Mackie [1965], who argues that each cause of some event is 
a necessary component of a collection of actions and/or con
ditions which together are sufficient for the occurrence of 
the event. Now in the context of a specific plan, we can 
consider each link A —> B to mean that in that plan, A is a 
necessary component of a collection of actions (all those A 
such that A -> B) which together are sufficient for B's exe-
cutability. Thus when A does not happen, B cannot (hence 
the truth of the conditional). We will build in to the theory 
(see section 4) a way of generating from the one schema, a 
hierarchy of situations that accounts for such pairs. 

3.2 Situated Conditionals: Semantics 

The semantics of the logic SC is based on a hierarchy of 
situation types. A situated conditional c: Φ > y is true if y 
holds in the most general situation type which satisfies Φ 
that is a subtype of the type [c ]. We follow Stalnaker [1968] 
in using a selection function, which for each situation type 
and antecedent of a conditional, picks out a situation type 
with respect to which the consequent of the conditional is 
tested. Our logic SC is complete with respect to models 
which satisfy certain conditions on this selection function. It 
is important to note that the restrictions we place on selec
tion functions do not guarantee that the most general sub
type of the base type is selected. But for any model with 
selection function meeting our requirements, there is a 
corresponding model with selection defined according to the 
'most general subtype' rule, which satisfies exactly the same 
set of propositions. Thus the logic SC can be regarded as the 
logic of situated conditionals. 

Definition. A selection function f is a partial function defin
ing for a situation type a and proposition Φ, a subtype of a 
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The full proof may be found in [Wobcke, 1988a]. □ 

4 Evaluating Subjunctive Conditionals 
The theory of conditionals presupposes that the knowledge 
represented in a hierarchy of plan schemas and in an inheri
tance hierarchy can be used to construct a hierarchy of situa
tion types. In the case of the inheritance network, the hierar
chy just is the network. In the case of planning knowledge, 
the construction is derived from a hierarchy of planning 
schemas that is augmented to handle negated action descrip
tions. We define/ (a, Φ) for any situation type a and propo-
sition Φ, when a corresponds to a plan, to be the most gen
eral subtype of a that satisfies Φ. 

As an example of how the theory works for our favourite 
inheritance hierarchy, suppose birds have short legs and can 
fly, penguins have short legs but can't fly, and emus have 
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long legs and also can't fly. Then the following are all true: 
If that bird were a penguin, it wouldn't be able to fly. 
If that bird were an emu, it wouldn't be able to fly. 
If that bird couldn't fly, it would be a penguin or an 
emu. 
If that bird couldn't fly, it might or might not have long 
legs. 

but 
If that bird couldn't fly, it would have long legs. 

is false (i.e. allowing for penguins). The most general sub
type of bird that satisfies '~ flies* satisfies the disjunction 
'has(long-legs) V ~has(long-legs)\ but satisfies neither dis
junct. 

We can now illustrate why contraposition for condition
als fails. Consider ' i f that bird had short legs, it would be 
able to fly'. This conditional is true in the above network 
because birds by default have short legs, and they can fly. 
But for the contrapositive to be true, we would need the 
most general subtype of bird that satisfies '~ flies' to satisfy 
the property of not having short legs. In the above hierarchy, 
birds that can't fly are either emus or penguins, one of 
which has long legs, the other of which doesn't, so the con
trapositive isn't true. 

Now we consider the case of plan schema hierarchies. 
The straightforward definition of a hierarchy of plans in 
which one plan is a subtype of another if the latter could be 
elaborated into the former is inadequate because it fails to 
handle conditionals whose antecedents are the negations of 
actions, for example, 

If I had recharged the battery, the car would have 
started. 
If I hadn't recharged the battery, the car wouldn't have 
started. 

From the discussion in section 2, each link A —> B in a plan 
means that A is a necessary component of a collection of 
actions (all those A such that A —> B) which together are suf
ficient for B to be executable. Therefore when an action A 
does not happen, all those actions in the plan which depend 
on A's being done wil l also fail to eventuate. We now make 
this idea precise. 

We associate with each schema a collection of failure 
schemas, which say what happens when some action(s) in 
the schema fail. To do this, we start with the schemas 
ordered according to the simple definition proposed above. 
Now starting from the most general situation types and 
working down to the most specific ones, we define the 
failure schemas associated with each schema. First, there are 
no failure schemas for the primitive actions. So consider a 
schema with a minimal number of actions (perhaps just two 
actions and one link). Consider the partially ordered actions 
in the schema in reverse order. Take an action A in the plan 
connected to a collection of following actions Bi; and sup
pose the failure schemas for all the Bi have already been 
constructed. Now construct further failure schemas for A by 
replacing A by ~A in all those failure schemas that contain 
any one of the negated B i s . This gives a collection of 

failure schemas for all the simplest schemas. Now for any 
more specific schema, repeat the process but not using the 
(reverse of) the partial order on the actions contained in that 
schema, but using instead the more restrictive partial order 
obtained by coalescing the partial orders on the actions in 
the more general schemas from which the specific schema 
was derived. 

A simple example will make this procedure clear. Con
sider two schemas A -> B and C ->D. We will get failure 
schemas ~A -> ~B and ~C -> ~D (the '-V is a plan 
link, not an implication). Now suppose the two simple sche
mas are combined into a schema A -> C -> B ->Z). When 
C doesn't occur, we don't want to say that B doesn't, 
because B's occurrence depends only on that of A. We do, 
however, want to say that D fails to occur. Constructing the 
failure schemas by reference to the original schemas yields 
these results. 

We can now state formally the definitions of the hierar
chy of plan plan descriptions, assuming a given hierarchy of 
plan schemas. First, the definition without taking into 
account negated actions, then the modified definition: 
Definition. (Type Hierarchy of Plans) A plan P 1 is a sab-
fypeofaplan P2, written P1 <P 2 , if 

(i) either P1 or P2 is primitive, P 1 has P2 as an ancestor 
in the given hierarchy, 
or (otherwise) 

(i) the set of role variables of P 1 contains the set of role 
variables of P 2, 
(ii) corresponding role types in P 1 are subtypes of those 
in P2 using an inheritance hierarchy, 
(iiia) the expansion of P 1 contains a subtype of P2 , or 
(iiib) each action in the expansion of P 1 is a subtype of 
an action in the expansion of P2. 

Definition. (Type Hierarchy of Plan Schemas - Modified 
for Failure Schemas) A plan schema P 1 is a subtype of a 
plan schema P2 , written P1 <P2 , if Pl<P2 under the 
above definition with an added clause stating that if action A 
is a subtype of an action B, then negated action ~A is a 
subtype of the action B and of the negated action ~ B. 
So now, intuitively, a schema P1 is a subtype of a schema 
P2 if P1 contains a collection of actions that are subtypes of 
counterparts in P2 and all the counterparts of actions 
negated in P 2 are negated in P 1. 

Define a simple plan to be a (possibly partial) instantia
tion of a single plan schema. The hierarchy of situations 
used for our theory of conditionals is a hierarchy of plan 
descriptions (c.f. [Wobcke, 1988b]), consisting of disjunc
tions of those formulae that completely describe the simple 
plans. First, define a complete description of a simple plan 
to be a conjunction of atomic formulae such that the con-
juncts are in one-one correspondence with the actions in the 
plan. These conjunctions can be identified with the simple 
plans themselves. We take as the situation types in the 
hierarchy the disjunctions of such complete descriptions 
(except that with regard to failure schemas, we allow only 
disjunctions of complete descriptions of completely instan
tiated failure schemas). In the hierarchy of plan descriptions, 
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the disjunction of two plan descriptions D1 and D 2 is placed 
directly above D 1 and D 2 , and if D1 V D2 is a disjunctive 
description of simple plans, we define f ( D 1 V D 2, Φ) to be 
f ( D 1 Φ ) V / ( D 2 , Φ ) . 

We can now explain why conditionals with negated 
antecedents Φ where (Φ > y is a constraint, always seem to 
be uncategorically true. Our explanation turns on the use of 
such conditional statements. The use of the conditional is 
often counterfactual, in which case it is presupposed that the 
antecedent actually occurred. So for example, the earlier 
conditional is being evaluated with respect to a situation 
which includes the battery being recharged. Now in such a 
context, the recharging is a necessary condition on the car's 
starting, and by our definition of the hierarchy of complete 
plan descriptions, the conditional will be true at such a situa-
tion (by reference to an appropriate failure schema). Con
versely, suppose I didn't recharge the battery: I didn't this 
morning, for example, and the car started as usual. If today I 
say ' if I hadn't recharged the battery, the car wouldn't have 
started', then I am saying something false. But in doing so, I 
am violating the precondition on the use of the conditional. 

Note that as a result of our definitions, it is not a restric
tion on our theory that conditionals must always look for
wards in time. For example, the following two statements 
are both true: 

If he had struck the match, it would have lit. 
If the match had lit, he must have struck it 

But this does not force us to accept contraposition for condi
tionals. Suppose there are two ways to light a cigarette, 
using a match and using a lighter. Then the following are 
true: 

If he had used a match, the cigarette would have lit. 
If he had used a lighter, the cigarette would have lit. 
If the cigarette had lit, he could have used a match. 
If the cigarette had lit, he could have used a lighter. 

but the contrapositives of the first two statements (the third 
and fourth with 'must' replacing 'could') are both false. 

5 Conclusion 
In this paper, we presented an AI theory of conditionals that 
emphasizes the judgement of conditional statements using 
knowledge of informational relations represented in a hierar
chy of situations. This AI approach contrasts with that of 
Ginsberg [1986], who does not have a truth-theoretic 
account of conditionals. Our theory explains the standard 
'paradoxes' of conditionals in a natural way as arising from 
the properties of hierarchies of situations. We have formal
ized our theory using a conditional logic SC based on a ver
sion of situation semantics. We have implemented (in Pro
log) a system that evaluates atomic SC formulae by con
structing most general subtypes of situation types - in the 
case of planning schemas, this system is essentially carrying 
out a subtask of planning. We have not considered ways of 
efficiently implementing a system that is capable of dealing 
with arbitrary SC formulae. In future work, we intend 
extending our formalism to include an account of 
knowledge and belief. 
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